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A parametric family of quartic Thue equations

by

Andrej Dujella (Zagreb) and Borka Jadrijević (Split)

1. Introduction. In 1909, Thue [23] proved that an equation F (x, y) =
m, where F ∈ Z[X,Y ] is a homogeneous irreducible polynomial of degree
n ≥ 3 and m 6= 0 a fixed integer, has only finitely many solutions. His proof
was not effective. In 1968, Baker [2] gave an effective bound based on the
theory of linear forms in logarithms of algebraic numbers. In recent years
general powerful methods have been developed for the explicit solution of
Thue equations (see [19, 26, 6]), following from Baker’s work.

Thomas [22] was the first to investigate a parametrized family of Thue
equations. Since then, several families have been studied (see [12] for refer-
ences). In particular, quartic families have been considered in [7, 12, 13, 15,
18, 20, 24, 27, 28].

In this paper, we consider the equation

x4 − 4cx3y + (6c+ 2)x2y2 + 4cxy3 + y4 = 1,(1)

and we prove that for c ≥ 3 it has no solution except the trivial ones:
(±1, 0), (0,±1).

We will apply the method of Tzanakis. In [25], Tzanakis considered the
equations of the form f(x, y) = m, where f is a quartic form whose cor-
responding quartic field K is Galois and non-cyclic. By [17], this condition
on K is equivalent to K having three quadratic subfields, which happens
exactly when the cubic resolvent of the quartic Thue equation has three
distinct rational roots. Assuming that K is not totally complex, we con-
clude that K is totally real, in fact, it is a compositum of two real quadratic
fields and it contains exactly three quadratic subfields, all of which are real.
Tzanakis showed that solving the equation f(x, y) = m, under the above
assumptions on K, reduces to solving a system of Pellian equations.
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We will show that solving (1) by the method of Tzanakis reduces to
solving the system

(2c+ 1)U2 − 2cV 2 = 1,

(c− 2)U2 − cZ2 = −2.

We will find a lower bound for solutions of this system using the “congru-
ence method” introduced in [11] and used also in [9, 10] . The comparison of
this lower bound with an upper bound obtained from a theorem of Bennett
[5] on simultaneous approximations of algebraic numbers finishes the proof
for c ≥ 179559. For c ≤ 179558 we use a theorem a Baker and Wüstholz [4]
and a version of the reduction procedure due to Baker and Davenport [3].

There are three reasons why we have chosen the family (1). First of all,
for all members of this family (c 6= 0, 1, 2) the corresponding quartic field
satisfies the above conditions, so the method of Tzanakis can be applied.
Furthermore, the system of Pellian equations obtained in this way is very
suitable for the application of both “congruence method” and Bennett’s
theorem.

Our main result is the following theorem.

Theorem 1. Let c ≥ 3 be an integer. The only solutions to (1) are
(x, y) = (±1, 0) and (0,±1).

Let us note that the statement of Theorem 1 is trivially true for c = 0
and c = 1. On the other hand, for c = 2 we have

x4 − 8x3y + 14x2y2 + 8xy3 + y4 = (x2 − 4xy − y2)2 = 1,

and therefore in this case our equation has infinitely many solutions given
by x = 1

2F3n+3, y = 1
2F3n.

For c = 4 we have

x4 − 16x3y + 26x2y2 + 16xy3 + y4 = (x2 − 8xy − y2)2 − (6xy)2 = 1,

which clearly implies xy = 0. Therefore we may assume that c 6= 4.

2. The method of Tzanakis. In this section we will describe the
method of Tzanakis for solving quartic Thue equations whose corresponding
quartic field K has the properties described in Section 1.

Consider the quartic Thue equation

f(x, y) = m,(2)

f(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4 ∈ Z[x, y], a0 > 0.

We assign to this equation the cubic equation

4%3 − g2%− g3 = 0(3)
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with roots opposite to those of the cubic resolvent of the quartic equation
f(x, 1) = 0. Here g2 = a0a4 − 4a1a3 + 3a2

2 ∈ 1
12Z,

g3 =

∣∣∣∣∣∣∣

a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣∣
∈ 1

432
Z.

By [25], the conditions on K from Section 1 are equivalent to the fact that
the cubic equation (3) has three rational roots %1, %2, %3 and

a2
1

a0
− a2 ≥ max{%1, %2, %3}.(4)

Let H(x, y) and G(x, y) be the quartic and sextic covariants of f(x, y),
respectively (see [16, Chapter 25]), i.e.

H(x, y) = − 1
144

∣∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂y2

∣∣∣∣∣∣∣∣∣
∈ 1

48
Z[x, y],

G(x, y) = −1
8

∣∣∣∣∣∣∣∣

∂f

∂x

∂f

∂y

∂H

∂x

∂H

∂y

∣∣∣∣∣∣∣∣
∈ 1

96
Z[x, y].

Then 4H3−g2Hf
2−g3f

3 = G2. If we put H = 1
48H0, G = 1

96G0, %i = 1
12ri,

i = 1, 2, 3, then H0, G0 ∈ Z[x, y], ri ∈ Z, i = 1, 2, 3, and

(H0 − 4r1f)(H0 − 4r2f)(H0 − 4r3f) = 3G2
0.

There exist positive square-free integers k1, k2, k3 and quadratic forms
G1, G2, G3 ∈ Z[x, y] such that

H0 − 4rif = kiG
2
i , i = 1, 2, 3,

and k1k2k3(G1G2G3)2 = 3G2
0. If (x, y) ∈ Z× Z is a solution of (2), then

k2G
2
2 − k1G

2
1 = 4(r1 − r2)m,(5)

k3G
2
3 − k1G

2
1 = 4(r1 − r3)m.(6)

In this way, solving the Thue equation (2) reduces to solving the system of
Pellian equations (5) and (6) with one common unknown.

3. The system of Pellian equations. Let us apply the method from
Section 2 to the equation

f(x, y) = x4 − 4cx3y + (6c+ 2)x2y2 + 4cxy3 + y4 = 1.
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We have
g2 = 1

3(21c2 + 6c+ 4),

g3 = − 1
27(81c3 + 99c2 − 18c− 8),

%1 = 1
2c+ 2

3 , %2 = c− 1
3 , %3 = −3

2c− 1
3 .

The condition (4) is clearly satisfied.
Furthermore, we obtain

H0 − 4r1f = 24(c− 2)(2c+ 1)(x2 + y2)2,

H0 − 4r2f = 48c(c− 2)(x2 + xy − y2)2,

H0 − 4r3f = 24c(2c+ 1)(−x2 + 4xy + y2)2.

Hence we may take

k1 = 6(c− 2)(2c+ 1), k2 = 3c(c− 2), k3 = 6c(2c+ 1),

G1 = 2(x2 + y2), G2 = 4(x2 + xy − y2), G3 = 2(−x2 + 4xy + y2).

Inserting this in (5) and (6) we obtain

cG2
2 − (4c+ 2)G2

1 = −8,(7)

cG2
3 − (c− 2)G2

1 = 8.(8)

Let

U =G1/2 = x2+y2, V =G2/4 = x2+xy−y2, Z =G3/2 =−x2+4xy+y2.

Then from (7) and (8) we obtain the system of Pellian equations

(2c+ 1)U2 − 2cV 2 = 1,(9)

(c− 2)U2 − cZ2 = −2.(10)

Lemma 1. Let k ≥ 2 be an integer. If x and y are positive integers
satisfying the Pellian equation

(k − 1)y2 − (k + 1)x2 = −2,

then there exists an integer m ≥ 0 such that x = xm and y = ym, where the
sequences (xm) and (ym) are given by

x0 = 1, x1 = 2k − 1, xm+2 = 2kxm+1 − xm, m ≥ 0;

y0 = 1, y1 = 2k + 1, ym+2 = 2kym+1 − ym, m ≥ 0.

Proof. See [8, p. 312].

Lemma 1 immediately yields

Lemma 2. Let (U, V, Z) be a positive integer solution of the system of
Pellian equations (9) and (10). Then there exist nonnegative integers m and
n such that

U = vm = wn,
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where the sequences (vm) and (wn) are given by

v0 = 1, v1 = 8c+ 1, vm+2 = (8c+ 2)vm+1 − vm, m ≥ 0,(11)

w0 = 1, w1 = 2c− 1, wn+2 = (2c− 2)wn+1 − wn, n ≥ 0.(12)

Therefore, in order to prove Theorem 1, it suffices to show that vm = wn
implies m = n = 0.

Solving recurrences (11) and (12) we find

vm =
1

2
√

4c+ 2
[(2
√
c+
√

4c+ 2)(4c+ 1 + 2
√

2c(2c+ 1))m(13)

−(2
√
c−
√

4c+ 2)(4c+ 1− 2
√

2c(2c+ 1))m],

wn =
1

2
√
c− 2

[(
√
c+
√
c− 2)(c− 1 +

√
c(c− 2))n(14)

−(
√
c−
√
c− 2)(c− 1−

√
c(c− 2))n].

4. Congruence relations

Lemma 3. Let the sequences (vm) and (wn) be defined by (11) and (12).
Then for all m,n ≥ 0 we have

vm ≡ 4m(m+ 1)c+ 1 (mod 64c2),(15)

wn ≡ (−1)n−1[n(n+ 1)c− 1] (mod 4c2).(16)

Proof. Both relations are obviously true for m,n ∈ {0, 1}.
Assume that (15) is valid for m− 2 and m− 1. Then

vm = (8c+ 2)vm−1 − vm−2

≡ (8c+ 2)[4m(m− 1)c+ 1]− [4(m− 1)(m− 2)c+ 1]

≡ c[8 + 8m(m− 1)− 4(m− 1)(m− 2)] + 1

= 4m(m+ 1)c+ 1 (mod 64c2).

Assume that (16) is valid for n− 2 and n− 1. Then

wn = (2c− 2)wn−1 − wn−2

≡ (2c− 2)(−1)n[n(n− 1)c− 1]− (−1)n−1[(n− 1)(n− 2)c− 1]

≡ c(−1)n−1[2 + 2n(n− 1)− (n− 1)(n− 2)] + (−1)n

= (−1)n−1[n(n+ 1)c− 1] (mod 4c2).

Suppose that m and n are positive integers such that vm = wn. Then, of
course, vm ≡ wn (mod 4c2). By Lemma 3, we have (−1)n ≡ 1 (mod 2c) and
therefore n is even.



164 A. Dujella and B. Jadrijević

Assume that n(n + 1) < 4
5c. Since m ≤ n we also have m(m+ 1) < 4

5c.
Furthermore, Lemma 3 implies

4m(m+ 1)c+ 1 ≡ 1− n(n+ 1)c (mod 4c2)

and

2m(m+ 1) ≡ −n(n+ 1)
2

(mod 2c).(17)

Consider the positive integer

A = 2m(m+ 1) +
n(n+ 1)

2
.

We have 0 < A < 2c and, by (17), A ≡ 0 (mod 2c), a contradiction.
Hence n(n+1) ≥ 4

5c, which implies n >
√

0.8c−0.5. Therefore we proved

Proposition 1. If vm = wn and m 6= 0, then n >
√

0.8c− 0.5.

5. An application of a theorem of Bennett. It is clear that the
solutions of the system (9) and (10) induce good rational approximations to
the numbers

θ1 =

√
2c+ 1

2c
and θ2 =

√
c− 2
c

.

More precisely, we have

Lemma 4. All positive integer solutions (U, V, Z) of the system of Pel-
lian equations (9) and (10) satisfy∣∣∣∣θ1 −

V

U

∣∣∣∣ <
1
4c
· U−2,

∣∣∣∣θ2 −
Z

U

∣∣∣∣ <
1√

c(c− 2)
· U−2.

Proof. We have
∣∣∣∣θ1 −

V

U

∣∣∣∣ =

∣∣∣∣
√

2c+ 1
2c

− V

U

∣∣∣∣ =

∣∣∣∣
2c+ 1

2c
− V 2

U2

∣∣∣∣ ·
∣∣∣∣
√

2c+ 1
2c

+
V

U

∣∣∣∣
−1

<
1

2cU2 ·
1
2

=
1
4c
· U−2

and
∣∣∣∣θ2 −

Z

U

∣∣∣∣ =

∣∣∣∣
√
c− 2
c
− Z

U

∣∣∣∣ =

∣∣∣∣
c− 2
c
− Z2

U2

∣∣∣∣ ·
∣∣∣∣
√
c− 2
c

+
Z

U

∣∣∣∣
−1

<
2
cU2 ·

1
2

√
c

c− 2
=

1√
c(c− 2)

· U−2.

The numbers θ1 and θ2 are square roots of rationals which are very
close to 1. For simultaneous Diophantine approximations to such kind of
numbers there are very useful effective results of Masser and Rickert [14] and
Bennett [5]. Let us mention that the first effective results on simultaneous
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approximation to fractional powers of rationals close to 1 were given by
Baker in [1]. We will use the following theorem of Bennett [5, Theorem 3.2].

Theorem 2. If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with a0 <
a1 < a2, aj = 0 for some 0 ≤ j ≤ 2, q nonzero and N > M 9, where

M = max
0≤i≤2

{|ai|},

then

max
0≤i≤2

{∣∣∣∣
√

1 +
ai
N
− pi
q

∣∣∣∣
}
> (130Nγ)−1q−λ

where

λ = 1 +
log(33Nγ)

log(1.7N2
∏

0≤i<j≤2(ai − aj)−2)

and

γ =





(a2 − a0)2(a2 − a1)2

2a2 − a0 − a1
if a2 − a1 ≥ a1 − a0,

(a2 − a0)2(a1 − a0)2

a1 + a2 − 2a0
if a2 − a1 < a1 − a0.

We will apply Theorem 2 with a0 = −4, a1 = 0, a2 = 1, N = 2c, M = 4,
q = U , p0 = Z, p1 = U , p2 = V . If c ≥ 131073, then the condition N > M 9

is satisfied and we obtain
(

130 · 2c · 400
9

)−1

U−λ <
1√

c(c− 2)
· U−2.(18)

If c ≥ 172550 then 2− λ > 0 and (18) implies

logU <
9.355
2− λ.(19)

Furthermore,
1

2− λ =
1

1− log( 26400
9 c)

log(0.017c2)

<
log(0.017c2)

log(0.00000579c)
.

On the other hand, from (14) we find that

wn > (c− 1 +
√
c(c− 2))n > (2c− 3)n,

and Proposition 1 implies that if (m,n) 6= (0, 0), then

U > (2c− 3)
√

0.8c−0.5.

Therefore,
logU > (

√
0.8c− 0.5) log(2c− 3).(20)

Combining (19) and (20) we obtain
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√
0.8c− 0.5 <

9.355 log(0.017c2)
log(2c− 3) log(0.00000579c)

(21)

and (21) leads to a contradiction if c ≥ 179559. Therefore we proved

Proposition 2. If c is an integer such that c ≥ 179559, then the only
solution of the equation vm = wn is (m,n) = (0, 0).

6. The Baker–Davenport method. In this section we will apply the
so-called Baker–Davenport reduction method in order to prove Theorem 1
for 3 ≤ c ≤ 179558.

Lemma 5. If vm = wn and m 6= 0, then

0 < n log(c− 1 +
√
c(c− 2))−m log(4c+ 1 + 2

√
2c(2c+ 1))

+ log

√
4c+ 2(

√
c+
√
c− 2)√

c− 2(2
√
c+
√

4c+ 2)

< 0.627 (4c+ 1 + 2
√

2c(2c+ 1))−2m.

Proof. Define

P =
2
√
c+
√

4c+ 2√
4c+ 2

(4c+ 1 + 2
√

2c(2c+ 1))m,

Q =
√
c+
√
c− 2√

c− 2
(c− 1 +

√
c(c− 2))n.

From (13) and (14) it follows that the relation vm = wn implies

P +
1

2c+ 1
P−1 = Q− 2

c− 2
Q−1.

It is clear that Q > P . Furthermore,

Q− P
Q

=
1
Q

(
1

2c+ 1
P−1 +

2
c− 2

Q−1
)
< P−2

(
1

2c+ 1
+

2
c− 2

)
≤ 15

7
P−2.

Since m,n ≥ 1, we have P > 8c+ 1 ≥ 25 and (Q−P )/Q < 1/291. Thus we
may apply [21, Lemma B.2] to obtain

0 < log
Q

P
= − log

(
1− Q− P

Q

)
< 1.002 · 15

7
P−2

= 2.148 · 4c+ 2
(2
√
c+
√

4c+ 2)2
(4c+ 1 + 2

√
2c(2c+ 1))−2m

<
4.296 (2c+ 1)

16c
(4c+ 1 + 2

√
2c(2c+ 1))−2m

< 0.627 (4c+ 1 + 2
√

2c(2c+ 1))−2m.
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Now we will apply the following famous theorem of Baker and Wüst-
holz [4]:

Theorem 3. For a linear form Λ 6= 0 in logarithms of l algebraic num-
bers α1, . . . , αl with rational integer coefficients b1, . . . , bl we have

logΛ ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) . . . h′(αl) log(2ld) logB,

where B = max{|b1|, . . . , |bl|} and d is the degree of the number field gener-
ated by α1, . . . , αl.

Here

h′(α) =
1
d

max {h(α), |logα|, 1},

and h(α) denotes the standard logarithmic Weil height of α.
We will apply Theorem 3 to the form from Lemma 5. We have l = 3,

d = 4, B = n,

α1 = c− 1 +
√
c(c− 2), α2 = 4c+ 1 + 2

√
2c(2c+ 1),

α3 =

√
4c+ 2(

√
c+
√
c− 2)√

c− 2(2
√
c+
√

4c+ 2)
.

Under the assumption that 3 ≤ c ≤ 179558 we find that

h′(α1) = 1
2 logα1 <

1
2 log 2c, h′(α2) = 1

2 logα2 < 7.0889.

Furthermore, α3 < 1.419, and the conjugates of α3 satisfy

|α′3| =
√

4c+ 2(
√
c−
√
c− 2)√

c− 2(2
√
c+
√

4c+ 2)
< 1,

|α′′3| =
√

4c+ 2(2
√
c+
√

4c+ 2)√
c− 2(

√
c+
√
c− 2)

< 9.869,

|α′′′3 | =
√

4c+ 2(
√
c+
√
c− 2)(2

√
c+
√

4c+ 2)
2
√
c− 2

< 1436471.1.

Therefore,

h′(α3) < 1
4 log[(c− 2)2 · 1.419 · 9.869 · 1436471.1] < 10.254.

Finally,

log[0.627(4c+ 1 + 2
√

2c(2c+ 1))−2m] < −2m log(8c) < −2m log(2c).

Hence, Theorem 3 implies

2m log(2c) < 3.822 · 1015 · 1
2 log(2c) · 7.0889 · 10.254 · logn

and
m/logn < 6.946 · 1016.(22)
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By Lemma 5, we have

n log(c− 1 +
√
c(c− 2)) < m log(4c+ 1 + 2

√
2c(2c+ 1)) + 0.000931

< m log[(4c+ 1 + 2
√

2c(2c+ 1)) · 1.000932]

and
n/m < 2.474.(23)

Combining (22) and (23), we obtain

n/logn < 1.719 · 1017,

which implies n < 7.471 · 1018.
We may reduce this large upper bound using a variant of the Baker–

Davenport reduction procedure [3]. The following lemma is a slight modifi-
cation of [11, Lemma 5a)]:

Lemma 6. Assume that M is a positive integer. Let p/q be a convergent
of the continued fraction expansion of κ such that q > 10M and let ε =
‖µq‖ −M · ‖κq‖, where ‖ · ‖ denotes the distance from the nearest integer.
If ε > 0, then there is no solution of the inequality

0 < n−mκ+ µ < AB−m

in integers m and n with

log(Aq/ε)
logB

≤ m ≤M.

We apply Lemma 6 with

κ =
logα2

logα1
, µ =

logα3

logα1
, A =

0.627
logα1

,

B = (4c+ 1 + 2
√

2c(2c+ 1))2 and M = 7.471 · 1018.

If the first convergent such that q > 10M does not satisfy the condition
ε > 0, then we use the next convergent.

We performed the reduction from Lemma 6 for 3 ≤ c ≤ 179558, c 6= 4.
The use of the second convergent was necessary in 6810 cases (3.79%), the
third convergent was used in 143 cases (0.08%), the fourth in 22 cases and
the fifth in seven cases (c = 21027, 22393, 41842, 56576, 75541, 96007,
157920). In all cases we obtained m ≤ 7. More precisely, we obtained m ≤ 7
for c = 3; m ≤ 6 for c ≥ 5; m ≤ 5 for c ≥ 6; m ≤ 4 for c ≥ 13; m ≤ 3
for c ≥ 67; m ≤ 2 for c ≥ 724 . According to Proposition 1, this fin-
ishes the proof for c ≥ 79. It is trivial to check that for c ≤ 78 there is
no solution of the equation vm = wn with (m,n) 6= (0, 0) in the above
ranges.
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Therefore, we have proved

Proposition 3. If c is an integer such that 3 ≤ c ≤ 179558, then the
only solution of the equation vm = wn is (m,n) = (0, 0).

Proof of Theorem 1. The statement follows directly from Propositions 2
and 3.
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manuscript.

References

[1] A. Baker, Simultaneous rational approximations to certain algebraic numbers, Proc.
Cambridge Philos. Soc. 63 (1967), 693–702.

[2] —, Contributions to the theory of Diophantine equations I. On the representation
of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1968),
173–191.

[3] A. Baker and H. Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, Quart.
J. Math. Oxford Ser. (2) 20 (1969), 129–137.
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21000 Split, Croatia

E-mail: borka@fesb.hr

Received on 15.1.2001
and in revised form on 23.3.2001 (3950)


