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On the number of solutions
of decomposable polynomial equations

by

A. BERczEs and K. GYORY (Debrecen)

1. Introduction. Let F(X) = F(Xy,...,Xn) € Q[X1,...,Xn] be
a decomposable polynomial of degree n > 3 in m > 2 variables, that is,
a polynomial which can be written in the form

FX) = [Ju(x).
i=1

where [1(X),...,[,(X) are linear polynomials with coefficients in an alge-
braic number field G. This factorization is unique up to proportional factors
from G*. Let S = {p1,...,ps} be a finite set of s > 0 rational primes, and
denote by Zg the ring of S-integers in Q. Consider the equation

(1) Fx)=b inx=(x1,...,2,) €LY,

where b is a given non-zero S-integer. We assume throughout the paper
that F' has coefficients in Zg. Then (1) is called a decomposable polynomial
equation over Zg. If in particular F' is a form, (1) is a decomposable form
equation.

We recall (cf. [7]) that if F is a finite set of linear forms in G[ X1, ..., Xk],
k > 2, then a non-zero Q-linear subspace V of the vector space Q¥ is called
F-non-degenerate if F contains a subset of at least three linear forms whose
restrictions to V' are linearly dependent, but pairwise linearly independent.
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172 A. Bérczes and K. Gyéry

Otherwise V is called F-degenerate. Further, V is called F-admissible if no
form in F vanishes identically on V.
Denote by £ a maximal subset of pairwise linearly independent polyno-

mials among the linear factors l1,...,l, of I over G. Put
X Xm
Lr={X U< X -1 lels.
{ m+1} { e <Xm-&-17 ’ Xm+1> }
Then L* consists of linear forms in X7y, ..., X;,1+1 with coefficients in G.

It was shown in [5], Theorem 1, that (1) has only finitely many solu-
tions for every S and b if and only if the following condition holds: (i) the
linear forms in £* have rank m + 1 over GG, and every L*-admissible linear
subspace of Q™! of dimension > 3 is £*-non-degenerate. Further, under
the assumption (i), a non-explicit bound was derived (cf. [5], Theorem 2)
for the number of solutions of (1) which does not depend on the coefficients
of F'. This bound was given explicitly in terms of the numbers of solutions of
some unit equations. However, when the paper [5] was written, no explicit
upper bound was available on the number of solutions of those equations.
On combining the bound of [5] with an explicit upper bound of Evertse [3]
on the number of solutions of unit equations, one can easily show that under
the assumption (i), our equation (1) has at most

(2) n(218m)g(m+2)4(s+w5(b)+1)/2

solutions. Here wg(b) denotes the number of those distinct primes p, not
contained in S, for which p|b in Zg, and g denotes the degree of the field G
over Q. If G is chosen to be the splitting field of F' over Q then g < n!, and
this bound for g cannot be diminished in general.

In our paper we give a much better explicit upper bound for the number
of solutions of (1) which is already polynomial in n. Further, we extend our
result to the more general equation

(3) F(x)€ebZs inx=(r1,...,Tm) € ZT,

where Z§ denotes the group of S-units in Zg. We point out that under the
assumption (i) this equation may have infinitely many solutions. Then we
show that (i) together with the condition: (i) for at least one polynomial
I* € L£L* we have [*(a) # 0 for any 0 # a € Q™'! already imply the
finiteness of the number of solutions. Further, under these assumptions we
derive explicit upper bounds for the number of solutions of (3). Moreover,
for b = 1, we give a similar upper bound, provided only that the number of
solutions of (3) is finite.

The significant improvement in our bounds is due to a new approach
which is different from that of [5]. As a generalization of Schmidt’s famous
results [15] on norm form equations, Gyéry [10] proved that for homogeneous
F', the set of solutions of both (1) and (3) is the union of finitely many so-
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called families of solutions. Further, he gave an explicit upper bound for
the number of these families. This bound was later improved by Evertse
and Gyéry [8]. In the proofs of our main results we first reduce equations
(1) and (3) to homogeneous decomposable polynomial equations in m + 1
unknowns. Then we apply the above-mentioned results of [10] and [8] to
derive bounds for the numbers of solutions of (1) and (3).

We give several consequences for inhomogeneous Thue equations, dis-
criminant polynomial equations, norm polynomial equations and resultant
polynomial equations. In particular, our results are also valid in the homo-
geneous case. However, in this case slightly better estimates are known in
the literature (cf. [3], [4], [8], [12], [13]), hence we shall not deal here with
applications of our results to decomposable form equations.

2. Main results. To state our results we need some further notation.
For a prime p not contained in S, denote by ord,(b) the greatest integer a
such that p®|b in Zg. Put

bs(bn,m) = (” ;: 1>w5(b) I <ordp(7l;2 n m>

p prime

pgS
where the product is taken over all primes p not contained in S, and let

§(m) = 2(m+1)(m+2)(2m + 3) — 4.

We note that d(m) < 2(m + 1)3. We also use the notation introduced in
Section 1.

THEOREM 1. Suppose that

(i) the linear forms in L* have rank m+1 over G, and every L*-admissible
linear subspace of Q™! of dimension > 3 is L*-non-degenerate.

Then the number of solutions of equation (1) does not exceed the bounds

(4) n(217n)6(m)(s+l) . ¢s(b, n, m)
and
(5) n(217n)5(m)(s+ws(b)+1)'

As is easily seen, the bound (5) is in general much better than (2). In the
special case when F' in (1) is homogeneous, the assumption (i) is equivalent
(cf. [5], Corollary 1) to the fact that every L-admissible linear subspace of
Q™ of dimension > 2 is £L-non-degenerate. In this case slightly better bounds
are given in [3] and [8] for the number of solutions of (1).

Our example given below shows that in contrast with the case of decom-
posable form equations, Theorem 1 cannot be generalized to decomposable
polynomial equations of the form (3). However, if we replace condition (i)
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of Theorem 1 with a stronger assumption, we are able to derive a finiteness
theorem and explicit bounds for the number of solutions of (3).

THEOREM 2. Suppose that the condition (i) holds, and that

(i)  for at least one polynomial I* € L* we have I*(a) # 0 for any 0 #
ac @m—H_

Then the number of solutions of equation (3) does not exceed the bound

(6) (217n)6(m)(s+ws(b)+l)'

As a consequence of Theorem 2 we now give another finiteness condition
for the number of solutions of (3) which is sometimes easier to check. Let

L= L\ A{Xms1}
COROLLARY 1. Suppose that

(it") L has rank m + 1 over G, and I*(a) # 0 for each I* € L and for
any 0 #a € QM

Then the number of solutions of (3) does not exceed the bound (6).

We note that in the inhomogeneous case our Theorem 2 and Corollary 1
provide bounds also for the number of solutions of the corresponding Mahler
type equation.

The following example shows that condition (i’) in Theorem 2 is also
necessary.

ExAaMPLE. Put S = {5,13} and consider the polynomial F(X;, X2) =
(4X1 +6Xo —5)(X2 +4)(X2 + 12) € Zg[ X1, X2]. This polynomial satisfies
the condition (i) of Theorem 1, but there is no linear factor [ of F' for
which the corresponding linear form [*(X;, X2, X3) has the property that
I*(z1, x9,w3) # 0 for (0,0,0) # (21, 72,23) € Q3. It is easy to see that the
equation

F(:L’l,l'g) EZ*S in xT1,T2 GZS

has infinitely many solutions of the form (x1,1).

THEOREM 3. Assume that rank(L*) = m + 1 and b = 1. If the number
of solutions of (3) is finite, then this number does not exceed the bound

(7) (217n)6(m)(s+1)'

In the next section we formulate some consequences and applications of
our Theorems 1 to 3. Following our proofs, our results could be extended to
the case when the ground ring is a ring of S-integers of an arbitrary number
field. We shall not work this out here.
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3. Some consequences and applications. First let Fy(X) =
Fo(X1,...,Xm) € Zs[X1,...,Xm] be a decomposable form in m > 2
variables and assume that

Fy(X) =[] m(X)
=1

with linear forms h;(X) € G[X1,...,Xy] for i = 1,...,n. Let £y denote
a maximal subset of pairwise non-proportional linear forms in {hy,..., hy}
over G. Let A be the set of all n-tuples A = (A1,...,\,) € G" for which the
decomposable polynomial

n
Fy(X) = [ [(h(X) + )
i=1
has coefficients in Zg. Clearly, Fo(X) = Fy(X), hence 0 € A. Our Theorem 1
implies the following.

COROLLARY 2. Suppose that
(ii)  every subspace of Q™ of dimension > 2 is Lo-non-degenerate.

Then for any b € Zg\ {0} and for every fized X\ € A, the number of solutions
of the equation
(8) Fi\(x)=b inxeZq

does not exceed the bounds occurring in (4) and (5).

In what follows, we apply Corollary 2 to inhomogeneous Thue equations,
discriminant polynomial equations and norm polynomial equations. In the
case of equations considered over Zg, our Corollary 2 and Corollaries 3,
5 and 7 below give improved, explicit versions of Corollaries 2 to 5 of [5]
where non-explicit bounds were given for the numbers of solutions of the
corresponding equations.

Let F(X1,X2) € Zg[X1, X2] be a decomposable polynomial of degree n.

Assume that
n

(9) F(X1,X3) = [J(ha(X1, X2) + \)

i=1
where h;(X7, X2) is a linear form with coefficients in G and \; € G for
t=1,...,n. Let b be a non-zero S-integer.

COROLLARY 3. Suppose that

(iii) there are at least three pairwise linearly independent forms among
hi(X1, X2), ., hn(X1, X2).

Then the number of solutions of the inhomogeneous Thue equation

(10) F(z1,22) =b inxy,22 € Zg
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does not exceed the bounds
n(217n)52(s+1) . wS(ba n, 2) and n(217n)52(s+ws(b)+1)'
From Theorem 2 we shall deduce the following.
COROLLARY 4. Suppose that

(iit") there are at least three linearly independent polynomials among
hi(X1, X2) + M,y hn (X1, X2) + An, and for some i, hi(x1,z2) &
{0, =)} for any (0,0) # (z1,22) € Q2.
Then the number of solutions of the equation
(11) F(:L’l,.%'Q) S ng mn x,re € Zg
does not exceed the bound
(217n)52(s+ws(b)+l)'
The bounds in Corollaries 3 and 4 are also valid in the case of Thue and
Thue-Mahler equations, when A; = 0 for ¢ = 1,...,n. However, when in

(10) F(X1,X2) is an irreducible binary form, Evertse [4] obtained a much
better bound for the numbers of solutions of (10) and (11).

Let M be a number field of degree n > 3, ag = 1,1, ..., Qp, linearly
independent elements of M over Q such that M = Q(«ay, ..., ), and A an
arbitrary element of M. Let o1 = id, 09,...,0, be the Q-isomorphisms of

M into C. For any a € M, let a®) = g;(a). Put

LOX) == X+ ol X1 + ...+ oD X, + @
with the convention that L(X) = L(M)(X). Then the decomposable polyno-
mial A ‘

Dyjo(L(X)):= [[ TVX)-LV(X))?

1<i<j<n
is called a discriminant polynomial. We consider the discriminant polynomial
equation
(12)  aoDpjglarzs + ...+ am@Tm +A) =b  inxi,...,2m € Zg,
where ag € Q*, b € Zg\ {0}. Further, suppose that ag is chosen such that the
discriminant polynomial agD /Q(ale + ...+ anX;m + A) has coefficients
in Zg.
COROLLARY 5. Under the above conditions, the number of solutions of

equation (12) does not exceed the bounds (4) and (5) with n replaced by
n(n—1).

In the important special case A = 0, somewhat better bounds follow for
the number of solutions of (12) from the results of [3] and [8] concerning

decomposable form equations. Under some conditions on the normal closure
of M/Q, even better bounds can be found in [6], [1] and [14] for A = 0.
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With the above assumptions, consider the following generalization of
equation (12):

(13) aoDyjglarzy + ...+ amTy + A) €Ly inxy,..., 75 € Zs.
From Corollary 1 we shall deduce

COROLLARY 6. Suppose that the number field M has no proper subfield,
and that 1,1, ..., am, A are linearly independent over Q. Then the number
of solutions of equation (13) does not exceed the bound (6) with n replaced
by n(n —1).

In the case A = 0, the results of [3] and [8] concerning decomposable
form equations provide somewhat better bounds for the number of solutions
of (13).

Let again M be a number field of degree n > 3, a1 = 1,9,...,an
linearly independent elements of M over Q such that M = Q(aq,...,qamn),
and A € M. As above, put

LY(X) := aY)Xl . +a9X,, 4+ 20,
Then the polynomial

n

Nujglon X1+ ...+ am X + ) = [[LP(X)
i=1

is called a norm polynomial. Consider the norm polynomial equation
(14)  aoNyyglarzr + ...+ Ty +A) =b  inzy,..., 7 € Zs,
where b € Zg \ {0}, and ag € Q* is chosen so that the norm polynomial
aONM/Q(ale + ...+ anX;y + A) has coefficients in Zg.

Denote by M the Z-module generated by aj,...,a, in M. Then M
is called non-degenerate if the Q-vector space generated by M does not

contain any subspace of the form M’ where yu € M* and M’ is a subfield
of M such that Q C M’ C M. Otherwise M is called degenerate.

COROLLARY 7. Suppose that
(iv) M is non-degenerate.
Then the number of solutions of equation (14) does not exceed the bounds

occurring in (4) and (5).

We note that for A = 0, slightly better bounds are given in [3] and [§]
for the number of solutions of (14).
As a generalization of (14), consider now the equation

(15)  aoNyjglaazy + ...+ Ty + A) €25 inxy,..., 00 € Ls.
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The next corollary is a special case of our Corollary 1. Corollary 8 was
proved independently by Evertse, Stewart and Tijdeman (private commu-
nication) and by the authors of the present paper.

COROLLARY 8. Suppose that in (15) aq,...,q, and \ are linearly in-
dependent over Q. Then the number of solutions of equation (15) does not
exceed the bound (6).

The number of solutions of (15) can be finite also in the case when
a1,...,0,m and A are linearly dependent. The following corollary follows
immediately from our Theorem 3.

COROLLARY 9. Suppose that for b = 1 equation (15) has only finitely

many solutions. Then the number of these solutions does mot exceed the
bound (7).

Finally, we apply Corollary 2 to resultant equations. Let P € Zg[X] be a
polynomial of degree n > 3 with leading coefficient ag and without multiple
zeros. Let aq,...,a, denote the zeros of P, and put G = Q(aq,...,ay).
Fix a positive integer m, and let A = (A1,...,\,) € G™ be such that the
decomposable polynomial

n

(16) af' [ (" Xo + o ' X1+ ...+ X + i)

i=1
has coefficients in Zg. This is the case e.g. for A = 0 when the corresponding
decomposable form in (16) is just the resultant Res(P, Q) of the polynomials
P(X)and Q(X) = XoX™+X1X™ ' +...+ X,,. Hence in the case A = 0 we
call (16) a resultant form, and in general a resultant polynomial. We denote
this polynomial by Resy(P, Q) with the above Q. Consider the resultant
polynomial equation

(17) Resy(P,Q)=b in Q € Zg[X],

where b is a given non-zero element of Zg.
It follows from Theorem 5 of [12] that for A = 0, b € Z§ and m < n/2,
the number of solutions of (17) in @ € Zg[X]| with degree m is at most

(18) 2(234n2)(m+1)3(s+1)'

Further, it was pointed out in [12] that the assumption m < n/2 cannot be
replaced by m < n/2 in general.
From our Corollary 2 we shall deduce the following.

COROLLARY 10. Let m be a positive integer with m < n/2, and suppose
that P(X) has no non-constant divisor of degree < m in Q[X]. Then the
number of solutions Q(X) of (17) with degree m does not exceed the bounds
(4) and (5) with m replaced by m + 1.
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For A = 0 and b € Z, our bound (5) provided by Corollary 10 can be
compared with (18). It is likely that Corollary 10 remains valid without the
assumption that P has no non-constant factor with rational coefficients and
with degree less than m.

We note that similar results can be deduced from Theorem 2 and Corol-
lary 1 for the number of those polynomials ) € Zg[X] for which Resy(P, Q)
€ bZ%.

4. Proofs. To prove our results we shall need some lemmas. First we
introduce some further notation.

Let F(X) € Zs[X1,...,Xk], k > 2, be a decomposable form of degree
r > 3, and assume that there are k linearly independent linear forms among
the linear factors of F' over Q. Let b be a non-zero element of Zg, and
consider the decomposable form equation

(19) F(x) €bZy inx=(z1,...,a5) € ZE.
We recall that if x is a solution of (19) then so is ex for each ¢ € Z§. Such

a set of solutions is called a Zg-coset of solutions of (19). The form Fisa
product of norm forms. More precisely, it can be written in the form

t
F(X) = ¢ ][] Nag ol (X)),
j=1
where ¢ € Q*, My, ..., M, are algebraic number fields, and [;(X) is a linear
form in X = (Xi,...,X}) with coefficients in M; for j = 1,...,t (cf. [2],
pp. 77-81). Let
A= Mi®...® Mt

denote the direct Q-algebra sum of M, ..., My, i.e. the cartesian product
M x ... x M; endowed with coordinatewise addition and multiplication.
Thus A is an algebra over Q with unit element 14 = (1,...,1). Denote by
A* the multiplicative group of invertible elements in A, and by N4 /g(a) the
norm of a = (a1,...,a¢) € A. Then we have

NA/Q(a) = NMI/Q(al) ... NMt/@(at).
Denote by Mg the finitely generated Zg-module
{o = (11(x),...,14(x)) : x € ZE}
in the algebra A. Now equation (19) can be written in the form
(20) cNajg(r) € VZs  inz e Ms.
For any algebraic number field M we denote by Oy s the integral closure
of Zg in M, and by O}kw, g the unit group of Oy . Similarly, for each Q-

subalgebra B of A with 14 € B we denote by Op g the integral closure of
Zs in B, and by Of ¢ the unit group of Op,g. The dimension of A as a
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Q-vector space is r, and the Q-vector space V := MgQ generated by Mg
over Q has dimension k. Put

() I ()

p prime

pgS
and
e(k) = 2k(k+1)(2k + 1) — 2.
LEMMA 1. The set of solutions of equation (20) is contained in some
finite union

(21) 2105, sU...Uz,0f ¢ with w < (2%372)*®EH ()

such that for i = 1,...,w, B; is a Q-subalgebra of A with 14 € B;, and
x; € A* with x;B; C V.

Proof. This is a special case of Theorem 1 of [8]. We note that the proof in
[8] is based on a combination of some deep results of Gy6ry [10] and Evertse
[3]. The proof of the result used from [3] depends on Evertse’s improvement
(cf. [9]) of Schmidt’s quantitative subspace theorem. m

Consider the above factorization of F into linear factors, and let Lbea
maximal subset of pairwise linearly independent linear factors of F. By the
assumption made on the linear factors of ', £ has rank k over Q. Hence the
linear mapping

P:QF -V, xr (Lh(x),...,1;(x))
gives an isomorphism between Q* and V.

LEMMA 2. Let H be a non-zero subspace of the vector space QF. Then
the following statements are equivalent:

(a) H is L-admissible and L-degenerate.
(b) @(H) = zB for some x € ®(H) N A* and some Q-subalgebra B of A
with 14 € B.

Proof. This is Lemma 8 of [10]. m

LEMMA 3. Suppose that every L-admissible linear subspace of QF of di-
mension > 3 is L-non-degenerate. Then all solutions of (19) are contained
in a finite union of at most two-dimensional subspaces Hi, ..., H, of QF
such that

w < (233,’"2)e(k)(s+1),&}\5(b)'

Proof. Consider equation (19) in the form (20). By Lemma 1, the set of
solutions of equation (20) is contained in some finite union of the form (21)
with the properties specified in Lemma, 1.
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Now fix a coset xiO*BhS from (21). We have in*Bi,S C z;B;. Since z;B;
is a Q-linear subspace of V' with 14 € B;, there exists a linear subspace H; of
QF such that ¢(H;) = 2;B; and z; € #(H;) N A*. Further, for each solution
x of (20) which is contained in x;B;, the corresponding solution x of (19) is
contained in H;, and vica versa. Moreover, by Lemma 2 we infer that H; is
an L-admissible and £-degenerate subspace of QF. However, by assumption,
every L-admissible and £-degenerate subspace of QF is of dimension < 2.
This completes the proof. m

LEMMA 4. Suppose that equation (19) has only finitely many Z§-cosets
of solutions. Then this number is at most

(2337“2)6(“(5—"_1)’(21\5(5).
Proof. This is Corollary 2 in [8]. m

To prove Theorems 1 to 3, we first introduce some notation. Consider
equations (1) and (3), where

F(X)=F(X1,...,Xm) € Zs[X1, ..., Xm]

is a decomposable polynomial of degree n > 3 in m > 2 variables. Let

l1,...,l, denote the linear factors of F' over G. Put
Xq X
F*(X*) = F*(X1,..., Xm, X =Xl F L
( ) ( 1 s “Xmyy ’m+1) m+1 <Xm+17 ’Xm+1 3
F(X*) = Xpli| =——, ... =1,...
z( ) m+1 l(Xm—i-l’ ’Xm_;_l)’ ? ) , 1,

5 (X)) = X,

Proof of Theorem 1. There is a one-to-one correspondence between the

solutions x = (z1,...,%m) € Z§ of (1) and the corresponding solutions
x* = (x1,...,Tm, Tm+1) With 2,41 = 1 of the equation

— : +1
(22) F*(x*)=0b inx"e€Zg" .

We give an upper bound for the number of solutions of (22) with z,,+; = 1.
By applying Lemma 3 to this equation we infer that all solutions of (22) are
contained in a union U;”Zl H; of at most two-dimensional subspaces H; of
Qm*! with

(23) w < (2 + 1D (b, ).

If dimg H; = 1 then (22) can have at most one solution contained in H;
with z,,,4+1 = 1. Hence it suffices to prove that for each two-dimensional sub-
space H of Q™! there are at most n solutions x* = (x1,...,Zm, Tmy1) of
(22) in H with z,,41 = 1. Suppose that (22) has at least two such solutions,
say x] and x5. Then they are Q-linearly independent elements of H. Then
for any solution x* = (z1,...,Zm,Tm+1) of (22) in H with z,,41 = 1, we



182 A. Bérczes and K. Gyéry

can write

(24) X" = \x] + px5

with suitable rational numbers A, ir. This implies that

(25) F(x*) = N5 (x7) +pli(x3), i=1,...,n+1,
which gives p =1 — X for i = n+ 1. From (22) we infer that

n+1
(26) b= P (x") = [t — xp)A+ 1 (x3)).

i=1
which is a polynomial of degree at most n in A. The assumption that £* has
rank m+1 over G implies that this is not a constant polynomial in A\. Hence
there are at most n possible values of A for which (26) and (24) hold. Since
2e(m + 1) = 6(m), this proves that the number of solutions of (1) does not
exceed the bound occurring in (4).

Next we derive the bound (5). Let S’ = SU{p | p prime with p|bin Zg}
and s’ the cardinality of S’. Then s’ = s 4+ wg(b). Put F'(X) = (1/b)F(X).
Then from F(X) € Zg[X1,...,Xm], b € Z§ and S C S” we deduce that
F'(X) € Zg/[X1,...,Xm). Further, the number of solutions of (1) is not
greater than the number of solutions of

(27) F'(x)=1 inxe€Zy.

However, the assumption (i) of Theorem 1 clearly holds also for F’. Hence,
by the above, equation (27) cannot have more than

n(2'7n) D g (1,m,m)
solutions. Since 1g/(1,n,m) =1 and s = s+wg(b), the proof is complete. m

Proof of Theorem 2. Let Zg be as above, and let Zg, denote the unit

group of Zg/. For every solution x = (1,...,%m) € Z§ of (3), the corre-
sponding vector X* = (x1,...,ZTm, Tm41) With z,,41 = 1 is a solution of the
equation

(28) F*(x*) €Zs inx* ezt

Further, each Z§,-coset of solutions of (28) contains at most one solution of
(3). Hence it suffices to derive an upper bound for the number of Z%,-cosets
of solutions of (28).

We may assume that the number field G is a normal extension of Q. Let
Og,s denote the integral closure of Zg/ in G. By Lemma 2 of [5] we may
assume that the linear factors lq,...,[, of F' are chosen so that

(29) l:(x*) S O*G,S” 1= 1, e,y

for each solution x* € Z% " of (28). Further, we may also assume that each
element o of Gal(G/Q) permutes the linear factors I7,... [} of F*.
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We first show that under the assumption of Theorem 2, equation (28)
has only finitely many Z%,-cosets of solutions. From Lemma 3 we again infer
that the solutions of (28) are contained in a finite union of at most two-
dimensional subspaces of Q™*!. Each one-dimensional subspace contains at
most one Zg,-coset of solutions. Hence it remains to show that each fixed
subspace H of Q™! of dimension 2 contains at most finitely many 7, -cosets
of solutions.

The linear factor I}, ; = X;,41 is a divisor of the form F*(X*) over Zg:.
Hence (28) implies that each Z7,-coset of solutions of (28) contains exactly
one x* = (x1,...,%Tm,Tm+1) With x,,41 = 1. Such a solution x* will be
called normalized.

Suppose that H contains two distinct Z7,-cosets of solutions, say x7Z5,
and x57Z¢,, where x7 and x5 are normalized. Then for each Zg,-coset of
solutions x*Z§, C H where x* is normalized we deduce again (24), (25)
and, in place of (26),

n+1
(30) I G6d —x)A+15(xh) = F*(x*) € Z.
i=1

In (24), x*,x7 and x3 are S’-integers and xJ, x5 are fixed. Hence using
Cramer’s rule one can easily see that there is a finite set S” of primes with
S” D S’ such that for each x* considered above, the corresponding value of
A is contained in Zgr». We show that the polynomial

n+1
PO = TG = x0)A + 15 (x3))
i=1
in A has at least two distinct zeros. Then, as is known (see e.g. [16], Ch. 10),
equation (30) has finitely many solutions in A.

Put k; = IF(x3)/1¥(x}) fori = 1,...,n. If k; € Q for some 7, then by (29),
ki € QNOG o = L, and so 17 (x5 — k;x]) = 0 where 0 # x5 — ;x| € QM+l
However, by our assumption, there is at least one [* € £* such that I*(a) # 0
for all 0 # a € Q™. Consequently, there exists at least one i such that
ki € Q. But s; € G, hence there is a x; which is different from x; such that
kj = 0(k;) for some o € Gal(G/Q). Then it is easy to check that

—l7(x3) /1 (x] —x3) and  —I5(x3)/15(x] — x3)
are distinct zeros of P()A). As mentioned above, this implies that (30) has
only finitely many solutions A € Zg». Then also (28) has only finitely many
Z-cosets of solutions. We can now apply Lemma 4 to (28) with r = n +1,
kE=m+1,b=1,5=25 toinfer that the number of Z§,-cosets of solutions
of (28) does not exceed
(233(n_|_ 1)2)e(m+1)(s+ws(b)+1)'

This implies the bound (6) for the number of solutions of (3). =
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Proof of Corollary 1. In view of Theorem 2 we only have to prove that
condition (ii’) implies (i) and (i’). This means that we have to prove that
under the assumption of Corollary 1 every L*-admissible subspace H of
Q™*! of dimension > 3 is £*-non-degenerate.

Suppose that H is L*-admissible and dimg H =t > 3. By our assump-
tion we have rank(L{) = m + 1, and thus we get

n
(31) X1 = 3 il (X7)

i=1
with suitable constants ¢;. Since H is L*-admissible, X,,11 does not vanish
on H. Thus there exists a basis af,...,a; of H such that the (m + 1)th
coordinate of af is 1 and the (m + 1)th coordinates of a, ..., aJ are 0. Put

X* =Yial] + ...+ Ya;.
Now X, 11 takes the form Y; on H, and we also have
BXH=Yli@)+...+Yii(a), i=1,...,n,

on H. Further, by (ii’) the coefficients of the forms Y1l (a}) + ... + Yil! (af)
are non-zero. Thus among the restrictions of the forms X,,41, {7(X¥),...,
¥ (X*) to the subspace H there are at least two which are linearly indepen-
dent. Further, by (31) there are at least three forms among these restric-
tions which are pairwise linearly independent. However, (31) implies that
the restrictions of X,,41,1],...,l;; to H are linearly dependent. Hence H is
L*-non-degenerate and Corollary 1 follows from Theorem 2. »

Proof of Theorem 3. Consider equation (3) and the corresponding equa-
tion (28) with b = 1. Then in (28) we have S’ = S. Further, for every
solution x = (z1,...,xy) of (3), x* = (z1,...,Tm, Tm+1) With zp41 = 1 is
a solution of (28). Conversely, in view of b = 1 any ZZg-coset of solutions of
(28) contains exactly one solution x* = (1, ..., Tm, Tmy1) With 2,41 = 1
and then x = (z1,...,x,,) is clearly a solution of (3). Hence the number of
solutions of (3) coincides with the number of Z§-cosets of solutions of (28).
By applying now Lemma 4 to equation (28) with r = n+1, k = m + 1,
b =1 the assertion immediately follows. m

Proof of Corollary 2. It was proved in [5] that under condition (ii) and
the other assumptions concerning equation (8), condition (i) of our Theo-
rem 1 holds. Hence Corollary 2 follows at once from Theorem 1. m

Proof of Corollary 3. We prove that under condition (iii), equation
(10) satisfies condition (ii) of Corollary 2. By (iii) there are at least three
pairwise linearly independent linear forms in the set

Lo = {h1(X1,X2),..., hn(X1, X2)}.
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We may suppose that these forms are h;(Xi,Xq2) = a; X1 + b; Xy for
i = 1,2,3. They are obviously linearly dependent. Hence Q2 is Lg-non-
degenerate, and so Corollary 3 follows at once from Corollary 2. m

Proof of Corollary 4. Tt is easy to check that condition (iii’) of Corollary
4 implies conditions (i) and (i’) of Theorem 2 with m = 2. Hence Corollary
4 follows from Theorem 2. =

Proof of Corollary 5. We keep the notation of Corollary 5. Using some
ideas from the proof of Theorem 2 in [6] we prove that equation (12) satisfies
condition (ii) of Corollary 2. Put

LX) =al"x1 + ... + a0 X,,.

Denote by Ly a maximal subset of pairwise linearly independent forms

among L(Oi) — L(()j)7 1 <i# j <mn. Since 1,ay,...,q, are linearly inde-
pendent over Q, it is easy to see that Ly has rank m. The set Lg is spanned

by the linear forms L(()l) — L(()j ), 2 < j < n. Then one can easily show that for

every subspace V of Q™ of dimension > 2 there are at least two forms among
Lél) — Lé] ), 2 < j < n, which are linearly independent on V', say Lél) - Lé2)
and L[()l) — Lég). Then clearly Lél) — LgQ), L[()l) — Lég) and L[()Q) — L(()3) are

pairwise linearly independent on V' and
(1) = 267 = (1" = 17 + (167 = 157) = 0,

which implies that condition (ii) of Corollary 2 holds. Now Corollary 5 is a
simple consequence of Corollary 2. =

Proof of Corollary 6. Keeping the above notation, put
FOX) =X+ . 4+ aD X+ AOX 0.

Denote by L a maximal subset of pairwise linearly independent forms
among l*(i)—l*(j), 1 <i < j < n. We can see as above that rank (L) = m+1.
Further, if I*()(a) — 1*U)(a) = 0 for some distinct i,j and some 0 # a €
Q™+, then 1*( (a) cannot be a primitive element of M. However, by our as-
sumptions the field M is primitive, hence it follows that 1*(?) (a) € Q, which
contradicts the fact that 1,a1,...,a, and A are linearly independent over
Q. Thus condition (ii’) of Corollary 1 holds, and Corollary 6 follows from
Corollary 1.

Proof of Corollary 7. As shown in [5], under the assumptions of Corol-
lary 7, equation (14) satisfies condition (ii) of Corollary 2. Hence Corollary 7
follows immediately from Corollary 2. =

Proof of Corollary 8. 1t is easy to see that under the assumptions of
Corollary 8, equation (15) satisfies the conditions of Corollary 1. Hence the
assertion follows. m
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For any system F of linear forms with coefficients in a number field G,
denote by Vg (F) the G-vector space generated by the forms in F.

LEMMA 5. Let F(Xo,X1,...,X3) (k > 1) be a decomposable form of
degree n with coefficients in Q which factorizes into linear factors over a
number field G. Suppose that any k + 1 linear factors in the factorization
of F are linearly independent. Denote by L a mazimal subset of pairwise
linearly independent forms among the linear factors of F. Then for each
proper non-empty subset L1 of L we have

(Vo(L1) V(L \ L)) N L # 0.
Proof. This is proved in the proof of Theorem 3 in [11]. m

LEMMA 6. Under the assumptions of Lemma 5 the following two state-
ments are equivalent:

(a) Every L-admissible subspace of GFt1 of dimension > 2 is L-non-
degenerate. R

(b) The forms in L have rank k+1 over G and for each proper non-empty
subset L1 ofE we have

(Ve(L) NVa(L\ L) N L #0.
Proof. This is the Proposition in [7]. =

Proof of Corollary 10. For convenience, we denote by Fx(Xo,..., Xm)
the resultant polynomial occurring in (16). Then for each solution Q(X) =
xoX™ + ...+ xpy of (17), 0, ..., Ty is a solution of the equation

(32) Fix(xo,...,xm) =0 inzg,...,xm € Zs.
Let Ly denote the set of linear forms
hi(X)=al"Xo+a" ' X1+ ... 4+ Xy, i=1,...,0

It is clear that any m + 1 forms in £y are linearly independent over G, the
splitting field of F over Q.

By our assumptions, P(X) has no non-constant factor of degree < m in
Q[X]. This implies that for given ¢ with 1 < ¢ < n, there are no linearly
independent vectors ai,as in Q™! such that h;(a;) = h;(az) = 0. This
means that every linear subspace of Q! of dimension > 2 is Ly-admissible.

We now show that every linear subspace V of Q™! of dimension > 2 is
Lo-non-degenerate. Our equation (32) satisfies the conditions of Lemma 5.
Hence

(Va(Lr) Ve (Lo \ L£1)) N Lo # 0

for each proper non-empty subset £1 of Ly. By Lemma 6, this is equivalent to
the fact that every Lo-admissible G-linear subspace of G™*! of dimension
> 2 is Lg-non-degenerate. However, this implies that every Lp-admissible
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linear subspace V of Q™*! of dimension > 2 is also Ly-non-degenerate.
This proves our claim above. Therefore condition (ii) of Corollary 2 holds
for equation (32), and Corollary 10 follows from Corollary 2 with the choice
m + 1 in place of m.
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