The square-free kernel of $x^{2^{n}}-a^{2^{n}}$

by
Paulo Ribenboim (Kingston, Ont.)

Dedicated to my long-time friend and collaborator Wayne McDaniel, at the occasion of his retirement

1. Introduction

A. Statement of the results. We investigate the number $\nu\left(x^{2^{n}}-a^{2^{n}}\right)$ of odd prime factors of the square-free kernel of numbers $x^{2^{n}}-a^{2^{n}}$, where $x>a \geq 1$ and $n \geq 2$. The main theorem states that (under a certain assumption) for each $a \geq 1$ the set $T_{a}=\{(x, n) \mid n \geq 2, x>a$ and the square-free kernel of $x^{2^{n}}-a^{2^{n}}$ has $n-1$ odd prime factors $\}$ is finite and effectively computable.

In the final section, we show with several examples how to determine explicitly the sets T_{a}, namely $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{10}$. As an illustration of the results obtained,

$$
\begin{aligned}
\nu\left(3^{2^{n}}-1\right) \geq n & \text { for all } n \geq 4 \\
\nu\left(7^{2^{n}}-1\right) \geq n & \text { for all } n \geq 4 \\
\nu\left(99^{2^{n}}-1\right) \geq n & \text { for all } n \geq 3
\end{aligned}
$$

and if $x \neq 3,7,99$ then

$$
\nu\left(x^{2^{n}}-1\right) \geq n \quad \text { for all } n \geq 2
$$

The proofs rely on properties of binary linearly recurring sequences and more specifically on a special case of the main theorem in Ribenboim [7].

Now we gather the concepts and facts used in this paper.
B. Binary linearly recurring sequences. Let $P>0, Q \neq 0$ be integers such that $\operatorname{gcd}(P, Q)=1$ and $D=P^{2}-4 Q \neq 0$.

Let $U_{0}=0, U_{1}=1, V_{0}=2, V_{1}=P$ and for $n \geq 2$:

$$
U_{n}=P U_{n-1}-Q U_{n-2}, \quad V_{n}=P V_{n-1}-Q V_{n-2}
$$

[^0]We also define $U_{-n}=-U_{n} / Q^{n}, V_{-n}=V_{n} / Q^{n}($ for $n>0)$; then the above formulas still hold.
$\mathcal{U}=\left(U_{n}\right)_{n}, \mathcal{V}=\left(V_{n}\right)_{n}$ are called binary linearly recurring sequences of first kind, respectively of second kind, with parameters (P, Q). We also use the notation $U_{n}(P, Q), V_{n}(P, Q)$.

For an expository account of the theory of binary linearly recurring sequences, see Chapter 1 of Ribenboim [6]. Here we limit ourselves to mention explicitly the facts which are used in what follows.

If $P=2, Q=-1$ the numbers U_{n}, V_{n} are the Pell numbers of first kind, respectively of second kind. These numbers are (for $n \geq 0$):

$$
\begin{aligned}
& U_{n}: \quad 0125122970169 \ldots, \\
& V_{n}: \quad 226143482198478 \ldots
\end{aligned}
$$

Then U_{n} is even if and only if n is even, $2 \mid V_{n}$ but $4 \nmid V_{n}$ for all n.
The symbol \square denotes any non-zero integer which is a square.
Concerning square and double square Pell numbers, we quote the following important result of Ljunggren [1] (see also Ribenboim [5]); in particular, the proof of (a) is difficult.
(1.1) For Pell numbers:
(a) $U_{n}=\square$ if and only if $n=1,7$;
(b) $U_{n}=2 \square$ if and only if $n=2$;
(c) $V_{n} \neq \square$ for all n;
(d) $V_{n}=2 \square$ if and only if $n=0,1$.
C. Pell equations. Let $F>1$ be a square-free integer, and $\varepsilon=c+d \sqrt{F}$ be the fundamental unit of the ring $\mathbb{Z}[\sqrt{F}]$, so $1<\varepsilon$. Let $Q=N(\varepsilon)=c^{2}-d^{2} F$ $= \pm 1$ be the norm of ε. We consider the equations

$$
x^{2}-F y^{2}= \pm 1 .
$$

(1.2) Solutions of $x^{2}-F y^{2}=1$. The solutions (x, y) with $x+y \sqrt{F}>0$ are given by $\left(x_{n}, y_{n}\right)$, where

$$
x_{n}+y_{n} \sqrt{F}=\varepsilon^{n}\left\{\begin{array}{l}
\text { for all } n \text { if } Q=1, \\
\text { for all even } n \text { if } Q=-1 .
\end{array}\right.
$$

(1.3) Solutions of $x^{2}-F y^{2}=-1$. The solutions (x, y) with $x+y \sqrt{F}>0$ are given by $\left(x_{n}, y_{n}\right)$, where $x_{n}+y_{n} \sqrt{F}=\varepsilon^{n}$ and $Q=-1, n$ odd. If $Q=1$ there are no solutions.

It is possible to express $\left(x_{n}, y_{n}\right)$ by means of terms of a binary linearly recurring sequence.

Let $\varepsilon=c+d \sqrt{F}$ as before, let $P=2 c, Q=N(\varepsilon)= \pm 1$ and consider the sequences \mathcal{U}, \mathcal{V} with parameters (P, Q). We note that V_{n} is even for all n. Then:
(1.4) $x_{n}=V_{n} / 2, y_{n}=d U_{n}$ for all n.

We shall require the following result (part (a) was first proved by Ljunggren [2] and a simpler proof was given by Samuel [8]; in the same paper, Samuel proved also (b)):
(1.5) Let $x>1$ and let p be any prime.
(a) If $x^{4}-1=p \square$ then $(x, p)=(3,5)$ or $(99,29)$.
(b) If $x^{4}-1=2 p \square$ then $(x, p)=(7,3)$.

In Ribenboim [7] we considered families of systems of two Pell equations. Let $F>1$ and $G>0$ be square-free integers, let f, g be non-zero integers. We denote by $(F, f \mid G, g)$ the family of systems-one for each prime p-of Pell equations
$(F, f \mid G, g)$

$$
\left\{\begin{array}{l}
x^{2}-f=F \square \\
x^{2}-g=G p \square .
\end{array}\right.
$$

We proved a theorem for certain families of the above kind. Here we shall only need the following special case:
(1.6) For each $b \geq 1$ the set of solutions (x, b) of each family below is $f i$ nite and effectively computable: $\left(2, b^{2} \mid 1,-b^{2}\right),\left(2,-b^{2} \mid 1, b^{2}\right),\left(2, b^{2} \mid 2,-b^{2}\right)$, $\left(2,-b^{2} \mid 2, b^{2}\right)$.
2. The main theorem. For every $m \geq 1$ let $\nu(m)$ denote the number of odd prime factors of the square-free kernel of m. So $\nu(m)=0$ if and only if $m=\square$ or $m=2 \square$. And $\nu(m)=1$ if and only if $m=p \square$ or $m=2 p \square$, where p is any odd prime. It is immediate that if $\operatorname{gcd}(m, n)=1$ or 2 , then $\nu(m n)=\nu(m)+\nu(n)$.

For all $a \geq 1$ and $n \geq 1$ we define the set

$$
S_{a, n}=\left\{x \mid x>a \text { and } \nu\left(x^{2^{n}}-a^{2^{n}}\right)=n-1\right\}
$$

In particular, $S_{a, 1}=\left\{x \mid x>a\right.$ and $x^{2}-a^{2}=\square$ or $\left.2 \square\right\}$.
We introduce the following notation. Let $x>a \geq 1$ and $n \geq 1$; we define the integers u_{n}, v_{n} (which depend on x, a) as follows:

$$
u_{n}=x^{2^{n}}-a^{2^{n}}, \quad v_{n}=x^{2^{n}}+a^{2^{n}}
$$

It is easy to verify the following properties. If $\operatorname{gcd}(x, a)=1$ then $\operatorname{gcd}\left(u_{n}, v_{m}\right)$ $=1$ or 2 (for all $n, m), \operatorname{gcd}\left(v_{n}, v_{m}\right)=1$ or 2 (for all $n \neq m$) and $u_{n}=$ $u_{n-1} v_{n-1}$ for all $n \geq 2$. The integers u_{n}, v_{n} may be also defined with the help of a binary linearly recurring sequence. Let $P=x+a, Q=x a$; then $\operatorname{gcd}(P, Q)=1$ and

$$
u_{n}=(x-a) \cdot U_{2^{n}}(P, Q), \quad v_{n}=V_{2^{n}}(P, Q)
$$

We shall need the following facts.
(2.1) Lemma. Let $x>a \geq 1$ and $n \geq 2$.

1) $\nu\left(x^{2^{n}}+a^{2^{n}}\right) \neq 0$.
2) $\nu\left(x^{2^{n}}-a^{2^{n}}\right)>n-2$.

Proof. 1) We show that $x^{2^{n}}+a^{2^{n}} \neq \square, 2 \square$. As $n \geq 2$, we have $x^{2^{n}}+a^{2^{n}}$ $=\left(x^{2^{n-2}}\right)^{4}+\left(a^{2^{n-2}}\right)^{4} \neq \square$ by the classical result of Fermat (see for example Ribenboim [4]). Similarly, if $x^{2^{n}}+a^{2^{n}}=\left(x^{2^{n-2}}\right)^{4}+\left(a^{2^{n-2}}\right)^{4}=2 \square$ then again $x^{2^{n-2}}=a^{2^{n-2}}$, so $x=a$ (see Ribenboim [4]) and this has been excluded.
2) We may assume without loss of generality that $\operatorname{gcd}(x, a)=1$. Indeed, if $\operatorname{gcd}(x, a)=e$, let $x=z e, a=b e$, hence $x^{2^{n}}-a^{2^{n}}=e^{2^{n}}\left(z^{2^{n}}-b^{2^{n}}\right)$ and $\nu\left(x^{2^{n}}-a^{2^{n}}\right)=\nu\left(z^{2^{n}}-b^{2^{n}}\right)$.

We prove the statement by induction on n. Let $n=2$. By the classical theorem of Fermat (see [4]), $x^{4}-a^{4} \neq \square$. Next we show that $x^{4}-a^{4} \neq 2 \square$. We quote the following theorem of Euler: If $u^{4}-v^{4}=2 w^{2}$ then $u=v, w=0$. For a proof, see Ribenboim [3], Proposition A14.5. Therefore if $x>a \geq 1$ then $x^{4}-a^{4} \neq 2 \square$.

Now, let $n \geq 3$ and assume that the statement is true for $n-1$. We have $x^{2^{n}}-a^{2^{n}}=u_{n}=u_{n-1} v_{n-1}$ with $\operatorname{gcd}\left(u_{n-1}, v_{n-1}\right)=1$ or 2 , since $\operatorname{gcd}(x, a)$ $=1$. So $\nu\left(u_{n}\right)=\nu\left(u_{n-1} v_{n-1}\right)=\nu\left(u_{n-1}\right)+\nu\left(v_{n}\right)>n-3+1=n-2$.

We introduce some sets. For all $a \geq 1, n \geq 1$ and for all e dividing a, let

$$
S_{a, n}(e)=\left\{x \in S_{a, n} \mid \operatorname{gcd}(x, a)=e\right\} .
$$

If e, e^{\prime} divide a and $e \neq e^{\prime}$ then $S_{a, n}(e) \cap S_{a, n}\left(e^{\prime}\right)=\emptyset$ and $S_{a, n}=\bigcup_{e \mid a} S_{a, n}(e)$. If $x \in S_{a, n}(e)$, let $x=z e$ and $a=b e$. Then $z>b, \operatorname{gcd}(z, b)=1$ and $\nu\left(e^{2^{n}}\left(z^{2^{n}}-b^{2^{n}}\right)\right)=n-1$, so $\nu\left(z^{2^{n}}-b^{2^{n}}\right)=n-1$, so $z \in S_{b, n}(1)$. The mapping $x \mapsto z$ is a bijection between $S_{a, n}(e)$ and $S_{b, n}(1)$; moreover the mapping is effectively computable.

Let $a \geq 1$. The set $S_{a, 1}$ is infinite. Indeed, let $\varepsilon=1+\sqrt{2}$ be the fundamental unit of $\mathbb{Z}[\sqrt{2}]$, and for every even $m \geq 1$, let $z_{m}+u_{m} \sqrt{2}=(1+\sqrt{2})^{m}$. Hence $z_{m}^{2}-2 u_{m}^{2}=1$, so if $x_{m}=a z_{m}$ then $x_{m}^{2}-a^{2}=2 \square$. So $x_{m} \in S_{a, 1}$, showing that this set is infinite.

For $n \geq 2$ we have:
(2.2) Theorem. 1) $S_{a, 2} \supseteq S_{a, 3} \supseteq \ldots$
2) $S_{a, 2}$ is a finite effectively computable set.

Proof. 1) Let $n \geq 3$; we show that $S_{a, n} \subseteq S_{a, n-1}$. It suffices to show that, for every $e \mid a, S_{a, n}(e) \subseteq S_{a, n-1}(e)$, or equivalently, for every b dividing $a, S_{b, n}(1) \subseteq S_{b, n-1}(1)$.

Let $z \in S_{b, n}(1)$, so $z>b, \operatorname{gcd}(z, b)=1$ and $\nu\left(z^{2^{n}}-b^{2^{n}}\right)=n-1$. Let $d=\operatorname{gcd}\left(z^{2^{n-1}}-b^{2^{n-1}}, z^{2^{n-1}}+b^{2^{n-1}}\right)$, so $d \mid 2 b^{2^{n-1}} ;$ but $\operatorname{gcd}(z, b)=1$, hence
$d=1$ or 2 . We may write

$$
\left\{\begin{array}{l}
z^{2^{n-1}}-b^{2^{n-1}}=k \\
z^{2^{n-1}}+b^{2^{n-1}}=h
\end{array}\right.
$$

with $\operatorname{gcd}(k, h)=1$ or $2, n-1=\nu(k h)=\nu(k)+\nu(h)$. By $(2.1), \nu(h) \geq 1$, so $\nu(k) \leq n-2$. By $(2.1), \nu(k)>n-3$, hence $\nu(k)=n-2$, showing that $z \in S_{b, n-1}(1)$.
2) To show that $S_{a, 2}$ is finite and effectively computable, it suffices to show that for every $e \mid a, S_{a, 2}(e)$ is finite and effectively computable, or equivalently, for every $b \mid a$, the set $S_{b, 2}(1)$ is finite and effectively computable.

Now $z \in S_{b, 2}(1)$ if and only if $z>b, \operatorname{gcd}(z, b)=1$ and $\nu\left(z^{4}-b^{4}\right)=1$ and this means that $z^{4}-b^{4}=p \square$ or $2 p \square$, for some odd prime p. We have $\operatorname{gcd}\left(z^{2}-b^{2}, z^{2}+b^{2}\right)=1$ or 2 , because $\operatorname{gcd}(z, b)=1$. Then the following cases may happen:

$$
\begin{align*}
& \left\{\begin{array}{l|c|c|c}
z^{2}-b^{2}=\square & p \square & 2 \square & 2 p \square \\
z^{2}+b^{2}=p \square & \square & 2 p \square & 2 \square
\end{array} \quad \text { when } z^{4}-b^{4}=p \square,\right. \\
& \text { (1) (2) (3) (4) } \\
& \left\{\begin{array}{l|c|c|c}
z^{2}-b^{2}=\square & 2 \square & p \square & 2 p \square \\
z^{2}+b^{2}=2 p \square & p \square & 2 \square & \square
\end{array}\right. \tag{5}\\
& \text { when } z^{4}-b^{4}=2 p \square .
\end{align*}
$$

In cases (1), (2), (5) and (8), z belongs to a finite and effectively computable set. By (1.6), the families $\left(2, \pm b^{2} \mid 2, \mp b^{2}\right)$ and $\left(2, \pm b^{2} \mid 1, \mp b^{2}\right)$ have a finite effectively computable set of solutions (z, p). So, in cases (3), (4), (6) and (7), z belongs to a finite and effectively computable set. This shows that $S_{b, 2}(1)$ is finite and effectively computable.

Consider the following statement about the pair of integers (b, z) :
$\left(\mathrm{H}_{b, z}\right) \quad$ If $z>b \geq 1, \operatorname{gcd}(z, b)=1$ and $\nu\left(z^{4}-b^{4}\right)=1$, there exists an effectively computable $h \geq 2$ (depending on z, b) such that $\nu\left(z^{2^{h}}+b^{2^{h}}\right)>1$.

No proof is known for this statement but, of course it holds in every numerical example computed thus far.
(2.3) Theorem. Assume that the statement $\left(\mathrm{H}_{b, z}\right)$ holds for $z>b \geq 1$ with $\operatorname{gcd}(z, b)=1$ and $\nu\left(z^{4}-b^{4}\right)=1$. Let $h \geq 2$ be the smallest integer such that $\nu\left(z^{2^{h}}+b^{2^{h}}\right)>1$. Then $z \notin S_{b, j}(1)$ for all $j \geq h+1$.

Proof. With the notation introduced, we have $\nu\left(u_{2}\right)=\nu\left(z^{4}-b^{4}\right)=1$, and

$$
z^{2^{j}}-b^{2^{j}}=u_{j}=v_{j-1} v_{j-2} \ldots v_{h+1} v_{h} v_{h-1} \ldots v_{2} u_{2}
$$

As already stated, $\operatorname{gcd}\left(u_{2}, v_{i}\right)=1$ or 2 (for all i) and $\operatorname{gcd}\left(v_{i}, v_{l}\right)=1,2$ for $i \neq l$. So

$$
\nu\left(u_{j}\right)=\nu\left(v_{j-1}\right)+\ldots+\nu\left(v_{h+1}\right)+\nu\left(v_{h}\right)+\ldots+\nu\left(v_{2}\right)+\nu\left(u_{2}\right) .
$$

By (2.1) and the hypothesis, $\nu\left(u_{j}\right) \geq(j-1-h)+2+(h-2)+1=j$, so $z \notin S_{b, j}(1)$.

If $a \geq 1$ let

$$
T_{a}=\left\{(x, n) \mid n \geq 2, x \in S_{a, n}\right\} .
$$

For every e dividing a, let

$$
T_{a}(e)=\left\{(x, n) \in T_{a} \mid \operatorname{gcd}(x, a)=e\right\} .
$$

If $e \mid a, b=a / e, z=x / e$ and $(x, n) \in T_{a}(e)$ then $(z, n) \in T_{b}(1)$. The mapping $(x, n) \mapsto(z, n)$ is a bijection between $T_{a}(e)$ and $T_{b}(1)$.
(2.4) Theorem. Let $a \geq 1$ and assume that $\left(\mathrm{H}_{b, z}\right)$ holds for every b dividing a and $z>b$. Then T_{a} is a finite and effectively computable set.

Proof. It suffices to show that for every e dividing a, the set $T_{a}(e)$ is finite and effectively computable. By the above remark it suffices to show that for every b dividing a, the set $T_{b}(1)$ is finite and effectively computable. By (2.2) the set $S_{b, 2}(1)$ is finite and effectively computable. By (2.3) and the hypothesis, for every $z_{0} \in S_{b, 2}(1)$ there exists an effectively computable integer $h \geq 2$ (depending on b and z_{0}) such that if $z_{0} \in S_{b, i}(1)$ then $i \leq h$. So the set

$$
T_{b}(1) \mid z_{0}=\left\{(z, n) \in T_{b}(1) \mid z=z_{0}\right\}
$$

is finite and effectively computable, hence

$$
T_{b}(1)=\bigcup_{z_{0} \in S_{b, 2}(1)} T_{b}(1) \mid z_{0}
$$

is also finite and effectively computable.
3. Explicit computations. For specific values of $a \geq 1$, it is possible to determine explicitly the finite effectively computable set T_{a}. This determination requires the actual solution of certain families of systems of Pell equations. We recall that if $a \geq 1$ then

$$
T_{a}=\left\{(x, n) \mid n \geq 2, x>a, \nu\left(x^{2^{n}}-a^{2^{n}}\right)=n-1\right\} .
$$

The following easy remark will be useful: If $(x, n) \in T_{a}$ then $(m x, n) \in T_{m a}$.
(3.1) Let $a=1$. Then $T_{1}=\{(3,2),(3,3),(7,2),(7,3),(99,2)\}$.

Proof. We determine explicitly $S_{1,2}=\left\{x \mid x>1, \nu\left(x^{4}-1\right)=1\right\}$. If $x^{4}-1=p \square$ for some odd prime p, then by (1.5), $(x, p)=(3,5)$ or $(99,29)$.

If $x^{4}-1=2 p \square$ for some odd prime p, then by (1.5), $(x, p)=(7,3)$. This shows that $S_{1,2}=\{3,7,99\}$.

Now

$$
\begin{aligned}
3^{4}+1=82=2 \times 41, & \text { so } \quad \nu\left(3^{4}+1\right)=1 \\
3^{8}+1=2 \times 17 \times 193, & \text { so } \quad \nu\left(3^{8}+1\right)=2 \\
7^{4}+1=2 \times 1201, & \text { so } \quad \nu\left(7^{4}+1\right)=1 \\
7^{8}+1=2 \times 17 \times 169553, & \text { so } \quad \nu\left(7^{8}+1\right)=2 \\
99^{4}+1=2 \times 2617 \times 18353, & \text { so } \quad \nu\left(99^{4}+1\right)=2
\end{aligned}
$$

Thus $(3,2),(3,3) \in T_{1},(3, j) \notin T_{1}$ for all $j \geq 4 ;(7,2),(7,3) \in T_{1}$, $(7, j) \notin T_{1}$ for all $j \geq 4 ;(99,2) \in T_{1},(99, j) \notin T_{1}$ for all $j \geq 3$.
$(3.2) T_{2}=\{(6,2),(6,3),(14,2),(14,3),(198,2)\}$.
Proof. Let $x>2$ be such that $x^{4}-2^{4}=p \square$ or $2 p \square$, for some odd prime p.

First case: x is even. Let $x=2 z$. Then $2^{4}\left(z^{4}-1\right)=p \square$ or $2 p \square$, hence $z^{4}-1=p \square$ or $2 p \square$. As stated in (3.1), $z=3,99$ or 7 , hence $x=6,198$ or 14. We have $6^{4}+2^{4}=2^{4}\left(3^{4}+1\right)$ so

$$
\nu\left(6^{4}+2^{4}\right)=\nu\left(3^{4}+1\right)=1
$$

similarly

$$
\nu\left(6^{8}+2^{8}\right)=\nu\left(3^{8}+1\right)=2
$$

In the same manner

$$
\begin{gathered}
\nu\left(14^{4}+2^{4}\right)=\nu\left(7^{4}+1\right)=1, \quad \nu\left(14^{8}+2^{8}\right)=\nu\left(7^{8}+1\right)=2 \\
\nu\left(198^{4}+2^{4}\right)=\nu\left(99^{4}+1\right)=2
\end{gathered}
$$

Altogether, only $(6,2),(6,3),(14,2),(14,3),(198,2) \in T_{2}$.
Second case: x is odd. So $\operatorname{gcd}\left(x^{2}-4, x^{2}+4\right)=1$. Since $x^{4}-2^{4}$ is odd we have $x^{4}-2^{4} \neq 2 p \square$ and there are only the following cases:

$$
\left\{\begin{array}{c|c}
x^{2}-4=\square & p \square \tag{1}\\
x^{2}+4=p \square & \square
\end{array}\right.
$$

Subcase (1): there exists $t \neq 0$ such that $x^{2}-t^{2}=4$, which is clearly impossible.

Subcase (2): there exists t such that $t^{2}-x^{2}=4$, which is again impossible.
(3.3) $T_{3}=\{(9,2),(9,3),(21,2),(21,3),(297,2),(4,2),(4,3)$,

$$
(5,2),(5,3),(5,4)\}
$$

Proof. Let $x>3$ be such that $x^{4}-3^{4}=p \square$ or $2 p \square$, for some odd prime p.

First case: $3 \mid x$. Let $x=3 z$. Then $z^{4}-1=p \square$ or $2 p \square$. As already seen, $z=3,99,7$ so $x=9,297,21$. We have, as computed in (3.1),

$$
\nu\left(9^{4}+3^{4}\right)=\nu\left(3^{4}\left(3^{4}+1\right)\right)=1, \quad \nu\left(9^{8}+3^{8}\right)=\nu\left(3^{8}\left(3^{8}+1\right)\right)=2
$$

and similarly

$$
\nu\left(21^{4}+3^{4}\right)=1, \quad \nu\left(21^{8}+3^{8}\right)=2, \quad \nu\left(297^{4}+3^{4}\right)=2 .
$$

Thus, only $(9,2),(9,3),(21,2),(21,3)$, and $(297,2)$ are in T_{3}.
Second case: $\operatorname{gcd}(x, 3)=1$. Then $d=\operatorname{gcd}\left(x^{2}-3^{2}, x^{2}+3^{2}\right)=1$ or 2 , because $d \mid 18$ but $3 \nmid d$.

Case A: $d=1$. If $x^{4}-3^{4}=p \square$ then

$$
\left\{\begin{array}{c|c}
x^{2}-3^{2}=\square & p \square \tag{1}\\
x^{2}+3^{2}=p \square & \square \\
\square
\end{array}\right.
$$

(1) is not possible, while (2) gives $(x, p)=(4,7)$.

We have $4^{4}+3^{4}=337$, prime, $\nu\left(4^{8}+3^{8}\right)=\nu(17 \times 4241)=2$. Then only $(4,2)$ and $(4,3)$ are in T_{3}.

If $x^{4}-3^{4}=2 p \square$ then x is odd. On the other hand, since $d=1$, it follows that x is even, a contradiction.

Case B: $d=2$. If $x^{4}-3^{4}=p \square$ then

$$
\left\{\begin{array}{c|c}
x^{2}-3^{2}=2 \square & 2 p \square \tag{1}\\
x^{2}+3^{2}=2 p \square & 2 \square
\end{array}\right.
$$

Both cases are impossible; this is seen modulo 3:

$$
1 \equiv x^{2} \mp 3^{2}=2 \square(\bmod 3) .
$$

If $x^{4}-3^{4}=2 p \square$ we have one of the following cases:

$$
\left\{\begin{array}{c|c|c|c}
x^{2}-3^{2}=\square & 2 \square & p \square & 2 p \square \tag{1}\\
x^{2}+3^{2}=2 p \square & p \square & 2 \square & \square
\end{array}\right.
$$

(2) (3)

In (1) we have $(x, p)=(5,17)$. Since $\nu\left(5^{4}+3^{4}\right)=\nu(2 \times 353)=1$, $\nu\left(5^{8}+3^{8}\right)=\nu(2 \times 198593)=1$ and $\nu\left(5^{16}+3^{16}\right)=\nu(2 \times 97 \times 786757409)=2$, we have only $(5,2),(5,3),(5,4) \in T_{3}$.

In (2), x is odd, so $2 \equiv x^{2}+3^{2}=p \square(\bmod 4)$, which is impossible.
In (3), since $3 \nmid x$ we have $1 \equiv x^{2}+3^{2} \equiv 2 \square(\bmod 3)$ and this is impossible.
(4) is also impossible.

The reader may wish to show, with the same method:
(3.4) $T_{5}=\{(15,2),(15,3),(35,2),(35,3),(495,2),(13,2),(13,3)\}$.
(3.5) $T_{4}=\{(12,2),(12,3),(28,2),(28,3),(396,2),(5,2),(5,3)\}$.
$(3.6) T_{6}=\{(18,2),(18,3),(42,2),(42,3),(594,2),(8,2),(8,3)$, $(10,2),(10,3),(10,4)\}$.
(3.7) $T_{10}=\{(30,2),(30,3),(70,2),(70,3),(990,2),(26,2),(26,3)\}$.

References

[1] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske Vid. Akad. Oslo 1942, no. 5, 27 pp.
[2] -, Some remarks on the diophantine equations $x^{2}-D y^{4}=1$ and $x^{4}-D y^{2}=1$, J. London Math. Soc. 41 (1965), 42-44.
[3] P. Ribenboim, Catalan's Conjecture, Academic Press, Boston, 1994.
[4] -, Fermat's Last Theorem for Amateurs, Springer, New York, 1999.
[5] -, Pell numbers: squares and cubes, Publ. Math. Debrecen 54 (1999), 131-152.
[6] -, My Numbers, My Friends (Chapter 1: The Fibonacci numbers and the Arctic Ocean), Springer, New York, 2000.
[7] -, Solving infinite families of systems of Pell equations with binary recurring sequences, preprint, 2001.
[8] P. Samuel, Résultats élémentaires sur certaines équations diophantiennes, preprint, 2000.

Department of Mathematics and Statistics
Queen's University
Kingston, Ontario
Canada K7L 3N6

[^0]: 2000 Mathematics Subject Classification: Primary 11B37; Secondary 11A05, 11B39.

