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Exponential sums modulo prime powers
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Todd Cochrane (Manhattan, KS)

1. Introduction. In this paper we develop a method for evaluating and
estimating a very general mixed exponential sum of the type

S(χ, g, f, pm) =
pm∑

x=1

χ(g(x))epm(f(x)),(1.1)

where pm is a prime power with m ≥ 2, χ is a multiplicative character
(mod pm), epm(·) is the additive character, epm(x) = e2πix/pm , and f, g are
rational functions with integer coefficients. It is understood that the sum
is only over values of x for which g and f are both defined as functions on
Z/(pm), and g is nonzero (mod p). The sum is trivial if f and g are both
constants, so we shall always assume that either f or g is nonconstant.

The case m = 1, a classical sum over a finite field, has been thoroughly
studied. In this case it follows from the rationality of the L-function associ-
ated with the sum and the accompanying Riemann Hypothesis that under
very general conditions S(χ, g, f, p) can be expressed as a sum of a certain
number of complex numbers of modulus

√
p. If f and g are polynomials of

degrees d1, d2 then this number is exactly d1 + d2 − 1, provided that p - d1

and (ord(χ), d2) = 1, and so we obtain the upper bound

|S(χ, g, f, p)| ≤ (d1 + d2 − 1)
√
p.(1.2)

For the case of polynomials we refer the reader to the works of Schmidt [29]
and Stepanov [30] for elementary proofs of this result. For rational functions
see Bombieri [1] and Perelmuter [26].

For values of m ≥ 2, much attention has been given to the study of
pure exponential sums S(f, pm) (g= 1), but little has been said about the
general sum. Ismoilov [9]–[16] and Liu [18]–[20] obtained estimates for pure
character sums (f=0). In our work with Zheng, [3], [4] we dealt with the case
of mixed exponential sums with g(x) = x. In this paper we obtain formulae

2000 Mathematics Subject Classification: 11L07, 11L03.
Key words and phrases: exponential sums.

[131]



132 T. Cochrane

and estimates for a general sum of the type (1.1). In order to succeed with the
evaluation of a general sum we were forced to greatly simplify the proofs
of our earlier work. The main new idea of this paper that allows such a
generalization (Lemma 2.2) is the use of the p-adic logarithm to describe
the behavior of χ on the subgroup of residues (mod pm) congruent to 1
(mod p).

We restrict our attention to odd p in this section and take up the case
p = 2 in Sections 6 and 7. Let a denote a fixed primitive root (mod p2) and
r the value defined by

ap−1 = 1 + rp.(1.3)

In particular, p - r and a is a primitive root (mod pm) for any exponent m.
Let R be the p-adic integer

R := p−1 log(1 + rp) = p−1
∞∑

i=1

(−1)i+1(rp)i

i
≡ r (modp).(1.4)

For any multiplicative character χ (mod pm) let c = c(χ, a) be the unique
integer with 0 < c ≤ pm−1(p− 1) and

χ(ak) = e2πick/(pm−1(p−1)),(1.5)

for every integer k.
Let ordp(x) denote the normal exponent valuation on the p-adic field Qp,

extended to the field of rational functions over Qp. Thus for a polynomial
f over Z, ordp(f) is the largest power of p dividing all of the coefficients of
f , and for rational functions f1/f2, ordp(f1/f2) = ordp(f1)− ordp(f2). Also,
for any polynomial f we let dp(f) denote the degree of f read (mod p).

Put
t = tp(χ, g, f) := ordp(Rgf ′ + cg′).(1.6)

We may assume that ordp(g) = 0 for otherwise the sum in (1.1) is empty.
In Lemma 2.1 we show that

t = min{ordp(f ′), ordp(cg′)},(1.7)

a fact that plays an important role in our proof. We define the set of crit-
ical points A ⊂ Fp associated with the sum S(χ, g, f, pm) to be the set of
solutions of the

Critical Point Congruence:

C(x) := p−t(Rg(x)f ′(x) + cg′(x)) ≡ 0 (mod p),(1.8)

for which the summand in S(χ, g, f, pm) is defined. Thus,

A := {α ∈ Fp : C(α) ≡ 0 (mod p) and g(α) 6≡ 0 (mod p)}.
One may check that this congruence does not depend on the choice of the
primitive root.
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Write S(χ, g, f, pm) =
∑p

α=1 Sα with

Sα = Sα(χ, g, f, pm) :=
pm∑

x=1
x≡α (mod p)

χ(g(x))epm(f(x)).(1.9)

Theorem 1.1. Let f, g be rational functions over Z, not both constant ,
p be an odd prime, χ a multiplicative character (mod pm) and m an integer
with m ≥ t+ 2.

(i) If α 6∈ A, then Sα(χ, g, f, pm) = 0.
(ii) If α is a critical point of multiplicity one then

Sα(χ, g, f, pm)

=




χ(g(α∗))epm(f(α∗))p(m+t)/2 if m− t is even,

χ(g(α∗))epm(f(α∗))
(
Aα
p

)
Gpp(m+t−1)/2 if m− t is odd ,

where α∗ is the unique lifting of α to a solution of the congruence

C(x) ≡ 0 (mod p[(m−t+1)/2]) and Aα ≡ 2r(C/g)′(α) (mod p).

Here Gp is the quadratic Gauss sum,

Gp :=
p−1∑

x=0

ep(x2) =
p−1∑

x=1

(
x

p

)
ep(x) =

{√
p if p ≡ 1 (mod 4),

i
√
p if p ≡ 3 (mod 4),(1.10)

and
(
Aα
p

)
is the Legendre symbol. Thus, if all of the critical points are of

multiplicity one then we obtain the formula

(1.11) S(χ, g, f, pm)

=





∑

α∈A
χ(g(α∗))epm(f(α∗))p(m+t)/2, m− t even,

∑

α∈A
χ(g(α∗))epm(f(α∗))

(
Aα
p

)
Gpp(m+t−1)/2, m− t odd.

This generalizes the formulae we obtained in [3] and [4] for the cases of pure
exponential sums and mixed sums with g(x) = x. The formula of Salié [28]
for the Kloosterman sum, and of Mauclaire [23], [24] and Odoni [25] for the
Gauss sum

∑pm

x=1 χ(x)epm(x) are variations of (1.11), as are the stationary
phase formulae of Katz [17, p. 110] and Dąbrowski and Fisher [6, Theorem
1.8] for the case of pure exponential sums having only critical points of
multiplicity 1.

From (1.11) we see that the sum S(χ, g, f, pm) can be expressed as a sum
of a certain number of complex numbers of modulus p(m+t)/2. Moreover, if
f and g are both polynomials, then this number is at most one less than the
sum of the degrees of f and g. This striking analogy with the case m = 1



134 T. Cochrane

leads us to ask whether there is a unified treatment of exponential sums
that can yield both the m = 1 and the m ≥ 2 results all at once.

If α is a critical point of multiplicity greater than one, then in general
we are not able to obtain an explicit formula for Sα. However, we are able
to convert Sα into a pure exponential sum (Proposition 4.1) via the formula

Sα(χ, g, f, pm) = pσ−1χ(g(α))epm(f(α))S(Gα, pm−σ),

where σ and Gα are as defined in (4.4) and (4.5). Using known upper bounds
on pure exponential sums we are then able to deduce the following upper
bound on Sα.

Theorem 1.2. Suppose that p is odd , f, g are rational functions over Z,
not both constant , χ is any multiplicative character (mod pm), and m ≥ t+2.
Put λ = (5/4)5 = 3.05 . . . If α is a critical point of multiplicity να ≥ 1 then

|Sα(χ, g, f, pm)| ≤ λαpt/(να+1)pm(1−1/(να+1)),(1.12)

where λα = min(να, λ).

It follows immediately that under the hypotheses of the theorem

|S(χ, g, f, pm)| ≤
(∑

α∈A
λα

)
pt/(M+1)pm(1−1/(M+1)),(1.13)

where M is the maximum multiplicity of the critical points. Also, it follows
from (1.12) and the proof of [5, Theorem 2.1] that

|S(χ, g, f, pm)| ≤ λpt/(dp(C)+1)pm(1−1/(dp(C)+1)).(1.14)

The result obtained here generalizes the upper bound for pure exponential
sums obtained in [5], which was a sharpening of earlier bounds of Chalk
[2], Ding [7], [8], Loh [21] and Cochrane and Zheng [3] for pure exponential
sums. It also sharpens slightly the upper bound of Cochrane and Zheng [3]
for the case of mixed exponential sums with g(x) = x. There we had να in
(1.12) instead of λα.

We deduce from Theorem 1.2 the following uniform upper bound for
mixed exponential sums with polynomial entries.

Corollary 1.1. Suppose that f, g are polynomials over Z of degrees
d1, d2 respectively , p is an odd prime, m ≥ 1, and χ is a multiplicative
character (mod pm). If m = 1 suppose that χ(g)ep(f) is not constant on Fp
(wherever it is defined), and if m ≥ 2 suppose that the sum S(χ, g, f, pm)
does not degenerate to one of smaller modulus. Then

|S(χ, g, f, pm)| ≤ 4.41pm(1−1/(d1+d2)).(1.15)

If p = 2 the same bound holds with constant 8.82 on the right-hand side.

We note that the sum degenerates to one of smaller modulus if dp(f) = 0
and either χ is not primitive (p | c), or dp(g) = 0. The exponent on the right-
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hand side of (1.15) is best possible, as can be seen by constructing f and g
such that there is a single critical point of multiplicity d1 + d2 − 1; see e.g.
[3, Example 9.2].

As an application consider the case of a pure character sum

S(χ, g, 0, pm) =
pm∑

x=1

χ(g(x)),

with χ a primitive character (mod pm) (p - c) and g a polynomial of degree
d with dp(g) ≥ 1, and χ(g) nonconstant. The critical point congruence in
this case is p−tg′(x) ≡ 0 (modp). Thus M ≤ d− 1 and we deduce from the
corollary above that for any odd p and m ≥ 1,

∣∣∣
pm∑

x=1

χ(g(x))
∣∣∣ ≤ 4.41pm(1−1/d),

which sharpens the result of [19] for the case p < d.
For the prime p = 2, analogues of Theorems 1.1 and 1.2 are given in

Sections 6 and 7. The proofs are complicated by the fact that the group of
units (mod 2m) is not cyclic for m ≥ 3. Combining the results for p odd
and p = 2 one can then obtain evaluations or estimates of mixed exponential
sum to an arbitrary modulus using the multiplicative property of such sums.

2. Some p-adic background. Let p be an odd prime and Zp denote
the ring of p-adic integers. Let f , g, R, χ, c and t be as defined above.
Throughout the paper, for any y ∈ Zp, we let the overbar y denote the
multiplicative inverse of y in Zp. (For most purposes, it could also denote a
multiplicative inverse of y (mod pm).)

The first lemma we state embodies the key idea for untwisting a mixed
exponential sum and converting it into a pure exponential sum. In order to
make sense of the lemma we extend the characters χ and epm(·) to the ring
of p-adic integers by setting for any x ∈ Zp,

χ(x) = χ(x̃), epm(x) = epm(x̃),

where x̃ denotes the residue class of x in Zp/(pm) ' Z/(pm). The p-adic
logarithm and p-adic exponential functions, defined for y ∈ Zp by

log(1 + py) =
∞∑

j=1

(−1)j+1 (py)j

j
, epy =

∞∑

j=0

(py)j

j!
,

enjoy the usual inverse function relationship elog(1+py) = 1 + py.

Lemma 2.1. For any multiplicative character χ (mod pm) and p-adic
integer y,

χ(1 + py) = epm(Rc log(1 + py)).
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Proof. We start by defining the exponential function a(p−1)λ for any
p-adic integer λ by

a(p−1)λ = (1 + rp)λ = eλRp.

If λ′ is an ordinary integer with λ′ ≡ λ (modpm−1) then it follows that
a(p−1)λ′ ≡ a(p−1)λ (modpm), since e(λ−λ′)Rp ≡ 1 (modpm). Thus, for the
extended characters χ and epm(·) we have by (1.5),

χ(a(p−1)λ) = e2πiλ′c/pm−1
= epm(pλc).

Now for any y ∈ Zp,
1 + py = elog(1+py) = a(p−1)Rp−1 log(1+py).

If we put λ = Rp−1 log(1 + py), the lemma follows.

This lemma describes how χ behaves on the multiplicative subgroup H
of Z/(pm) of residue classes congruent to 1 (mod p), a cyclic subgroup of
order pm−1. A related lemma can be found in the work of Postnikov [27].

Lemma 2.2. For any rational functions f, g over Z with ordp(g) = 0 we
have

t = min{ordp(f ′), ordp(cg′)}.
Proof. In view of the definition (1.6), it suffices to prove that ordp(cg′) ≥

t. Let Kp be a splitting field for g over Qp and say

g(X) = g0(X − r1)d1(X − r2)d2 . . . (X − rk)dk ,
for some nonzero integers di (possibly negative) and values g0, ri ∈ Kp. Let
νp be an extension of the valuation ordp(·) to K such that ordp(x) = e ·νp(x)
for x ∈ Qp, where e is the ramification index. Fix i with 1 ≤ i ≤ k and work
in the field of formal Laurent series in X − ri with valuation

νp

( ∞∑

j=−l
cj(X − ri)j

)
= min

j≥−l
{νp(cj)}.

Write

f(X) =
∞∑

j=−l
aj(X − ri)j ,

g′(X)
g(X)

=
di

X − ri
+
∞∑

j=0

bj(X − ri)j ,

for some coefficients aj , bj in Kp. Thus

Rf ′(X) + c
g′(X)
g(X)

= R

∞∑

j=−l
jaj(X − ri)j−1 +

cdi
X − ri

+ c

∞∑

j=0

bj(X − ri)j .

The coefficient of (X − ri)−1 is cdi. Thus for 1 ≤ i ≤ k,

t = eνp

(
Rf ′(X) + c

g′(X)
g(X)

)
≤ eνp(cdi) = ordp(cdi)
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and

ordp(cg′(X)) = ordp

(
g(X)

k∑

i=1

cdi
X − ri

)
≥ t.

3. Proof of Theorem 1.1. Critical points of multiplicity one. Let
p be an odd prime, f , g rational functions over Z, not both constant and χ
a multiplicative character (mod pm). Suppose first that m − t ≥ 2 is even.
Let α be any integer for which f(α), g(α) are both defined (mod pm) and
g(α) 6≡ 0 (mod p). Set x = u+ p(m−t)/2v with u running from 1 to p(m−t)/2,
subject to the constraint u ≡ α (modp), and v running from 1 to p(m+t)/2.
Then

Sα =
p(m−t)/2∑

u≡α (mod p)

p(m+t)/2∑

v=1

χ(g(u+ p(m−t)/2v))epm(f(u+ p(m−t)/2v)).(3.1)

To proceed, we develop f and g into Taylor series about α as follows.
Let t1 = ordp(g′). For any integers u, v there exists a p-adic integer w(u, v)
such that

g(u+ p(m−t)/2v) = g(u) + g′(u)p(m−t)/2v + pm−t+t1w(u, v),

since ordp(g(j)(u)) ≥ t1 for j ≥ 1, and the power of p dividing j! is dominated
by the increasing power of p(m−t)/2. Writing g = g(u), g′ = g′(u), w =
w(u, v) (for the moment) we see by Lemma 2.1 that

χ(g(u+ p(m−t)/2v)) = χ(g)χ(1 + gg′p(m−t)/2v + gpm−t+t1w)

= χ(g)epm(Rc log(1 + gg′p(m−t)/2v + gpm−t+t1w)).

Now, by Lemma 2.2,

m− t+ t1 + ordp(c) ≥ m,
and so

c log(1 + gg′p(m−t)/2v + gpm−t+t1w) ≡ cgg′p(m−t)/2v (mod pm).

Thus, we obtain

χ(g(u+ p(m−t)/2v)) = χ(g)epm(Rcgg′p(m−t)/2v)(3.2)

= χ(g)ep(m+t)/2(Rcgg′v).

By Lemma 2.2 we also have t ≤ ordp(f ′(X)). It follows that for any j ≥ 1,
ordp(f (j)(u)) ≥ t and thus

f(u+ p(m−t)/2v) ≡ f(u) + f ′(u)p(m−t)/2v (modpm)(3.3)

and
epm(f(u+ p(m−t)/2v)) = epm(f(u))ep(m+t)/2(f ′(u)v).(3.4)
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It follows from (3.2), (3.4) and (3.1) that

Sα =
∑

u≡α (mod p)

χ(g(u))epm(f(u))(3.5)

×
p(m+t)/2∑

v=1

ep(m+t)/2(Rcg(u)g′(u)v + f ′(u)v).

Recalling the definition of C(u) in (1.8) we see that the inner sum vanishes
unless p(m−t)/2 | C(u) in which case it equals p(m+t)/2, and so we obtain

Sα(χ, g, f, pm) = p(m+t)/2
∑

u≡α (mod p)
p(m−t)/2|C(u)

χ(g(u))epm(f(u)).(3.6)

In particular, Sα = 0 unless α is a critical point. Moreover, if α is a critical
point of multiplicity one then it has a unique lifting to a solution of the
congruence C(x) ≡ 0 (modp(m−t)/2) and we obtain the result of part (ii) of
the theorem.

Suppose next that m− t ≥ 3 is odd. The argument proceeds as before.
Write x = u + p(m−t+1)/2v with u running from 1 to p(m−t+1)/2, subject
to the constraint u ≡ α (mod p), and v running from 1 to p(m+t−1)/2. We
obtain

Sα =
p(m−t+1)/2∑

u≡α (mod p)

p(m+t−1)/2∑

v=1

χ(g(u+ p(m−t+1)/2v))epm(f(u+ p(m−t+1)/2v))

=
∑

u

∑

v

χ(g(u) + g′(u)p(m−t+1)/2v + . . .)

× epm(f(u) + f ′(u)p(m−t+1)/2v + . . .)

=
∑

u

∑

v

χ(g(u))χ(1 + g(u)g′(u)p(m−t+1)/2v + . . .)

× epm(f(u))epm(f ′(u)p(m−t+1)/2v)

=
∑

u

χ(g(u))epm(f(u))
p(m+t−1)/2∑

v=1

ep(m+t−1)/2(Rcg(u)g′(u)v + f ′(u)v),

and thus
Sα = p(m+t−1)/2

∑

p(m−t−1)/2|C(u)

χ(g(u))epm(f(u)).(3.7)

We see again that Sα = 0 unless α is a critical point.
Suppose now that α is a critical point of multiplicity one. Let α∗ be a

solution of the congruence C(x) ≡ 0 (mod p(m−t+1)/2). The values u occur-
ring in the sum in (3.7) may then be written u = α∗ + yp(m−t−1)/2, with y
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running from 1 to p, and so

Sα = p(m+t−1)/2
p∑

y=1

χ(g(α∗ + yp(m−t−1)/2))epm(f(α∗ + yp(m−t−1)/2)).

Writing (for the moment) g = g(α∗), g′ = g′(α∗), g′′ = g′′(α∗), f = f(α∗),
f ′ = f ′(α∗), f ′′ = f ′′(α∗), we have

Sα = p(m+t−1)/2
p∑

y=1

χ(g)epm(f)χ(1 + gg′yp(m−t−1)/2 + gg′′2y2pm−t−1)

× epm(f ′yp(m−t−1)/2 + f ′′2y2p(m−t−1)/2)

= p(m+t−1)/2χ(g)epm(f)
p∑

y=1

ep(m−t+1)/2(Rc(gg′y + gg′′2y2p(m−t−1)/2)

− Rc2p(m−t−1)/2(gg′y)2 + f ′y + f ′′2y2p(m−t−1)/2).

Now, by our choice of α∗ the coefficient on y vanishes, and so we obtain

Sα = χ(g(α∗))epm(f(α∗))p(m+t−1)/2
p∑

y=1

ep(Ay2)

= χ(g(α∗))epm(f(α∗))
(
A

p

)
Gpp(m+t−1)/2,

where

A = p−t2(Rcgg′′ −Rcg2(g′)2 + f ′′) = 2R
(C
g

)′
(α∗).

4. Critical points of higher multiplicity. If α is a critical point of
multiplicity greater than one, then in general it is not possible to obtain
a concise formula for Sα due to our inability to evaluate exponential sums
modulo p. However, we are able to convert the mixed sum to a pure exponen-
tial sum as we shall demonstrate in this section. The formula we obtain (in
Proposition 4.1) is analogous to the well known recursion formula for pure
exponential sums, which we now recall. Let α be a critical point associated
with the pure exponential sum S(f, pm) and define

σ := ordp(f(α+ pY )− f(α)), gα(Y ) := p−σ(f(α+ pY )− f(α)).

Then for m ≥ σ,

Sα(f, pm) = pσ−1epm(f(α))S(gα, pm−σ)(4.1)

(see e.g. [3]). The recursion formula reduces the original sum to a sum with
smaller modulus. The difficulty in evaluating Sα arises when m − σ = 1,
leaving us with an exponential sum over a finite field.
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We return now to a general sum of the type S(χ, g, f, pm). Suppose that
α is a critical point of multiplicity ν ≥ 1. Write x = u + pm−t−1v with u
running from 1 to pm−t−1, subject to the constraint u ≡ α (mod p) and v
running from 1 to pt+1. Then proceeding as in the previous section, we have

Sα = pt+1
∑

u≡α (mod p)

χ(g(u))epm(f(u))

= pt+1
pm−t−2∑

y=1

χ(g(α+ py))epm(f(α+ py))

= pt+1χ(g(α))epm(f(α))
∑

y

χ(gg(α+ py))epm(f(α+ py)− f(α))

= pt+1χ(g(α))epm(f(α))
pm−t−2∑

y=1

epm(Fα(y)),

say where (by Lemma 2.2),

Fα(Y ) := cR log(g(α)g(α+ pY )) + f(α+ pY )− f(α).(4.2)

Fα(Y ) may be expanded into a formal power series of the type

Fα(Y ) =
∞∑

j=1

ajY
j ,(4.3)

with p-adic integer coefficients aj . Define

σ := ordp(Fα(Y )) = min
j≥1
{ordp(aj)},(4.4)

and
Gα(Y ) := p−σFα(Y ).(4.5)

Then we have the following conversion of Sα to a pure exponential sum.

Proposition 4.1. If m ≥ σ then

Sα(χ, g, f, pm) = pσ−1χ(g(α))epm(f(α))S(Gα, pm−σ),(4.6)

where S(Gα, pm−σ) =
∑pm−σ

y=1 epm−σ(Gα(y)).

The function Gα, defined a priori as an infinite series with p-adic co-
efficients, may be viewed as a polynomial over Z in the exponential sum
S(Gα, pm−σ), since its coefficients are p-adic integers and the high order
coefficients all vanish modulo pm−σ. Thus S(Gα, pm−σ) is just an ordinary
pure exponential sum.

We proceed now to obtain a relationship between Gα and the critical
point function C. Note

F ′α(Y ) = cRp
g′(α+ pY )
g(α+ pY )

+ pf ′(α+ pY ) = pt+1R
C(α+ pY )
g(α+ pY )

.(4.7)
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Develop RC/g into a Taylor expansion about α,

R
C(X)
g(X)

=
∞∑

j=0

cj(X − α)j ,(4.8)

with p-adic integer coefficients cj , and note that since α is a zero of C of
multiplicity ν,

ordp(cj) > 0 for 0 ≤ j < ν and ordp(cν) = 0.

It follows from (4.7) that

Fα(Y ) = pt+1
∞∑

j=0

cjp
j Y

j+1

j + 1
,(4.9)

and that

Gα(Y ) = p−σFα(Y ) = p−σ
∞∑

j=1

ajY
j = pt−σ

∞∑

j=1

cj−1

j
pjY j .(4.10)

5. Proof of Theorem 1.2. Many kinds of upper bounds are available
for pure exponential sums of the type appearing in (4.6). We shall make
use of the following bound of Theorem 2.1 of [5]. Let f be a nonconstant
(mod p) polynomial over Z, t = ordp(f ′) and f1 = p−tf ′. Let dp(f1) denote
the degree of f1 viewed as a polynomial (mod p). Then if p is odd and
m ≥ t+ 2 or p = 2 and m ≥ t+ 3,

∣∣∣
pm∑

x=1

epm(f(x))
∣∣∣ ≤ min(λ, dp(f1))pt/(dp(f1)+1)pm(1−1/(dp(f1)+1)),(5.1)

where λ = (5/4)5. See also [3], [5], [8], [21] and [22] for related bounds. For
the case that Sα is converted to a (mod p) exponential sum we need the
following upper bound, which is an easy consequence of Weil’s bound (see
[5, Lemma 3.1]): For any nonconstant (mod p) polynomial f of degree d,

∣∣∣
p∑

x=1

ep(f(x))
∣∣∣ ≤ 1.75p1−1/d.(5.2)

In order to apply these bounds to the sum S(Gα, p
m−σ) define

τ := ordp(G′α(Y )),(5.3)

Hα(Y ) := p−τG′α(Y ) = p−τ−σ
∞∑

j=1

ajjY
j−1 = pt−τ−σ

∞∑

j=1

cj−1p
jY j−1.(5.4)

Noting that the series Gα(Y ) and Hα(Y ) have p-adic integer coefficients
we readily obtain the following relationships:
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σ ≥ t+ 2,(5.5)

σ ≤ ν + 1 + t− τ,(5.6)

dp(Gα) ≤ σ − t+ ordp(dp(Gα)),(5.7)

dp(Hα) ≤ σ + τ − t− 1 ≤ ν,(5.8)

τ ≤ ordp(dp(Gα)).(5.9)

The first inequality (5.5) follows from (4.9) and the fact that p | c0. Inequali-
ties (5.6) and (5.8) follow from the second series expansion ofHα in (5.4), set-
ting j = ν+1 and j = dp(Hα) respectively, while inequality (5.7) follows from
the second series expansions of Gα in (4.10), setting j = dp(Gα). Finally, to
obtain (5.9) we set j = dp(Gα) and note that by definition ordp(aj) = σ.
Then, by the definition of τ ,

τ ≤ ordp(ajj)− σ = ordp(j).

Proof of Theorem 1.2. Having established the inequalities in (5.5) to
(5.9) the proof of Theorem 1.2 is almost identical to the proof given in
[5] for pure exponential sums. We repeat here the argument for the con-
venience of the reader. Suppose that m ≥ t + 2 and that α is a critical
point of multiplicity ν ≥ 1. If ν = 1 then (1.12) follows immediately from
Theorem 1.1, and so we suppose henceforth that ν ≥ 2. Let σ be as defined
in (4.4).

Case (i). Suppose first that σ ≥ m. Then we have the trivial upper
bound

|Sα| ≤ pm−1 = p(m−ν−1)/(ν+1)pm(1−1/(ν+1)) ≤ pt/(ν+1)pm(1−1/(ν+1)),

the last inequality following from (5.6).

Case (ii). Suppose next that σ = m− 1. By (5.6) we have trivially

|Sα| ≤ pm−1 ≤ 2pt/(ν+1)pm(1−1/(ν+1)),

unless τ = 0 and p > 2ν+1, and so we may assume that p > 2ν+1. Let
dp = dp(Gα). By (5.7) we have

dp ≤ ν + 1 + ordp(dp).(5.10)

Suppose that ordp(dp) ≥ 1. If dp = p then by (5.10) p ≤ ν+ 2, contradicting
our assumptions that p > 2ν+1 and ν ≥ 2. Otherwise dp ≥ 2p and thus since
ordp(dp) ≤ dp/2 we see by (5.10) that

p ≤ 1
2dp ≤ dp − ordp(dp) ≤ ν + 1,

again contradicting our assumptions.
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Thus we must have ordp(dp) = 0 and so by (5.10), dp ≤ ν + 1. It follows
from Proposition 4.1 and the upper bound of (5.2) that

|Sα| = pσ−1|S(Gα, p)| ≤ 2pσ−1/dp ≤ 2pm−1−1/(ν+1)

= 2pt/(ν+1)pm(1−1/(ν+1))p(σ−ν−1−t)/(ν+1).

By (5.6) we then obtain (1.12).

Case (iii). Suppose that m− 1− τ ≤ σ ≤ m− 2. In particular, we must
have τ ≥ 1. Then we have the trivial estimate

|Sα| ≤ pm−1 = p(m−ν−1)/(ν+1)pm(1−1/(ν+1))(5.11)

≤ p1/(ν+1)p(σ+τ−ν−1)/(ν+1)pm(1−1/(ν+1))

≤ p1/(ν+1)pt/(ν+1)pm(1−1/(ν+1)),

the latter inequality following from (5.6). Now, by (5.9), pτ | dp(Gα). Since
τ ≥ 1 and dp(Gα) ≥ 1, it follows from (5.7) that

p− 1 ≤ pτ − τ ≤ dp(Gα)− ordp(dp(Gα)) ≤ ν + 1− τ ≤ ν.
Thus p1/(ν+1) ≤ p1/p ≤ 31/3 ≤ 2, and so (1.12) follows from (5.11).

Case (iv). Suppose finally that σ ≤ m−2−τ . In this case we can apply
inequality (5.1) to S(Gα, pm−σ) and conclude from Proposition 4.1 that

|Sα| = pσ−1|S(Gα, pm−σ)|
≤ min(λ, dp(Hα))pσ−1pτ/(dp(Hα)+1)p(m−σ)(1−1/(dp(Hα)+1)).

Now by (5.8), dp(Hα) ≤ ν and thus since m− σ − τ > 0 we obtain

|Sα| ≤ min(λ, ν)pσ−1pτ/(ν+1)p(m−σ)(1−1/(ν+1))

≤ min(λ, ν)p(τ+σ−ν−1)/(ν+1)pm(1−1/(ν+1)).

The theorem follows from (5.6).

6. The prime p = 2. Suppose that m ≥ 3. Let χ be a multiplicative
character (mod 2m) defined by the relations

χ(5) = e2m−2(c), χ(−1) = (−1)κ,(6.1)

for some integer c with 1 ≤ c ≤ 2m−2 and κ = 0 or 1. Let R be the 2-adic
integer

R :=
1
4

log(5) =
∞∑

j=1

(−1)j−14j−1

j
≡ −1 (mod 16).(6.2)

Let f, g be rational functions over Z, not both constant and S(χ, g, f, 2m) be
the exponential sum in (1.1). The value t and the critical point congruence
associated with the sum are defined as before,

C(x) := 2−t(Rg(x)f ′(x) + cg′(x)) ≡ 0 (mod 2).(6.3)
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To untwist the mixed exponential sum we use the following analogue of
Lemma 2.1, valid for any 2-adic integer y:

χ(1 + 4y) = e2m(cR log(1 + 4y)).(6.4)

We also observe that Lemma 2.2 holds identically for p = 2.

Theorem 6.1. If m ≥ t+ 5 and α is a critical point of multiplicity one
then we have for m− t even and m− t odd respectively ,

Sα(χ, g, f, 2m) =
{
χ(g(α∗))e2m(f(α∗))e8(−(C/g)′(α∗))2(m+t)/2,
χ(g(α∗))e2m(f(α∗))[1 + e4(−(C/g)′(α∗))]2(m+t−1)/2,

where α∗ is the unique lifting of α to a solution of the congruence C(x) ≡ 0
(mod 2m). In particular |Sα| = 2(m+t)/2. If m = t+3 then |Sα| ≤ 2(m+t+1)/2.
If m = t+ 4 then |Sα| ≤ 2(m+t)/2.

Proof. Let α = 0 or 1. If m − t ≥ 4 is even then setting x = u +
2(m−t+2)/2v, with u running from 1 to 2(m−t+2)/2 subject to the constraint
u ≡ α (mod 2) and v running from 1 to 2(m+t−2)/2 we have

Sα =
∑

u≡α (mod 2)

∑

v

χ(g(u+ 2(m−t+2)/2v))e2m(f(u+ 2(m−t+2)/2v))

=
∑

u

χ(g(u))e2m(f(u))

×
∑

v

e2m(Rcg(u)g′(u)2(m−t+2)/2v + f ′(u)2(m−t+2)/2v)

= 2(m+t−2)/2
∑

2(m−t−2)/2|C(u)

χ(g(u))e2m(f(u)).

Thus the sum is zero unless α is a critical point.
Suppose now that α is a critical point of multiplicity one. Let α∗ be the

unique lifting of α to a solution of the congruence C(x) ≡ 0 (mod 2m). Put
g = g(α∗), g′ = g′(α∗), g′′ = g′′(α∗), f = f(α∗), f ′ = f ′(α∗), f ′′ = f ′′(α∗),
for the moment. Then we have

Sα = 2(m+t−2)/2χ(g)e2m(f)
4∑

y=1

χ(gg(α∗ + 2(m−t−2)/2y))

× e2m(f(α∗ + 2(m−t−2)/2y)− f(α∗)).

We split the latter sum into two pieces, the first corresponding to the
terms y = 2, 4 and the second to the terms y = 1, 3. For the first part we
set y = 2z and apply (6.4) to obtain

2∑

z=1

e2(2−t(cRgg′′ − cRg2(g′)2 + f ′′)z2) =
2∑

z=1

e2(−(C/g)′(α)z) = 0,

since α is a zero of C/g of multiplicity one.
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For the terms y = 1, 3 we consider two cases. Suppose first that m−t ≥ 6
or that m− t = 4 and g′ + g′′ is even. In this case we can apply (6.4) again
and obtain the sum

∑

y=1,3

e8(2−t(cRgg′′ − cRg2(g′)2 + f ′′)y2) = 2e8(−(C/g)′(α∗)).

Suppose now that m − t = 4 and that g′ + g′′ is odd, that is, g′ is odd. In
this case we settle for an upper bound of 2.

Next assume that m − t ≥ 3 is odd. Put x = u + 2(m−t+1)/2v with u
running from 1 to 2(m−t+1)/2, subject to the constraint u ≡ α (mod 2), and
v running from 1 to 2(m+t−1)/2. Then we obtain

Sα =
∑

u

χ(g(u))e2m(f(u))
∑

v

χ(1 + g(u)g′(u)2(m−t+1)/2v + . . .)

× e2m(f ′(u)2(m−t+1)/2v + . . .)

=
∑

u

χ(g(u))e2m(f(u))

×
∑

v

e2m(Rcg(u)g′(u)2(m−t+1)/2v + f ′(u)2(m−t+1)/2v)

= 2(m+t−1)/2
∑

2(m−t−1)/2|C(u)

χ(g(u))e2m(f(u)).

Again we see that the sum is zero unless α is a critical point.
Suppose that α is a critical point of multiplicity one and let α∗ be a

lifting of α to a solution of the congruence C(x) ≡ 0 (mod 2m). Using the
same abbreviations as above we have, if m− t ≥ 5,

Sα = 2(m+t−1)/2χ(g)e2m(f)
1∑

y=0

χ(1 + gg′2(m−t−1)/2y + gg′′2m−t−2y2)

× e2m(f ′2(m−t−1)/2y + f ′′2m−t−2y2).

The y = 1 term of the latter sum is just

e2m((cRgg′ + f ′)2(m−t−1)/2 + (cRgg′′ − cRg2(g′)2 + f ′′)2m−t−2)

= e4(−(C/g)′(α∗)),

and thus

Sα = 2(m+t−1)/2χ(g(α∗))e2m(f(α∗))[1 + e4(−(C/g)′(α∗))].

If m − t = 3 then further terms need to be accounted for in the Taylor
expansions. We settle for an upper bound of 2 in this case. This completes
the proof of Theorem 6.1.
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7. Upper bounds for the case p = 2. Let α = 0 or 1 be a critical
point of multiplicity ν. Write x = u + 2m−t−1v with u running from 1 to
2m−t−1 subject to the constraint u ≡ α (mod 2) and v running from 1 to
2t+1. We then have for m− t ≥ 3,

Sα(χ, g, f, 2m) = 2t+1
∑

2|C(u)

χ(g(u))e2m(f(u)) = T1 + T2,

say, where

T1 = 2t+1
2m−t−3∑

y=1

χ(g(α+ 4y))e2m(f(α+ 4y)),

and T2 is the same sum with α replaced by α+ 2. By (6.4) we have

T1 = 2t+1χ(g(α))e2m(f(α))
2m−t−3∑

y=1

e2m(Fα(y)),(7.1)

with Fα as defined in (4.2) with the value p replaced by 4. In particular,

Fα(Y ) =
∞∑

j=1

ajY
j = 2t

∞∑

j=1

cj−14j
Y j

j
,

for some 2-adic integers aj , cj as defined in (4.3), (4.8).
Define σ, τ , Gα and Hα identically as in Section 4, so that

Gα(Y ) = 2−σ
∞∑

j=1

ajY
j = 2t−σ

∞∑

j=1

cj−1

j
4jY j ,(7.2)

Hα(Y ) = 2−τ−σ
∞∑

j=1

ajjY
j−1 = 2t−τ−σ

∞∑

j=1

cj−14jY j−1,(7.3)

and
T1 = 2σ−2χ(g(α))e2m(f(α))S(Gα, 2m−σ).(7.4)

Arguing as above for the case of odd p, we have the following relations
for the prime p = 2:

σ ≥ t+ 3,(7.5)

σ ≤ 2ν + 2 + t− τ,(7.6)

dp(Gα) ≤ 1
2 [σ − t+ ord2(dp(Gα))],(7.7)

dp(Hα) ≤ 1
2(σ + τ − t)− 1 ≤ ν,(7.8)

τ ≤ ord2(dp(Gα)).(7.9)

Exactly the same relations hold for the sum T2.
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Theorem 7.1. For any rational functions f and g over Z, not both con-
stant , multiplicative character χ (mod 2m) and critical point α of multiplicity
ν = να we have for m ≥ t+ 3,

|Sα(χ, g, f, 2m)| ≤ 2λα2t/(ν+1)2m(1−1/(ν+1)),(7.10)

where λα = min(να, λ). (λ = (5/4)5.)

As in [5, Theorem 2.1] one deduces under the hypotheses of the theorem
the upper bound

|S(χ, g, f, 2m)| ≤ 2λ2t/(dp(C)+1)2m(1−1/(dp(C)+1)).(7.11)

Proof of Theorem 7.1. The case ν = 1 follows immediately from Theo-
rem 6.1 and so we assume ν ≥ 2. The inequality is trivial if m− t ≤ 3ν + 3,
and so we assume further that m − t ≥ 3ν + 4. In this case, by (7.6) we
have m− σ ≥ τ + 4. Thus we may apply (5.1) to the sum S(Gα, 2m−σ) and
obtain from (7.4), (7.6) and (7.8),

|T1| = 2σ−2|S(Gα, 2m−σ)|
≤ 2σ−2 min(dp(Hα), λ)2τ/(dp(Hα)+1)2(m−σ)(1−1/(dp(Hα)+1))

≤ λα2σ−22τ/(ν+1)2(m−σ)(1−1/(ν+1)) ≤ λα2t/(ν+1)2m(1−1/(ν+1)),

where λα = min(λ, να). The same bound holds for |T2|, completing the
proof.

8. Proof of Corollary 1.1. Let f, g be polynomials over Z of degrees
d1, d2 respectively, p any prime, m ≥ 1 and χ a multiplicative character
(mod pm). Put d = d1 + d2. Suppose that the sum S(χ, f, g, pm) does not
degenerate to one of smaller modulus, that is, either dp(f) ≥ 1, or χ is
primitive and dp(g) ≥ 1. In particular, by Lemma 2.2 this implies that

pt ≤ max(d1, d2) ≤ d.(8.1)

If d = 1 then S(χ, g, f, pm) = 0 and so we may assume that d ≥ 2. If m = 1
the corollary follows from the upper bound of Weil (1.2) in the same manner
that [5, Lemma 3.1] is proven. If 2 ≤ m ≤ t + 1 then using (8.1) we have
the trivial upper bound

|S(χ, g, f, pm)| ≤ pm ≤ 3pm(1−1/d),

for in this case
pt ≤ d ≤ 3d/2 ≤ 3dt/(t+1) ≤ 3dt/m,

and so pm/d ≤ 3. If p = 2 and m = t+ 2 then pm/d = 2(t+2)/d ≤ (4d)1/d ≤ 3
and so the trivial bound suffices again. If p is odd and m ≥ t + 2 then by
(1.14) and (8.1) we have

|S(χ, g, f, pm)| ≤ λpt/dpm(1−1/d) ≤ λd1/dpm(1−1/d) ≤ λ31/3pm(1−1/d).
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If p = 2 and m ≥ t + 3 we can apply (7.11) in a similar manner to obtain
the result of the corollary.
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