Sign changes in $\pi_{q,a}(x) - \pi_{q,b}(x)$

 $\mathbf{b}\mathbf{y}$

KEVIN FORD and RICHARD H. HUDSON (Columbia, SC)

1. Introduction and summary. Let

$$\operatorname{li}(x) = \lim_{\varepsilon \to 0^+} \int_0^{1-\varepsilon} \frac{dt}{\log t} + \int_{1+\varepsilon}^x \frac{dt}{\log t}$$

and let $\pi(x)$ denote the number of primes $\leq x$. Also, $\pi_{q,a}(x)$ denotes the number of primes $\leq x$ lying in the progression $a \mod q$. In 1792, Gauss observed that $\pi(x) < \operatorname{li}(x)$ for x < 3000000 (see e.g. [E]) and the question of whether or not there are any sign changes of $\pi(x) - \operatorname{li}(x)$ remained open until 1914 when J. E. Littlewood [Li] showed that there exists a positive constant k such that infinitely often both $\pi(x) - \operatorname{li}(x)$ and $\operatorname{li}(x) - \pi(x)$ exceed

$$\frac{kx^{1/2}\log\log\log x}{\log x}$$

Sign changes are, nonetheless, quite rare and it was not until 1955 that any upper bound was obtained for the first sign change. The upper bound of

$$10^{10^{10^{34}}}$$

was obtained by Skewes [Sk1] on the assumption of the Riemann Hypothesis, and in 1955 [Sk2] he provided the first unconditional upper bound for the first sign change, namely

$$10^{10^{10^{10^3}}}$$

In 1966, Lehman [Leh] developed a new method based on an explicit formula for $li(x) - \pi(x)$ averaged by a Gaussian kernel and knowledge of zeros of the Riemann zeta function $\zeta(s)$ in the region $|\Im s| \leq 12000$. Lehman's method drastically improves the upper bound for the first sign change. In particular, he proved that it must occur before $1.5926 \cdot 10^{1165}$ and his method was used by te Riele [tR] to lower the bound to $6.6658 \cdot 10^{370}$ and by Bays and Hudson [BH5] to lower it further to $1.39822 \cdot 10^{316}$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11N13; Secondary 11Y35.

In this paper, we generalize Lehman's method, enabling one to compare the number of primes $\leq x$ in any two arithmetic progressions qn+a and qn+b. For reasons given in, e.g., [H2], [RS], negative values of $\pi_{q,b}(x) - \pi_{q,a}(x)$ may be relatively infrequent if b is a quadratic non-residue of q and a a quadratic residue. This phenomenon, first noted by Chebyshev in 1853 for the case q = 4, is known as "Chebyshev's bias". It is quite pronounced when $q \mid 24, 1 < b < q, (b,q) = 1$ and a = 1, and these cases have been studied extensively from a numerical point of view ([BH1]–[BH4], [Lee], [Sh]) and from a theoretical point of view ([BFHR], [H2], [K1]–[K3], [KT1], [KT2], [Li], [RS]). For example, Bays and Hudson [BH2] showed in 1978 that the smallest x with $\pi_{3,2}(x) < \pi_{3,1}(x)$ is x = 608981813029.

Section 2 is devoted to the development of the analog of Lehman's theorem. Our bounds are considerably sharper than in [Leh], but as a consequence the bounds are a bit more complex. In Section 3 we apply the theorem for $q \mid 24$ and a = 1. Our present knowledge of the zeros of these *L*-functions is due to Rumely ([Ru1], [Ru2]) and this is insufficient to obtain bounds which are anywhere near "best possible". The bounds, however, are in most cases adequate to localize negative values of $\pi_{q,b}(x) - \pi_{q,1}(x)$.

2. A generalization of Lehman's theorem. For non-real numbers z, define

(2.1)
$$\operatorname{li}(e^{z}) := e^{z} \int_{0}^{\infty} \frac{e^{-t}}{z-t} dt$$

and let

(2.2)
$$K(s;\alpha) = \sqrt{\frac{\alpha}{2\pi}} e^{-\alpha s^2/2}$$

Also, for $\rho = \beta + i\gamma$, $0 < \beta < 1$, define

$$J(\varrho) := \int_{\omega-\eta}^{\omega+\eta} K(u-\omega;\alpha) u e^{-u/2} \operatorname{li}(e^{\varrho u}) \, du.$$

LEMMA 2.1. If $\rho = 1/2 + i\gamma$ with $\gamma \neq 0, u \geq 1$ and $J \geq 1$, then

$$\left|\frac{\mathrm{li}(e^{\varrho u})}{e^{\varrho u}} - \sum_{j=1}^{J} \frac{(j-1)!}{(\varrho u)^j}\right| \le \frac{J!}{u^{J+1}} \min\left(\frac{1}{|\gamma|^{J+1}}, \frac{2^{1.5J+2}}{(1+2|\gamma|)^{J+1}}\right).$$

Proof. By (2.1) and repeated integration by parts, we have for non-real z the identity

(2.3)
$$e^{-z} \operatorname{li}(e^z) - \sum_{j=1}^J \frac{(j-1)!}{z^j} = J! \int_0^\infty \frac{e^{-t}}{(z-t)^{J+1}} dt.$$

Sign changes in
$$\pi_{q,a}(x) - \pi_{q,b}(x)$$
 299

Now put $z = \varrho u$. Since $|\varrho u - t| \ge u|\gamma|$, the last integral is $\le (u|\gamma|)^{-J-1}$. If $|\gamma|$ is small, we can do better by deforming the contour. If $\gamma > 0$ let C be the union of the straight line segments from 0 to $\frac{1}{2}(u - iu)$ to u to ∞ and if $\gamma < 0$ let C be the union of the line segments from 0 to $\frac{1}{2}(u + iu)$ to u to ∞ . For $t \in C$, we have

$$|\varrho u - t| \ge \frac{(1+2|\gamma|)u}{2^{3/2}}$$

Together with the bound

$$\int_{C} |e^{-t}| \, dt \le \sqrt{2},$$

this proves the lemma. \blacksquare

LEMMA 2.2 (McCurley). Let χ be a Dirichlet character of conductor k and denote by $N(T, \chi)$ the number of zeros of $L(s, \chi)$ lying in the region $s = \sigma + i\gamma, 0 < \sigma < 1, |\gamma| \leq T$. Then

$$\left|N(T,\chi) - \frac{T}{\pi} \log\left(\frac{kT}{2\pi e}\right)\right| \le C_2 \log(kT) + C_3,$$

where

$$C_2 = 0.9185, \quad C_3 = 5.512.$$

Proof. This is Theorem 2.1 of [M] with $\eta = 1/2$.

COROLLARY 2.3. Suppose g is a continuous, positive, decreasing function for $t \ge T = 2\pi e/k$, and suppose $T_2 \ge T_1 \ge T$. Let χ be a Dirichlet character of conductor k and denote by γ the imaginary part of a generic non-trivial zero of $L(s, \chi)$. Then

$$\left| \sum_{T_1 < |\gamma| \le T_2} g(|\gamma|) - \frac{1}{\pi} \int_{T_1}^{T_2} g(t) \log\left(\frac{kt}{2\pi}\right) dt \right| \le 2g(T_1)(C_2 \log(kT_1) + C_3) + C_2 \int_{T_1}^{T_2} \frac{g(t)}{t} dt.$$

Proof. Lemma 2.2 and partial summation.

COROLLARY 2.4. If $T \ge 150$, $n \ge 2$ and χ is a Dirichlet character of conductor $k \ge 3$, then

$$\sum_{|\gamma|>T} \gamma^{-n} < \frac{T^{1-n}\log(kT)}{3}.$$

Proof. Letting $g(\gamma) = \gamma^{-n}$ in Corollary 2.3, we obtain

$$\sum_{|\gamma|>T} \gamma^{-n} \leq T^{1-n} \left(\frac{\log\left(\frac{kT}{2\pi}\right)}{\pi(n-1)} + \frac{1}{\pi(n-1)^2} + \frac{2C_2\log(kT) + 2C_3 + C_2/n}{T} \right)$$
$$\leq T^{1-n}\log(kT) \left(\frac{1}{\pi} + \frac{2C_2}{T}\right) + T^{1-n} \left(\frac{2C_3 + C_2/2}{T} - \frac{\log(2\pi)}{\pi}\right)$$
$$< \frac{1}{3}T^{1-n}\log(kT). \quad \blacksquare$$

We also use the simple bound

(2.4)
$$\int_{y}^{\infty} K(u;\alpha) \, du < \sqrt{\frac{\alpha}{2\pi}} \int_{y}^{\infty} \left(\frac{u}{y}\right) e^{-\alpha u^{2}/2} \, du = \frac{K(y;\alpha)}{\alpha y} \quad (y>0).$$

We now adopt a notational convention from [Leh]: The notation $f = \vartheta(g)$ means $|f| \le |g|$.

LEMMA 2.5. Suppose

(2.5) $\omega \ge 30, \quad 0 < \eta \le \omega/30, \quad |\gamma| \le \alpha \eta/2.$

If $\varrho = 1/2 + i\gamma$, then

$$J(\varrho) = e^{i\gamma\omega - \gamma^2/(2\alpha)} \left(\frac{1}{\varrho} + \frac{1}{\omega\varrho^2} + \frac{2}{\omega^2\varrho^3}\right) + Q_1(\gamma) + Q_2(\gamma),$$

where

$$|Q_1(\gamma)| \le \frac{6}{(\omega - \eta)^3} \min\left(\frac{1}{\gamma^4}, \frac{64\sqrt{2}}{(1 + 2|\gamma|)^4}\right),$$

$$|Q_2(\gamma)| \le \frac{2.2K(\eta; \alpha)}{|\varrho|\alpha\eta} + \frac{1.25}{\alpha\omega^3|\varrho|^2} + \frac{1.27e^{-\gamma^2/(2\alpha)}}{\omega^2\alpha|\varrho|}.$$

Proof. Without loss of generality suppose $\gamma > 0$. By Lemma 2.1 and the fact that $\int_{-\infty}^{\infty} K(u; \alpha) du = 1$,

$$\int_{\omega-\eta}^{\omega+\eta} K(u-\omega;\alpha)ue^{-u/2}\operatorname{li}(e^{\varrho u})\,du = I + E,$$

where

$$I = \int_{\omega-\eta}^{\omega+\eta} K(u-\omega;\alpha) u e^{i\gamma u} \sum_{j=1}^{J} \frac{(j-1)!}{(\varrho u)^j} du,$$
$$|E| \le \frac{J!}{(\omega-\eta)^J} \min\left(\frac{1}{\gamma^{J+1}}, \frac{2^{1.5J+2}}{(1+2\gamma)^{J+1}}\right).$$

Now make the change of variables $u = \omega - s$ and take J = 3. By (2.5),

Sign changes in
$$\pi_{q,a}(x) - \pi_{q,b}(x)$$

301

 $|s/\omega| \le 1/30$ and $|\varrho\omega| \ge 15$, thus

$$\begin{aligned} \frac{I}{e^{i\gamma\omega}} &= \int_{-\eta}^{\eta} K(s;\alpha) e^{-i\gamma s} \left(\frac{1}{\varrho} + \frac{1}{\omega \varrho^2 (1 - s/\omega)} + \frac{2}{\omega^2 \varrho^3 (1 - s/\omega)^2}\right) ds \\ &= \int_{-\eta}^{\eta} K(s;\alpha) e^{-i\gamma s} \\ &\times \left(\frac{1}{\varrho} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} + \frac{s}{\omega^2 \varrho^2} + \frac{4s}{\omega^3 \varrho^3} + \vartheta \left(\frac{1.25s^2}{\omega^3 \varrho^2}\right)\right) ds \\ &= \left(\frac{1}{\varrho} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3}\right) I_0 + \frac{I_1}{\omega^2 \varrho^2} \left(1 + \frac{4}{\omega \varrho}\right) + \vartheta \left(I_2' \frac{1.25}{\omega^3 \varrho^2}\right) \end{aligned}$$

where

$$I_n = \int_{-\eta}^{\eta} K(s;\alpha) s^n e^{-i\gamma s} \, ds \quad (n=0,1)$$

and

$$I_2' = \int_{-\infty}^{\infty} K(s;\alpha) s^2 \, ds = 1/\alpha.$$

By (2.2) and (2.4), we have

$$I_0 = e^{-\gamma^2/(2\alpha)} + \vartheta \left(2 \int_{\eta}^{\infty} K(s;\alpha) \, ds \right) = e^{-\gamma^2/(2\alpha)} + \vartheta \left(\frac{2K(\eta;\alpha)}{\alpha\eta} \right).$$

In addition, by (2.5) we have

$$|I_1| = \left| \frac{2i\sin\gamma\eta}{\alpha} K(\eta;\alpha) - \frac{i\gamma}{\alpha} I_0 \right|$$

$$\leq \left(\frac{2}{\alpha} + \frac{2\gamma}{\alpha^2\eta} \right) K(\eta;\alpha) + \frac{\gamma e^{-\gamma^2/(2\alpha)}}{\alpha} \leq \frac{3K(\eta;\alpha) + \gamma e^{-\gamma^2/(2\alpha)}}{\alpha}$$

We thus obtain

$$\begin{split} \left| I - e^{i\gamma\omega - \gamma^2/(2\alpha)} \left(\frac{1}{\varrho} + \frac{1}{\omega\varrho^2} + \frac{2}{\omega^2\varrho^3} \right) \right| \\ & \leq \frac{1.27\gamma e^{-\gamma^2/(2\alpha)}}{\omega^2 |\varrho|^2 \alpha} + \frac{1.25}{\alpha\omega^3 |\varrho|^2} + \left(\frac{3.8}{\omega^2 |\varrho|^2 \alpha} + \frac{2.16}{|\varrho|\alpha\eta} \right) K(\eta;\alpha) . \end{split}$$

By (2.5), $\omega^2 |\varrho| \ge 450\eta$, and the lemma follows.

The next lemma, essentially due to Lehman ([Leh], §5), shows how to deal with the contribution from large γ without needing to assume the truth of the Riemann Hypothesis.

LEMMA 2.6. Suppose that

 $\begin{array}{ll} (2.6) & |\gamma| \geq 100, \quad \omega \geq 30, \quad \eta \leq \omega/15, \quad 1 \leq N \leq \min(|\gamma|\eta/2, \alpha \omega^2/100). \\ Writing \ \varrho = \beta + i\gamma, \ with \ 0 < \beta < 1, \ we \ have \end{array}$

$$|J(\varrho)| \le e^{(\beta - 1/2)(\omega + \eta)} \left(\frac{2.4\sqrt{\alpha} e^{-\alpha \eta^2/8}}{\gamma^2} + \frac{2.8\sqrt{N}}{|\gamma|^{N+1}} \left(\frac{N\alpha}{e}\right)^{N/2}\right).$$

Proof. By Lemma 2.5, we expect $|J(\varrho)|$ is about $|\varrho|^{-1}e^{(\beta-1/2)\omega-\gamma^2/(2\alpha)}$. Suppose without loss of generality that $\gamma > 100$. As in [Leh], we begin by considering the function

$$f(s) := \varrho s e^{-\varrho s} \operatorname{li}(e^{\varrho s}) e^{-\alpha(s-\omega)^2/2}$$

in the region $-\pi/4 \le \arg s \le \pi/4$, |s| > 1. This function is analytic in this sector because $\gamma > 100$. Then

$$J(\varrho) = \frac{1}{\varrho} \sqrt{\frac{\alpha}{2\pi}} I_1, \quad I_1 = \int_{\omega-\eta}^{\omega+\eta} e^{(\varrho-1/2)u} f(u) \, du.$$

By repeated integration by parts,

$$I_{1} = \sum_{n=0}^{N} \frac{(-1)^{n} e^{(\varrho-1/2)\omega}}{(\varrho-1/2)^{n+1}} (e^{(\varrho-1/2)\eta} f^{(n)}(\omega+\eta) - e^{-(\varrho-1/2)\eta} f^{(n)}(\omega-\eta)) + \frac{(-1)^{N}}{(\varrho-1/2)^{N}} \int_{\omega-\eta}^{\omega+\eta} e^{(\varrho-1/2)u} f^{(N)}(u) \, du.$$

Choose $r \leq \omega/10$. Then

(2.7)
$$f^{(n)}(u) = \frac{n!}{2\pi i} \oint_{|s-u|=r} \frac{f(s)}{(s-u)^{n+1}} \, ds.$$

By (2.3) we have

$$f(s) = e^{-\alpha(s-\omega)^2/2} \left(1 + \frac{1}{\varrho s} + \vartheta \left(\frac{2|\varrho s|}{|\Im \varrho s|^3} \right) \right).$$

Since $|\varrho s| \ge 2000$ and $|\Im \varrho s| \ge \frac{1}{2} |\varrho s|$, it follows that

$$|f(s)| \le 1.001 e^{-(\alpha/2)\Re(s-\omega)^2}.$$

Writing $s = u + re^{i\phi}$ and using (2.7), we deduce

(2.8)
$$|f^{(n)}(u)| \leq \frac{1.001n!}{2\pi r^n} \int_{-\pi}^{\pi} e^{(\alpha/2)(r^2 - r^2\cos^2\phi - (r\cos\phi + u - \omega)^2)} d\phi.$$

302

Sign changes in
$$\pi_{q,a}(x) - \pi_{q,b}(x)$$
 303

When $u = \omega \pm \eta$, we take $r = \eta/2$ and get

$$|f^{(n)}(u)| \le \frac{1.001n!}{2\pi(\eta/2)^n} e^{-\alpha\eta^2/8} \int_{-\pi}^{\pi} e^{-(\alpha\eta^2/4)(1-\cos\phi)^2} d\phi$$

$$\le 1.001n!(2/\eta)^n e^{-\alpha\eta^2/8},$$

since the integrand above is ≤ 1 . We then obtain

$$|I_1| \le e^{(\beta - 1/2)(\omega + \eta)} \left(\frac{2.002e^{-\alpha \eta^2/8}}{\gamma} \sum_{n=0}^N n! \left(\frac{2}{\gamma \eta}\right)^n + \gamma^{-N} \int_{\omega - \eta}^{\omega + \eta} |f^{(N)}(u)| \, du \right).$$

Since $n! \leq 2(N/2)^n$ for $n \leq N$ and $N/(\gamma \eta) \leq 1/2$, the sum on n is ≤ 3 . By (2.8),

$$\begin{split} & \int_{\omega-\eta}^{\omega+\eta} |f^{(N)}(u)| \, du \leq \frac{1.001N!}{2\pi r^N} e^{\alpha r^2/2} \int_{-\pi}^{\pi} e^{-\frac{\alpha}{2}r^2 \cos^2 \phi} \int_{-\eta}^{\eta} e^{-\frac{\alpha}{2}(t+r\cos\phi)^2} \, dt \, d\phi \\ & \leq \frac{1.001N!}{2\pi r^N} e^{\alpha r^2/2} \int_{-\pi}^{\pi} \int_{-\infty}^{\infty} e^{-\alpha t^2/2} \, dt \, d\phi \\ & = \frac{1.001N!}{r^N} e^{\alpha r^2/2} \sqrt{\frac{2\pi}{\alpha}}. \end{split}$$

Taking $r = \sqrt{N/\alpha}$ and using the inequality $N! \le e^{1-N} N^{N+1/2}$ gives $\int^{\omega+\eta} |f^{(N)}(u)| \, du \le 1.001 e \sqrt{\frac{2\pi N}{\alpha}} \left(\frac{\alpha e}{N}\right)^{-N/2}.$ $\omega - n$

The lemma now follows. \blacksquare

THEOREM 1. Suppose χ is a primitive Dirichlet character of conductor k, and all the non-trivial zeros $\rho = \beta + i\gamma$ of $L(s, \chi)$ with $|\gamma| \leq A$ have real part $\beta = 1/2$. Suppose that

 $150 \leq T \leq A, \quad \omega \geq 30, \quad \eta \leq \omega/30, \quad 2A/\eta \leq \alpha \leq A^2.$ (2.9)Then

$$\sum_{\varrho} J(\varrho) = \sum_{|\gamma| \le T} e^{i\gamma\omega - \gamma^2/(2\alpha)} \left(\frac{1}{\varrho} + \frac{1}{\omega\varrho^2} + \frac{2}{\omega^2\varrho^3}\right) + \sum_{i=1}^4 R_i(\chi, T),$$

where

$$|R_1(\chi,T)| \le \frac{6}{(\omega-\eta)^3} \sum_{\varrho} \min\left(\frac{1}{\gamma^4}, \frac{64\sqrt{2}}{(1+2|\gamma|)^4}\right),$$
$$|R_2(\chi,T)| \le \left(\frac{2.2K(\eta;\alpha)}{\alpha\eta} + \frac{1.27}{\alpha\omega^2}\right) \sum_{|\gamma|\le A} \frac{1}{|\varrho|} + \frac{1.25}{\alpha\omega^3} \sum_{\varrho} \frac{1}{|\varrho|^2},$$

K. Ford and R. H. Hudson

$$|R_3(\chi,T)| \le e^{-T^2/(2\alpha)} \log(kT) \left(\frac{\alpha}{\pi T^2} + \frac{4.3}{T}\right),$$

$$|R_4(\chi,T)| \le e^{(\omega+\eta)/2} \log(kA) \left(\frac{0.8\sqrt{\alpha} e^{-\alpha\eta^2/8}}{A} + 2.56A\alpha^{-1/2} e^{-A^2/(2\alpha)}\right).$$

If the Riemann Hypothesis is true for $L(s,\chi)$ (i.e. all the non-trivial zeros have real part 1/2), then the term R_4 may be omitted, as may the condition $\alpha \leq A^2$. Also, if A = T, then $R_3(\chi, T) = 0$.

Proof. The main terms in the theorem come from the main terms of Lemma 2.5 for $|\gamma| \leq T$. The first part of the theorem follows by taking

$$R_{i} = R_{i}(\chi, T) = \sum_{|\gamma| \le A} Q_{i}(\gamma) \quad (i = 1, 2),$$

$$R_{3} = R_{3}(\chi, T) = \sum_{T < |\gamma| \le A} e^{i\gamma\omega - \gamma^{2}/(2\alpha)} \left(\frac{1}{\varrho} + \frac{1}{\omega\varrho^{2}} + \frac{2}{\omega^{2}\varrho^{3}}\right),$$

$$R_{4} = R_{4}(\chi, T) = \sum_{|\gamma| > A} J(\varrho).$$

The upper bounds for R_1 and R_2 follow from Lemma 2.5. Since $\omega \geq 30$, we have

$$\left|\frac{1}{\varrho} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3}\right| \le \frac{1}{\gamma}.$$

Thus, by Corollary 2.3, we find that

$$\begin{aligned} |R_3| &\leq \sum_{|\gamma|>T} \frac{e^{-\gamma^2/(2\alpha)}}{\gamma} \\ &\leq \int_T^\infty \frac{e^{-t^2/(2\alpha)}}{\pi t} \log\left(\frac{kt}{2\pi}\right) dt + \frac{2e^{-T^2/(2\alpha)}}{T} (C_2 \log(kT) + C_3) \\ &+ C_2 \int_T^\infty \frac{e^{-t^2/(2\alpha)}}{t^2} dt. \end{aligned}$$

If g(t) is positive and decreasing for $t \ge T$ we have

$$\int_{T}^{\infty} g(t)e^{-bt^{2}} dt < \frac{g(T)}{T} \int_{T}^{\infty} te^{-bt^{2}} dt = \frac{g(T)e^{-bT^{2}}}{2bT}.$$

Therefore,

$$|R_3| \le e^{-T^2/(2\alpha)} \left(\frac{\alpha \log(kT/(2\pi))}{\pi T^2} + \frac{2C_2 \log(kT) + 2C_3}{T} + \frac{\alpha C_2}{T^3} \right).$$

The desired bound for R_3 now follows from the bounds $kT \ge 100$ and

$$\frac{\alpha C_2}{T^3} \le \frac{\alpha \log(2\pi)}{\pi T^2}$$

Lastly, Corollary 2.4 and Lemma 2.6 give

$$|R_4| \le \sum_{|\gamma|>A} |J(\varrho)|$$

$$\le e^{(\omega+\eta)/2} \log(kA) \left(\frac{0.8\sqrt{\alpha} e^{-\alpha\eta^2/8}}{A} + 0.94\sqrt{N} \left(\frac{N\alpha}{eA^2}\right)^{N/2}\right).$$

We take $N = \lfloor A^2/\alpha \rfloor$ and note that (2.9) implies (2.6).

Finally, we need explicit formulas for the number of primes in an arithmetic progression. For a primitive Dirichlet character χ modulo $k \geq 3$, let a = 0 if $\chi(-1) = 1$ and a = 1 if $\chi(-1) = -1$. By an analog of the Riemann-von Mangoldt formula ([La, p. 532]), if $L(s, \chi)$ has no positive real zeros then

(2.10)
$$S(\chi; x) := \sum_{\substack{p,m \\ p^m \le x}} \frac{\chi(p)^m}{m}$$
$$= -\sum_{\varrho} \operatorname{li}(x^{\varrho}) + \int_x^{\infty} \frac{dy}{y^{1-a}(y^2 - 1)\log y}$$
$$+ (1 - a)\log\log x + K_a,$$

where

$$K_0 = C - \log\left(\frac{\tau(\chi)\pi}{2k}L(1,\overline{\chi})\right),$$

$$K_1 = \log\left(\frac{\tau(\chi)}{i\pi}L(1,\overline{\chi})\right),$$

and

$$\tau(\chi) = \sum_{m=1}^{k} \chi(m) e^{2\pi i m/k}.$$

Here C = 0.5772... is the Euler–Mascheroni constant and $\log z$ refers to the principal branch of the logarithm. The values of $L(1, \chi)$ are computed easily by means of the formula

$$\tau(\chi)L(1,\overline{\chi}) = -\sum_{j=1}^{k-1} \chi(j) \log(1 - e^{2\pi i j/k}).$$

Also, the integral in (2.10) is less than 1/x for x > 10. The last formula we

need is

(2.11)
$$\pi_{q,a}(x) = \frac{1}{\phi(q)} \sum_{\chi \bmod q} \overline{\chi}(a) S(\chi; x) - \sum_{\substack{p,m \\ p^m \le x, m \ge 2 \\ p^m \equiv a \, (\text{mod } q)}} \frac{1}{m}.$$

In practice the m = 2 terms will be very significant, while the terms with $m \ge 3$ will be negligible. In fact, we have

(2.12)
$$\sum_{p^m \le x, \ m \ge 3} \frac{1}{m} \le \frac{1.3x^{1/3}}{\log x} \qquad (x \ge e^{30})$$

which follows easily from the inequality

$$\pi(x) \le \frac{x}{\log x} + \frac{1.5x}{\log^2 x} \quad (x > 1)$$

given by Theorem 1 of Rosser and Schoenfeld [RoS]. Lastly, if χ_0 is the primitive character (of order k_0) which induces χ , then

$$(2.13) \quad |S(\chi_0; x) - S(\chi; x)| \le \sum_{\substack{p^m \le x \\ p \mid k, \ p \nmid k_0}} \frac{1}{m} \le \sum_{\substack{p \mid k, \ p \nmid k_0}} \left(1 + \log \frac{\log x}{\log p}\right) \\ \le |\{p : p \mid k, \ p \nmid k_0\}| (\log \log x + 1 - \log 2)$$

Here we have used the inequality $\sum_{n \le x} 1/n \le 1 + \log x$.

3. Primes in progressions modulo 3, 4, 8, 12 and 24. For brevity, write

$$\Delta_{q,b,1}(x) := \pi_{q,b}(x) - \pi_{q,1}(x).$$

In this section we give new results on the location of negative values of $\Delta_{q,b,1}(x)$. Throughout we assume $q \mid 24, 1 < b < q$ and (b,q) = 1. As noted previously, such negative values are quite rare. The smallest x giving $\Delta_{4,3,1}(x) < 0$ is x = 26861, discovered by Leech [Lee] in 1957. Shanks [Sh] computed $\Delta_{8,b,1}(x)$ for b = 3, 5, 7 and $x \leq 10^6$ and found that none of the functions takes negative values. Extensive computations by Bays and Hudson in the 1970s ([BH1]–[BH4]) for $x \leq 10^{12}$ led to the discovery of several more "negative regions" for $\Delta_{4,3,1}(x)$, as well as a single region for $\Delta_{3,2,1}(x)$, a single region for $\Delta_{24,13,1}(x)$ and two regions for $\Delta_{8,5,1}(x)$. By "negative region" we mean an interval $[x_1, x_2]$ where the corresponding function is negative values of the functions $\Delta_{q,b,1}(x)$ occur in "clumps". For example, $\Delta_{3,2,1}(x) < 0$ for about 15.9% of the integers in the interval [608981813029, 610968213796]. On the other hand, the computations show that

$$\Delta_{q,b,1}(x) \ge 0 \quad (x \le 10^{12})$$

306

Sign changes in
$$\pi_{q,a}(x) - \pi_{q,b}(x)$$

for

$$(3.1) q = 8, b \in \{3,7\} and q = 24, b \in \{5,7,11,17,19,23\}.$$

With modern computers, the search could easily be extended to 10^{14} or even 10^{15} , and we will show that in fact there are regions in this range where $\Delta_{q,b,1}(x) < 0$ for some of the pairs q, b given in (3.1). Our method, though, takes only seconds versus weeks for an exhaustive search.

From a theoretical standpoint, Littlewood [Li] proved in 1914 that $\Delta_{4,3,1}(x)$ and $\Delta_{3,2,1}(x)$ change sign infinitely often. Knapowski and Turán (Part II of [KT1]) generalized this substantially, showing that $\Delta_{q,b,1}(x)$ changes sign infinitely often whenever $q \mid 24, 1 < b < q$ and (b,q) = 1 (in addition to other q, b). Later papers ([KT1], [KT2]) deal with the frequency of sign changes, but the bounds for the first sign change are of the "towering exponentials" type, similar to Skewes' results.

In what follows, χ_k denotes the unique primitive character modulo k and $\chi_{k,i}$ (i = 1, ..., h) denote the primitive characters modulo k if there are more than one. In particular, $\chi_{8,1}(-1) = -1$ and $\chi_{24,1}(-1) = -1$. Table 1 below lists some parameters which we will need. Here

$$\Sigma_1 = \sum_{\varrho} \frac{1}{|\varrho|^2}, \quad \Sigma_2 = \sum_{\varrho} \min\left(\frac{1}{\gamma^4}, \frac{64\sqrt{2}}{(1+2|\gamma|)^4}\right), \quad \Sigma_3 = \sum_{|\gamma| \le 10000} \frac{1}{|\varrho|}.$$

The entries in the second, third, and fourth columns are rigorous upper bounds, obtained from Rumely's lists of zeros [Ru2] and Corollary 2.4. The number N denotes the number of zeros with $0 < \gamma < 10000$. It is desirable in applications to know the zeros of all the required L-functions to the same height. Rumely [Ru1] originally computed zeros to height 10000 for characters with conductor ≤ 13 and to height 2600 for other characters. For the two primitive characters modulo 24, Rumely's original programs were run to compute the zeros to height T = 10000, and the output was checked against his original list of zeros to height 2600. In all of our computations, we take T = 10000 for every character. Recently Rumely [Ru2] has extended the computations to height 100000 for characters of conductor < 10. So for such characters we may take A = 100000.

When $q \mid 24$, all the characters modulo q are real, and furthermore the only quadratic residue modulo q is 1. When $x \ge e^{32.3}$, for each character in Table 1,

$$|(1-a)\log\log x + K_a| \le |\log\log x + \log 3| \le 0.00312 \frac{x^{1/3}}{\log x}.$$

Further, if χ_0 is the primitive character (modulo k_0) which induces χ (for

Char.	Σ_1	Σ_2	Σ_3	N	a	$\tau(\chi)L(1,\overline{\chi})$	K_a
χ_3	0.114	0.00070	11.29	11891	1	$(\pi/3)i$	$-\log 3$
χ_4	0.156	0.00186	12.10	12349	1	$(\pi/2)i$	$-\log 2$
$\chi_{8,1}$	0.317	0.01336	14.14	13452	1	πi	0
$\chi_{8,2}$	0.236	0.00442	13.92	13452	0	$2\log(1+\sqrt{2})$	1.6382
χ_{12}	0.331	0.01120	15.12	14097	0	$2\log(2+\sqrt{3})$	1.6420
$\chi_{24,1}$	0.798	0.13683	17.61	15200	1	$2\pi i$	$\log 2$
$\chi_{24,2}$	0.553	0.04239	17.24	15200	0	$4\log(\sqrt{2}+\sqrt{3})$	1.0877

Table 1

one of the seven characters in Table 1), then

 $(\log \log x + 0.31)|\{p: p \mid k, p \nmid k_0\}| \le \log \log x + 0.31 \le 0.0026 \frac{x^{1/3}}{\log x}.$

Together with (2.10)-(2.13), we obtain the formula

(3.2)
$$\pi_{q,b}(x) - \pi_{q,1}(x) = \frac{2}{\phi(q)} \sum_{\substack{\chi \mod q \\ \chi(b) = -1}} \sum_{\varrho} \operatorname{li}(x^{\varrho}) + \frac{\pi(\sqrt{x})}{2} + \vartheta\left(\frac{1.31x^{1/3}}{\log x}\right).$$

We need a tight upper bound on $\pi(\sqrt{x})$, given by the next lemma.

LEMMA 3.1. For $x \ge 10^{14}$, we have $\pi(x) \le 1.000011 \operatorname{li}(x)$.

Proof. From Table 3 of [Ri], we have $\pi(10^{14}) < \text{li}(10^{14})$. Defining $\theta(x) = \sum_{p \le x} \log p$, we have

$$|\theta(x) - x| \le 0.0000055x \quad (x \ge e^{32}),$$

which follows from Theorem 5.1.1 of [RR], upon taking $x = e^{32}$, m = 18, H = 70000000, and $\delta = 6.59668 \cdot 10^{-8}$. By partial summation, for $x \ge 10^{14}$ we obtain

$$\pi(x) \le \operatorname{li}(10^{14}) + \int_{10^{14}}^x \frac{d\theta(t)}{\log t} \le (1 + 2(0.0000055))\operatorname{li}(x). \quad \blacksquare$$

Define

$$W(\chi; x) = \sum_{\varrho} \operatorname{li}(x^{\varrho}),$$

where the sum is over zeros ρ of $L(s, \chi)$ lying in the critical strip. Since we are primarily interested in locations where $\pi_{q,b}(x) - \pi_{q,1}(x)$ is negative, we apply Lemma 3.1 to obtain from (3.2) the inequality

$$\pi_{q,b}(x) - \pi_{q,1}(x) \le \frac{2}{\phi(q)} \sum_{\substack{\chi \mod q \\ \chi(b) = -1}} W(\chi; x) + \frac{1}{2} (1.000011) \operatorname{li}(\sqrt{x}) + \frac{1.31x^{1/3}}{\log x}.$$

It is easy to show that

Sign changes in $\pi_{q,a}(x) - \pi_{q,b}(x)$

$$\mathrm{li}(x) \le \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2}{\log^2 x} + \frac{h(x)}{\log^3 x} \right),$$

where

$$h(x) = \begin{cases} 8.326, & e^{16} \le x < e^{21}, \\ 7.538, & e^{21} \le x \le e^{29.3}, \\ 7, & x \ge e^{29.3}. \end{cases}$$

By Theorem 1, we therefore have

THEOREM 2. Suppose that $\omega - \eta \geq 32.3$ and $0 < \eta \leq \omega/30$. Suppose $q \mid 24, (b,q) = 1$ and 1 < b < q. For each Dirichlet character χ modulo q with $\chi(b) = -1$, suppose that all the zeros of $L(s,\chi)$ which lie in the rectangle $0 < \Re s < 1, -A_{\chi} \leq \Im s \leq A_{\chi}$, actually lie on the critical line $\Re s = 1/2$. Further suppose that

$$150 \le T_{\chi} \le A_{\chi}, \qquad 2A_{\chi}/\eta \le \alpha \le A_{\chi}^2$$

for every χ . Then

$$\begin{split} & \int_{\omega-\eta}^{\omega+\eta} K(u-\omega;\alpha) u e^{-u/2} (\pi_{q,b}(e^u) - \pi_{q,1}(e^u)) \, du \\ & \leq (1.000011) \bigg(1 + \frac{2}{\omega-\eta} + \frac{8}{(\omega-\eta)^2} + \frac{8h(e^{(\omega-\eta)/2})}{(\omega-\eta)^3} \bigg) + 1.31 e^{-(\omega-\eta)/6} \\ & + \frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(b) = -1}} \bigg(\sum_{|\gamma| \leq T_{\chi}} e^{i\gamma\omega-\gamma^2/(2\alpha)} \bigg(\frac{1}{\varrho} + \frac{1}{\omega\varrho^2} + \frac{2}{\omega^2\varrho^3} \bigg) \\ & + \sum_{i=1}^4 |R_i(\chi, T_{\chi})| \bigg). \end{split}$$

The error terms $R_i(\chi, T_{\chi})$ are as given in Theorem 1, with $T = T_{\chi}$ and $A = A_{\chi}$. Furthermore, if $A_{\chi} = T_{\chi}$ then the corresponding $R_3(\chi, T)$ is 0, and if the Riemann Hypothesis holds for $L(s, \chi)$, then we have $R_4(\chi, T) = 0$ and the condition $\alpha \leq A_{\chi}^2$ may be omitted.

Locating likely candidates for regions where $\Delta_{q,b,1}(x)$ takes negative values is relatively simple. We search for values of ω for which

$$K^* = K^*(q, b; \omega) = \frac{\operatorname{li}(\sqrt{x}) \log x}{2\sqrt{x}} + \frac{2}{\phi(q)} \sum_{\substack{\chi \mod q \\ \chi(b) = -1}} \sum_{\substack{|\gamma| \le T_{\chi}}} \frac{e^{i\gamma\omega}}{\varrho} < 0.$$

Heuristically, K^* is a good predictor for the average of $ue^{-u/2}\Delta_{q,b,1}(e^u)$ for u near ω . For example, $K^*(24, 13; \omega)$ reaches a relative minimum of -0.15873 at about $\omega = 27.617477$, while Bays and Hudson [BH3] computed at x =

309

 $9.866 \cdot 10^{11} \approx e^{27.61753}$ the value $\Delta_{24,13,1}(x) = -6091 \approx -0.169357 \frac{\sqrt{x}}{\log x}$ (it is possible that $\Delta_{24,13,1}(x)$ takes smaller values in this vicinity, but this is the smallest value listed in the paper). Using K^* as an approximation for $ue^{-u/2}\Delta_{q,b,1}(e^u)$ is also useful in computing a numerical value for Chebyshev's bias (see [RS], [BFHR]).

In practice, since ω is large, η is small, and T is large (≥ 10000), the most critical of the error terms is $R_4(\chi, T_{\chi})$ because it controls the maximum practical value for α . We want to take α as large as possible, so the sums over $e^{i\gamma\omega-\gamma^2/(2\alpha)}/\varrho$, which are required to be "large" negative, are not damped out too much by the $e^{-\gamma^2/(2\alpha)}$ factor.

The computations were performed with a C program running on a Sun Ultra-10 workstation using double precision floating point arithmetic, which provides about 16 digits of precision. The zeros of the *L*-functions in Rumely's lists are all accurate to within 10^{-12} . Values computed for the right side of the inequality in Theorem 2 were rounded up in the 4th decimal place.

THEOREM 3. For each row of Tables 2 and 3 for which a value of K is given, we have

(3.3)
$$\min_{\omega - \eta \le u \le \omega + \eta} u e^{-u/2} (\pi_{q,b}(e^u) - \pi_{q,1}(e^u)) \le K.$$

Proof. Take the indicated values of the parameters in Theorem 2. Here $T_{\chi} = 10000$ for every χ , $A_{\chi} = 100000$ in Table 2 and $A_{\chi} = 10000$ in Table 3. In the case where a value of K is not given, we could not prove that K < 0 with any choice of parameters.

q	b	ω	K^*	η	α	K
3	2	45.12686	-0.0798	0.02	10^{7}	-0.0650
3	2	58.36855	-0.1710	0.02	10^{7}	-0.1525
4	3	2179.77584	-0.8109	0.05	4000000	-0.7761
4	3	78683.67818	-1.0480	2.00	120000	-0.8372
8	3	43.36630	-0.0249	0.02	10^{7}	-0.0013
8	3	54.94255	-0.0490	0.02	10^{7}	-0.0280
8	5	32.89388	-0.0716	0.02	10^{7}	-0.0503
8	5	34.46826	-0.0051			
8	5	57.48058	-0.2136	0.02	10^{7}	-0.1915
8	$\overline{7}$	32.89284	-0.0136			
8	$\overline{7}$	45.34991	-0.0868	0.02	10^{7}	-0.0508
8	7	48.79950	-0.1889	0.02	10^{7}	-0.1724
12	11	187.53674	-0.0410	0.02	10^{7}	-0.0191
12	11	191.89007	-0.0415	0.02	10^{7}	-0.0182

Table 2

EXAMPLE. The "error terms" R_3 and R_4 force α to be less than $\min(A^2/\omega, T^2)$ for practical purposes. For row 5 of Table 2, with the indicated values of the parameters, we compute (rounded in the last place after the decimal point)

Char	Sum on ϱ	R_1	R_2	R_3	R_4
χ_4	-0.802723684	0.00000137	0.000000002	0.002303420	0
$\chi_{8,2}$	-1.308816425	0.00000326	0.00000003	0.002454092	0

Here the second column is the sum over $|\gamma| \leq T_{\chi}$ in Theorem 2. The first line of the right side of the inequality in Theorem 2 is computed as 1.0521043. All of these values are rounded in the 9th decimal place.

COROLLARY 4. For each $b \in \{3, 5, 7\}$, $\pi_{8,b}(x) < \pi_{8,1}(x)$ for some $x < 5 \cdot 10^{19}$. For each $b \in \{5, 7, 11\}$, $\pi_{12,b}(x) < \pi_{12,1}(x)$ for some $x < 10^{84}$. For each $b \in \{5, 7, 11, 13, 17, 19, 23\}$, $\pi_{24,b}(x) < \pi_{24,1}(x)$ for some $x < 10^{353}$. Finally, if the zeros of $L(s, \chi_4)$ lying in the critical strip to height A = 630000 all have real part equal to 1/2, then for some x in the vicinity of $e^{78683.7}$ we have

$$\pi_{4,1}(x) - \pi_{4,3}(x) > \sqrt{x}/\log x.$$

The significance of the last statement is that we now know (once the zeros of $L(s, \chi_4)$ are computed to height 630000) a specific region where $\pi_{4,1}(x)$ runs ahead of $\pi_{4,3}(x)$ as much as it usually runs behind (this is the smallest x for which $K^* < -1$). The idea is that the terms on the right side of (3.2) corresponding to the zeros ρ are oscillatory, so that on average $\Delta_{q,b,1}(x)$ is about $\pi(\sqrt{x})/2 \approx \sqrt{x}/\log x$. Subject to certain unproven hypotheses, this notion can be made very precise (e.g. [RS]). The two rows for q = 4 were chosen because of the large negative values of K^* .

In Tables 2 and 3, we have confined our calculations to locating regions with $x \ge e^{32.3} \approx 10^{14}$, smaller x being easily dealt with by exhaustive computer search. The listed values of K^* and K are rounded up in the last decimal place. For each pair (q, b) except (4, 3), the first few likely regions of negative values of $\Delta_{q,b,1}(x)$ are listed. The lists continue until a region is found where a negative value can be proved with A = 10000. In some regions, a negative value can be proved with a larger value of A and in other regions no negative value could be proved even with $A = \infty$. These latter rows have no K value listed. However, when $\omega \le 44$ or so, it is possible to find specific values of x with $\Delta_{q,b,1}(x) < 0$ by computing this function exactly by means of Hudson's extension of Meissel's formula [H1]. This formula makes it practical to compute exact values of $\pi_{q,a}(x)$ for x as large as 10^{20} . The first author is currently writing a computer program for this, and one preliminary result can be announced now. At $x = 1.9282 \cdot 10^{14}$

q	b	ω	K^*	η	α	K
12	5	39.12815	-0.0071			
12	5	69.00554	-0.0210			
12	5	73.93306	-0.0117			
12	5	88.98310	-0.0104			
12	5	102.08460	-0.0344			
12	5	103.73736	-0.0611	0.03	750000	-0.0445
12	$\overline{7}$	39.12144	-0.2063	0.02	1550000	-0.1410
12	7	45.87795	-0.1468	0.02	1400000	-0.0871
24	5	161.18837	-0.1176	0.04	525000	-0.0920
24	$\overline{7}$	92.49622	-0.0693	0.03	830000	-0.0530
24	11	111.54595	-0.0023			
24	11	812.63677	-0.0526	0.20	118000	-0.0104
24	13	34.14425	-0.4810	0.02	1700000	-0.3521
24	17	34.05708	-0.0387			
24	17	34.19749	-0.0208	0.02	1650000	-0.0110
24	19	34.20322	-0.1473	0.02	1650000	-0.1362
24	23	43.45318	-0.0204			
24	23	94.46170	-0.0376	0.03	800000	-0.0113

Table 3

we have $\Delta_{8,7,1}(x) = -105$, and this computation took 10 minutes on a Sun Ultra-10 workstation.

For all pairs q, b, the values of ω given in Tables 2 and 3 represent the minimum of K, and this does not necessarily correspond to the minimum of K^* . The difference $|K - K^*|$ varies substantially, and this is expected due to the factors $e^{-\gamma^2/(2\alpha)}$ in Theorem 2. To illustrate the difference, Graph 1 depicts the functions K and K^* for q = 12, b = 11 in the vicinity of $e^{187.536}$. Also as expected, larger values of A, which permit larger values of α , narrow the difference appreciably.

A shortcoming of our method is the inability to compare three or more progressions. For example, Shanks [Sh] asked if $\pi_{8,1}(x)$ will ever be greater than each of $\pi_{8,3}(x)$, $\pi_{8,5}(x)$ and $\pi_{8,7}(x)$ simultaneously. Based on computations of the functions K^* , it is likely that this occurs in the vicinity of $e^{389.3712}$, but this cannot be proved by the methods of this paper. It is, however, possible to detect negative values of any linear combination of the functions $\pi_{q,b}(x)$. For example, by Theorem 2 it follows that for some x with $|\log x - 158.64233| \le 0.01$, we have

(3.4)
$$\pi_{8,1}(x) > \frac{1}{3}(\pi_{8,3}(x) + \pi_{8,5}(x) + \pi_{8,7}(x)).$$

We are really looking for negative values of $\frac{1}{3}(\Delta_{8,3,1}(x) + \Delta_{8,5,1}(x) + \Delta_{8,7,1}(x))$, and take A = 100000, $\alpha = 10^7$ and $\eta = 0.02$ and obtain K < -0.0265.

Graph 1. K vs. K^* ; $q = 12, b = 11, \eta = 0.02, \alpha = 10^7, A = 100000$

Acknowledgments. The authors would like to thank Robert Rumely for providing the lists of the zeros of *L*-functions and copies of his original programs. The authors also thank Peter Sarnak for valuable discussions and encouragement.

References

- [BH1] C. Bays and R. H. Hudson, The segmented sieve of Eratosthenes and primes in arithmetic progressions to 10¹², Nordisk Tidskr. Inform. (BIT) 17 (1977), 121–127.
- [BH2] —, —, Details of the first region of integers x with $\pi_{3,2}(x) < \pi_{3,1}(x)$, Math. Comp. 32 (1978), 571–576.
- [BH3] —, —, The appearance of tens of billion of integers x with $\pi_{24,13}(x) < \pi_{24,1}(x)$ in the vicinity of 10^{12} , J. Reine Angew. Math. 299/300 (1978), 234–237.
- [BH4] —, —, Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 10¹², Internat. J. Math. Math. Sci. 2 (1979), 111–119.
- [BH5] —, —, A new bound for the smallest x with $\pi(x) > \text{li}(x)$, Math. Comp. 69 (2000), 1285–1296.
- [BFHR] C. Bays, K. Ford, R. H. Hudson, and M. Rubinstein, Zeros of Dirichlet Lfunctions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), 54–76.
- [E] H. M. Edwards, *Riemann's Zeta Function*, Academic Press, New York, 1974.
- [H1] R. H. Hudson, A formula for the exact number of primes below a given bound in any arithmetic progression, Bull. Austral. Math. Soc. 16 (1977), 67–73.
- [H2] —, A common combinatorial principle underlies Riemann's formula, the Chebyshev phenomenon, and other subtle effects in comparative prime number theory, I, J. Reine Angew. Math. 313 (1980), 133–150.
- [K1] J. Kaczorowski, A contribution to the Shanks-Rényi race problem, Quart. J. Math. Oxford Ser. (2) 449 (1993), 451–458.

314	K. Ford and R. H. Hudson
[K2]	J. Kaczorowski, <i>Results on the distribution of primes</i> , J. Reine Angew. Math. 446 (1994), 89–113.
[K3]	—, On the Shanks–Rényi race problem, Acta Arith. 74 (1996), 31–46.
[KT1]	S. Knapowski and P. Turán, Comparative prime number theory, I, Acta Math.
[****]	Sci. Hungar. 13 (1962), 299–314; II, 13 (1962), 315–342; III, 13 (1962), 343–364; IV, 14 (1963), 31–42; V, 14 (1963), 43–63; VI, 14 (1963), 65–78; VII, 14 (1963), 241–250; VIII, 14 (1963), 251–268.
[KT2]	—, —, Further developments in the comparative prime-number theory, I, Acta Arith. 9 (1964), 23–40; II, 10 (1964), 293–313; III, 11 (1965), 115–127; IV, 11 (1965), 147–161; V, 11 (1965), 193–202; VI, 12 (1966), 85–96.
[La]	E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed., Chelsea, New York, 1953.
[Lee]	J. Leech, Note on the distribution of prime numbers, J. London Math. Soc. 32 (1957), 56–58.
[Leh]	R. S. Lehman, On the difference $\pi(x) - li(x)$, Acta Arith. 11 (1966), 397–410.
[Li]	J. E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris 158 (1914), 1869–1872.
[M]	K. S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), 265–285.
[RR]	O. Ramaré and R. Rumely, <i>Primes in arithmetic progressions</i> , ibid. 65 (1996), 397–425.
[tR]	H. J. J. te Riele, On the sign difference $\pi(x) - li(x)$, ibid. 48 (1987), 323–328.
[Ri]	H. Riesel, <i>Prime Numbers and Computer Methods for Factorization</i> , 2nd ed., Birkhäuser, Boston, 1994.
[RoS]	J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.
[RS]	M. Rubinstein and P. Sarnak, <i>Chebyshev's bias</i> , J. Experiment. Math. 3 (1994), 173–197.
[Ru1]	R. Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), 415–440.
[Ru2]	—, CD-ROM containing lists of zeros of Dirichlet <i>L</i> -functions.
[Sh]	D. Shanks, Quadratic residues and the distribution of primes, Math. Comp. 13 (1959), 272–284.
[Sk1]	S. Skewes, On the difference $\pi(x) - li(x)$, J. London Math. Soc. 8 (1933), 277–283.
[Sk2]	—, On the difference $\pi(x) - \text{li}(x)$, Proc. London Math. Soc. (3) 5 (1955), 48–70.

Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A. E-mail: hudson@math.sc.edu Current address of K. Ford: Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.A. E-mail: ford@math.uiuc.edu

Received on 4.8.1999 and in revised form on 21.3.2001 (3667)

· · ·