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1. Introduction

A. Statement of the results. We investigate the number ν(x2n − a2n) of
odd prime factors of the square-free kernel of numbers x2n − a2n , where
x > a ≥ 1 and n ≥ 2. The main theorem states that (under a certain
assumption) for each a ≥ 1 the set Ta = {(x, n) | n ≥ 2, x > a and the
square-free kernel of x2n − a2n has n − 1 odd prime factors} is finite and
effectively computable.

In the final section, we show with several examples how to determine
explicitly the sets Ta, namely T1, T2, T3, T4, T5, T6, T10. As an illustration of
the results obtained,

ν(32n − 1) ≥ n for all n ≥ 4,

ν(72n − 1) ≥ n for all n ≥ 4,

ν(992n − 1) ≥ n for all n ≥ 3,

and if x 6= 3, 7, 99 then

ν(x2n − 1) ≥ n for all n ≥ 2.

The proofs rely on properties of binary linearly recurring sequences and
more specifically on a special case of the main theorem in Ribenboim [7].

Now we gather the concepts and facts used in this paper.

B. Binary linearly recurring sequences. Let P > 0, Q 6= 0 be integers
such that gcd(P,Q) = 1 and D = P 2 − 4Q 6= 0.

Let U0 = 0, U1 = 1, V0 = 2, V1 = P and for n ≥ 2:

Un = PUn−1 −QUn−2, Vn = PVn−1 −QVn−2.
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We also define U−n = −Un/Qn, V−n = Vn/Q
n (for n > 0); then the above

formulas still hold.
U = (Un)n, V = (Vn)n are called binary linearly recurring sequences of

first kind , respectively of second kind , with parameters (P,Q). We also use
the notation Un(P,Q), Vn(P,Q).

For an expository account of the theory of binary linearly recurring se-
quences, see Chapter 1 of Ribenboim [6]. Here we limit ourselves to mention
explicitly the facts which are used in what follows.

If P = 2, Q = −1 the numbers Un, Vn are the Pell numbers of first kind,
respectively of second kind. These numbers are (for n ≥ 0):

Un : 0 1 2 5 12 29 70 169 . . . ,

Vn : 2 2 6 14 34 82 198 478 . . .

Then Un is even if and only if n is even, 2 |Vn but 4 -Vn for all n.
The symbol � denotes any non-zero integer which is a square.
Concerning square and double square Pell numbers, we quote the follow-

ing important result of Ljunggren [1] (see also Ribenboim [5]); in particular,
the proof of (a) is difficult.

(1.1) For Pell numbers:

(a) Un = � if and only if n = 1, 7;
(b) Un = 2� if and only if n = 2;
(c) Vn 6= � for all n;
(d) Vn = 2� if and only if n = 0, 1.

C. Pell equations. Let F > 1 be a square-free integer, and ε = c+d
√
F be

the fundamental unit of the ring Z[
√
F ], so 1 < ε. Let Q = N(ε) = c2−d2F

= ±1 be the norm of ε. We consider the equations

x2 − Fy2 = ±1.

(1.2) Solutions of x2−Fy2 = 1. The solutions (x, y) with x+ y
√
F > 0

are given by (xn, yn), where

xn + yn
√
F = εn

{
for all n if Q = 1,
for all even n if Q = −1.

(1.3) Solutions of x2−Fy2 = −1. The solutions (x, y) with x+y
√
F > 0

are given by (xn, yn), where xn + yn
√
F = εn and Q = −1, n odd. If Q = 1

there are no solutions.

It is possible to express (xn, yn) by means of terms of a binary linearly
recurring sequence.

Let ε = c+d
√
F as before, let P = 2c, Q = N(ε) = ±1 and consider the

sequences U , V with parameters (P,Q). We note that Vn is even for all n.
Then:
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(1.4) xn = Vn/2, yn = dUn for all n.

We shall require the following result (part (a) was first proved by Ljung-
gren [2] and a simpler proof was given by Samuel [8]; in the same paper,
Samuel proved also (b)):

(1.5) Let x > 1 and let p be any prime.

(a) If x4 − 1 = p� then (x, p) = (3, 5) or (99, 29).
(b) If x4 − 1 = 2p� then (x, p) = (7, 3).

In Ribenboim [7] we considered families of systems of two Pell equations.
Let F > 1 and G > 0 be square-free integers, let f , g be non-zero integers.
We denote by (F, f |G, g) the family of systems—one for each prime p—of
Pell equations

(F, f |G, g)
{
x2 − f = F�,
x2 − g = Gp�.

We proved a theorem for certain families of the above kind. Here we shall
only need the following special case:

(1.6) For each b ≥ 1 the set of solutions (x, b) of each family below is fi-
nite and effectively computable: (2, b2 | 1,−b2), (2,−b2 | 1, b2), (2, b2 | 2,−b2),
(2,−b2 | 2, b2).

2. The main theorem. For every m ≥ 1 let ν(m) denote the number
of odd prime factors of the square-free kernel of m. So ν(m) = 0 if and only
if m = � or m = 2�. And ν(m) = 1 if and only if m = p� or m = 2p�,
where p is any odd prime. It is immediate that if gcd(m,n) = 1 or 2, then
ν(mn) = ν(m) + ν(n).

For all a ≥ 1 and n ≥ 1 we define the set

Sa,n = {x | x > a and ν(x2n − a2n) = n− 1}.
In particular, Sa,1 = {x | x > a and x2 − a2 = � or 2�}.

We introduce the following notation. Let x > a ≥ 1 and n ≥ 1; we define
the integers un, vn (which depend on x, a) as follows:

un = x2n − a2n , vn = x2n + a2n .

It is easy to verify the following properties. If gcd(x, a) = 1 then gcd(un, vm)
= 1 or 2 (for all n,m), gcd(vn, vm) = 1 or 2 (for all n 6= m) and un =
un−1vn−1 for all n ≥ 2. The integers un, vn may be also defined with the
help of a binary linearly recurring sequence. Let P = x + a, Q = xa; then
gcd(P,Q) = 1 and

un = (x− a) · U2n(P,Q), vn = V2n(P,Q).

We shall need the following facts.
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(2.1) Lemma. Let x > a ≥ 1 and n ≥ 2.

1) ν(x2n + a2n) 6= 0.
2) ν(x2n − a2n) > n− 2.

Proof. 1) We show that x2n +a2n 6= �, 2�. As n ≥ 2, we have x2n +a2n

= (x2n−2
)4 +(a2n−2

)4 6= � by the classical result of Fermat (see for example
Ribenboim [4]). Similarly, if x2n+a2n = (x2n−2

)4+(a2n−2
)4 = 2� then again

x2n−2
= a2n−2

, so x = a (see Ribenboim [4]) and this has been excluded.
2) We may assume without loss of generality that gcd(x, a) = 1. Indeed,

if gcd(x, a) = e, let x = ze, a = be, hence x2n − a2n = e2n(z2n − b2n) and
ν(x2n − a2n) = ν(z2n − b2n).

We prove the statement by induction on n. Let n = 2. By the classical
theorem of Fermat (see [4]), x4 − a4 6= �. Next we show that x4 − a4 6= 2�.
We quote the following theorem of Euler: If u4−v4 = 2w2 then u = v, w = 0.
For a proof, see Ribenboim [3], Proposition A14.5. Therefore if x > a ≥ 1
then x4 − a4 6= 2�.

Now, let n ≥ 3 and assume that the statement is true for n−1. We have
x2n − a2n = un = un−1vn−1 with gcd(un−1, vn−1) = 1 or 2, since gcd(x, a)
= 1. So ν(un) = ν(un−1vn−1) = ν(un−1) + ν(vn) > n− 3 + 1 = n− 2.

We introduce some sets. For all a ≥ 1, n ≥ 1 and for all e dividing a, let

Sa,n(e) = {x ∈ Sa,n | gcd(x, a) = e}.
If e, e′ divide a and e 6= e′ then Sa,n(e)∩Sa,n(e′) = ∅ and Sa,n =

⋃
e|a Sa,n(e).

If x ∈ Sa,n(e), let x = ze and a = be. Then z > b, gcd(z, b) = 1 and
ν(e2n(z2n − b2n)) = n − 1, so ν(z2n − b2n) = n − 1, so z ∈ Sb,n(1). The
mapping x 7→ z is a bijection between Sa,n(e) and Sb,n(1); moreover the
mapping is effectively computable.

Let a ≥ 1. The set Sa,1 is infinite. Indeed, let ε = 1 +
√

2 be the funda-
mental unit of Z[

√
2], and for every even m ≥ 1, let zm+um

√
2 = (1+

√
2)m.

Hence z2
m − 2u2

m = 1, so if xm = azm then x2
m − a2 = 2�. So xm ∈ Sa,1,

showing that this set is infinite.
For n ≥ 2 we have:

(2.2) Theorem. 1) Sa,2 ⊇ Sa,3 ⊇ . . .
2) Sa,2 is a finite effectively computable set.

Proof. 1) Let n ≥ 3; we show that Sa,n ⊆ Sa,n−1. It suffices to show
that, for every e | a, Sa,n(e) ⊆ Sa,n−1(e), or equivalently, for every b dividing
a, Sb,n(1) ⊆ Sb,n−1(1).

Let z ∈ Sb,n(1), so z > b, gcd(z, b) = 1 and ν(z2n − b2n) = n − 1. Let
d = gcd(z2n−1 − b2n−1

, z2n−1
+ b2

n−1
), so d | 2b2n−1

; but gcd(z, b) = 1, hence
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d = 1 or 2. We may write
{
z2n−1 − b2n−1

= k,
z2n−1

+ b2
n−1

= h,

with gcd(k, h) = 1 or 2, n − 1 = ν(kh) = ν(k) + ν(h). By (2.1), ν(h) ≥ 1,
so ν(k) ≤ n − 2. By (2.1), ν(k) > n − 3, hence ν(k) = n − 2, showing that
z ∈ Sb,n−1(1).

2) To show that Sa,2 is finite and effectively computable, it suffices to
show that for every e | a, Sa,2(e) is finite and effectively computable, or equiv-
alently, for every b | a, the set Sb,2(1) is finite and effectively computable.

Now z ∈ Sb,2(1) if and only if z > b, gcd(z, b) = 1 and ν(z4 − b4) = 1
and this means that z4 − b4 = p� or 2p�, for some odd prime p. We have
gcd(z2 − b2, z2 + b2) = 1 or 2, because gcd(z, b) = 1. Then the following
cases may happen:

z2 − b2 = � p� 2� 2p�
{

when z4 − b4 = p�,
z2 + b2 = p� � 2p� 2�

(1) (2) (3) (4)

z2 − b2 = � 2� p� 2p�
{

when z4 − b4 = 2p�.
z2 + b2 = 2p� p� 2� �

(5) (6) (7) (8)

In cases (1), (2), (5) and (8), z belongs to a finite and effectively com-
putable set. By (1.6), the families (2,±b2 | 2,∓b2) and (2,±b2 | 1,∓b2) have
a finite effectively computable set of solutions (z, p). So, in cases (3), (4),
(6) and (7), z belongs to a finite and effectively computable set. This shows
that Sb,2(1) is finite and effectively computable.

Consider the following statement about the pair of integers (b, z):

(Hb,z) If z > b ≥ 1, gcd(z, b) = 1 and ν(z4 − b4) = 1, there exists
an effectively computable h ≥ 2 (depending on z, b) such that
ν(z2h + b2

h

) > 1.

No proof is known for this statement but, of course it holds in every
numerical example computed thus far.

(2.3) Theorem. Assume that the statement (Hb,z) holds for z > b ≥ 1
with gcd(z, b) = 1 and ν(z4− b4) = 1. Let h ≥ 2 be the smallest integer such
that ν(z2h + b2

h

) > 1. Then z 6∈ Sb,j(1) for all j ≥ h+ 1.

Proof. With the notation introduced, we have ν(u2) = ν(z4 − b4) = 1,
and

z2j − b2j = uj = vj−1vj−2 . . . vh+1vhvh−1 . . . v2u2.
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As already stated, gcd(u2, vi) = 1 or 2 (for all i) and gcd(vi, vl) = 1, 2 for
i 6= l. So

ν(uj) = ν(vj−1) + . . .+ ν(vh+1) + ν(vh) + . . .+ ν(v2) + ν(u2).

By (2.1) and the hypothesis, ν(uj) ≥ (j − 1 − h) + 2 + (h − 2) + 1 = j, so
z 6∈ Sb,j(1).

If a ≥ 1 let
Ta = {(x, n) | n ≥ 2, x ∈ Sa,n}.

For every e dividing a, let

Ta(e) = {(x, n) ∈ Ta | gcd(x, a) = e}.
If e | a, b = a/e, z = x/e and (x, n) ∈ Ta(e) then (z, n) ∈ Tb(1). The mapping
(x, n) 7→ (z, n) is a bijection between Ta(e) and Tb(1).

(2.4) Theorem. Let a ≥ 1 and assume that (Hb,z) holds for every b
dividing a and z > b. Then Ta is a finite and effectively computable set.

Proof. It suffices to show that for every e dividing a, the set Ta(e) is
finite and effectively computable. By the above remark it suffices to show
that for every b dividing a, the set Tb(1) is finite and effectively computable.
By (2.2) the set Sb,2(1) is finite and effectively computable. By (2.3) and
the hypothesis, for every z0 ∈ Sb,2(1) there exists an effectively computable
integer h ≥ 2 (depending on b and z0) such that if z0 ∈ Sb,i(1) then i ≤ h.
So the set

Tb(1)|z0 = {(z, n) ∈ Tb(1) | z = z0}
is finite and effectively computable, hence

Tb(1) =
⋃

z0∈Sb,2(1)

Tb(1)|z0

is also finite and effectively computable.

3. Explicit computations. For specific values of a ≥ 1, it is possible
to determine explicitly the finite effectively computable set Ta. This deter-
mination requires the actual solution of certain families of systems of Pell
equations. We recall that if a ≥ 1 then

Ta = {(x, n) | n ≥ 2, x > a, ν(x2n − a2n) = n− 1}.
The following easy remark will be useful: If (x, n) ∈ Ta then (mx,n) ∈ Tma.

(3.1) Let a = 1. Then T1 = {(3, 2), (3, 3), (7, 2), (7, 3), (99, 2)}.
Proof. We determine explicitly S1,2 = {x | x > 1, ν(x4 − 1) = 1}. If

x4 − 1 = p� for some odd prime p, then by (1.5), (x, p) = (3, 5) or (99, 29).
If x4−1 = 2p� for some odd prime p, then by (1.5), (x, p) = (7, 3). This

shows that S1,2 = {3, 7, 99}.
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Now
34 + 1 = 82 = 2× 41, so ν(34 + 1) = 1,

38 + 1 = 2× 17× 193, so ν(38 + 1) = 2,

74 + 1 = 2× 1201, so ν(74 + 1) = 1,

78 + 1 = 2× 17× 169553, so ν(78 + 1) = 2,

994 + 1 = 2× 2617× 18353, so ν(994 + 1) = 2.

Thus (3, 2), (3, 3) ∈ T1, (3, j) 6∈ T1 for all j ≥ 4; (7, 2), (7, 3) ∈ T1,
(7, j) 6∈ T1 for all j ≥ 4; (99, 2) ∈ T1, (99, j) 6∈ T1 for all j ≥ 3.

(3.2) T2 = {(6, 2), (6, 3), (14, 2), (14, 3), (198, 2)}.
Proof. Let x > 2 be such that x4 − 24 = p� or 2p�, for some odd

prime p.

First case: x is even. Let x = 2z. Then 24(z4 − 1) = p� or 2p�, hence
z4 − 1 = p� or 2p�. As stated in (3.1), z = 3, 99 or 7, hence x = 6, 198 or
14. We have 64 + 24 = 24(34 + 1) so

ν(64 + 24) = ν(34 + 1) = 1;

similarly
ν(68 + 28) = ν(38 + 1) = 2.

In the same manner

ν(144 + 24) = ν(74 + 1) = 1, ν(148 + 28) = ν(78 + 1) = 2,

ν(1984 + 24) = ν(994 + 1) = 2.

Altogether, only (6, 2), (6, 3), (14, 2), (14, 3), (198, 2) ∈ T2.

Second case: x is odd. So gcd(x2 − 4, x2 + 4) = 1. Since x4 − 24 is odd
we have x4 − 24 6= 2p� and there are only the following cases:

x2 − 4 = � p�
{

x2 + 4 = p� �
(1) (2)

Subcase (1): there exists t 6= 0 such that x2 − t2 = 4, which is clearly
impossible.

Subcase (2): there exists t such that t2 − x2 = 4, which is again impos-
sible.

(3.3) T3 = {(9, 2), (9, 3), (21, 2), (21, 3), (297, 2), (4, 2), (4, 3),
(5, 2), (5, 3), (5, 4)}.

Proof. Let x > 3 be such that x4 − 34 = p� or 2p�, for some odd
prime p.
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First case: 3 |x. Let x = 3z. Then z4− 1 = p� or 2p�. As already seen,
z = 3, 99, 7 so x = 9, 297, 21. We have, as computed in (3.1),

ν(94 + 34) = ν(34(34 + 1)) = 1, ν(98 + 38) = ν(38(38 + 1)) = 2

and similarly

ν(214 + 34) = 1, ν(218 + 38) = 2, ν(2974 + 34) = 2.

Thus, only (9, 2), (9, 3), (21, 2), (21, 3), and (297, 2) are in T3.

Second case: gcd(x, 3) = 1. Then d = gcd(x2 − 32, x2 + 32) = 1 or 2,
because d | 18 but 3 - d.

Case A: d = 1. If x4 − 34 = p� then

x2 − 32 = � p�
{

x2 + 32 = p� �
(1) (2)

(1) is not possible, while (2) gives (x, p) = (4, 7).
We have 44 + 34 = 337, prime, ν(48 + 38) = ν(17× 4241) = 2. Then only

(4, 2) and (4, 3) are in T3.
If x4−34 = 2p� then x is odd. On the other hand, since d = 1, it follows

that x is even, a contradiction.

Case B : d = 2. If x4 − 34 = p� then

x2 − 32 = 2� 2p�
{

x2 + 32 = 2p� 2�
(1) (2)

Both cases are impossible; this is seen modulo 3:

1 ≡ x2 ∓ 32 = 2� (mod 3).

If x4 − 34 = 2p� we have one of the following cases:

x2 − 32 = � 2� p� 2p�
{

x2 + 32 = 2p� p� 2� �
(1) (2) (3) (4)

In (1) we have (x, p) = (5, 17). Since ν(54 + 34) = ν(2 × 353) = 1,
ν(58 +38) = ν(2×198593) = 1 and ν(516 +316) = ν(2×97×786757409) = 2,
we have only (5, 2), (5, 3), (5, 4) ∈ T3.

In (2), x is odd, so 2 ≡ x2 + 32 = p� (mod 4), which is impossible.
In (3), since 3 -x we have 1 ≡ x2+32 ≡ 2� (mod 3) and this is impossible.
(4) is also impossible.
The reader may wish to show, with the same method:

(3.4) T5 = {(15, 2), (15, 3), (35, 2), (35, 3), (495, 2), (13, 2), (13, 3)}.
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(3.5) T4 = {(12, 2), (12, 3), (28, 2), (28, 3), (396, 2), (5, 2), (5, 3)}.
(3.6) T6 = {(18, 2), (18, 3), (42, 2), (42, 3), (594, 2), (8, 2), (8, 3),

(10, 2), (10, 3), (10, 4)}.
(3.7) T10 = {(30, 2), (30, 3), (70, 2), (70, 3), (990, 2), (26, 2), (26, 3)}.
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