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Theta-transforms and even zeta functions
of Siegel modular forms
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Anatoli Andrianov (St. Petersburg)

Introduction. We consider (holomorphic) Siegel modular forms on the
upper half-plane

H = Hn = {Z = X + iY ∈ Cnn | tZ = Z, Y > 0}
of genus n such that

F ((AZ +B)(CZ +D)−1) = det(CZ +D)kF (Z)

for every matrix
(
A
C
B
D

)
of the group

(0.1) K = Γn0 (q) =
{(

A B
C D

)
∈ Spn(Z)

∣∣∣∣C ≡ 0 (mod q)
}
,

where n, k, and q are positive integers. All such functions form a finite-
dimensional linear space M = Mn

k (q) over the field C of complex numbers.
Each function of the space has Fourier expansion of the form

(0.2) F (Z) =
∑

A∈E, A≥0

f(A)e(AZ) (e(S) = exp(πi · trace(S))),

where E = En is the set of all integral symmetric matrices of order n with
even entries on the principal diagonal (even matrices of order n), with con-
stant Fourier coefficients f(A) satisfying the relations

(0.3) f( tUAU) = (detU)kf(A) (A ∈ E, U ∈ GLn(Z)).

The Fourier series converges absolutely on the upper half-plane and con-
verges uniformly when Y = =Z ≥ ε1n with ε > 0.
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For a given even positive definite matrix Q of order n and a Dirichlet
character ψ, we associate to the form F the Dirichlet series

(0.4) DF (s, ψ,Q) =
∑

M∈Λ\∆

ψ(detM)f(MQ tM)
(detM)s+k−1 ,

where

(0.5) Λ = Λn = SLn(Z), ∆ = ∆n = {M ∈ Znn | detM > 0}.

The series converges absolutely and uniformly in a right half-plane of the
complex variable s. We call the Dirichlet series (0.4) a theta-transform of the
modular form F , since it can be obtained as the result of an integration of the
product of F with a suitable theta series of genus n of the quadratic form
with matrix Q. The corresponding integral representation, in particular,
allows one to investigate analytical properties of the theta-transforms, which
we do not touch in this work (see [A-K(78)] and [Shi(94)]).

On the other hand, it turns out that the theta-transforms of a common
eigenfunction of a certain family of Hecke operators can be expressed in
terms of the Euler product constructed by means of the corresponding eigen-
values, the so-called even zeta function of F , and Dirichlet L-functions. The
most general results in this direction were obtained by G. Shimura [Shi(94)],
who considered automorphic forms defined on the symplectic groups over
totally real algebraic number fields. Shimura’s general results are formulated
in terms of common eigenfunctions of Hecke operators, but the question of
existence of such functions, for n > 1 and q > 1, was left open.

Returning to the groups Γn0 (q), it is well known that the subspace
N = Nn

k (q) of cusp forms of M has a basis consisting of common eigenfunc-
tions for all regular Hecke operators, i.e. operators whose multipliers are
coprime with q (see, for example, [An(87), Theorem 4.1.8]). The questions
of diagonalization of singular Hecke operators, i.e. operators with multipli-
ers dividing some power of q, were considered in [A-L(70)] for n = 1, and
in [An(99)] for n = 2. In particular, it was proved in the last paper that
a number of singular Hecke operators together with regular operators can
be simultaneously diagonalized on certain invariant subspaces, subspaces of
“new forms”, of the spaces of cusp forms N2

k(q). In the present work we prove
that, for square-free levels q, the list of Hecke operators diagonalizable on
new forms includes also all operators sufficient for Euler factorization of the
corresponding theta-transforms. This is done in Section 3 (Theorem 3.1). In
Section 2 we extend our earlier techniques of Euler factorization developed
in [An(78)] and [An(87), §4.3] for prime numbers not dividing the level q
in order to include also prime divisors of the level. Our elementary method
leads to more explicit and concrete formulas than the general Shimura ap-
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proach and can be useful for further applications. Section 1 contains general
information on Hecke operators.

I am grateful to Professor Eberhard Freitag of Heidelberg University,
where this work was done and reported, for his kind invitation to participate
in the work of the Heidelberg–Mannheim research group “Arithmetik” and
for useful discussions on automorphic forms and related topics.

Notation. We fix the letters N, Z, Q, and C, as usual, for the set of
positive rational integers, the ring of rational integers, the field of rational
numbers, and the field of complex numbers, respectively.

If A is a set, Amn denotes the set of all m× n matrices with elements in
A. If A is a ring with the identity element, 1n and 0n denote the identity
and zero elements of the ring Ann. The transpose of a matrix M is denoted
by tM . For two matrices S and N of appropriate sizes we set

S[N ] = tNSN.

The numbers k and q for weight and level are arbitrary positive integers
fixed throughout the work; the genus n is an arbitrary fixed positive integer,
except in Theorem 3.1.

1. Hecke–Shimura rings and Hecke operators. For more details
see [An(87), Chapters 3, 4] or [An(99), Chapter 1]. Let S be a multiplicative
semigroup and G a subgroup of S such that each double coset GσG with
σ ∈ S is a finite union of left cosets Gτ of S modulo G. We then denote
by H(G;S) the Hecke–Shimura ring of the pair G,S over Q. We consider
elements of the ring either as finite formal Q-linear combinations of symbols
(σ) = (σ)G bijectively corresponding to double cosets GσG ⊂ S, or after
replacing each (σ) by the formal sum

(σ) =
∑

τ∈G\GσG
(Gτ)

of symbols (Gτ) bijectively corresponding to different left cosets Gτ con-
tained in GσG, as the corresponding formal linear combinations of the sym-
bols associated to the left cosets. We shall call the symbols (σ) = (σ)G and
(Gτ) double classes and left classes (of S modulo G), respectively.

In order to construct the required Hecke–Shimura rings we take the group
K defined by (0.1) and its triangular subgroup

Γ0 = Γn0 =
{(

A B
0n D

)
∈ Spn(Z)

}
.

Then for the corresponding semigroups one can take the semigroup

Σ=Σn =
{
M ∈Z2n

2n

∣∣∣∣ tM

(
0n 1n
−1n 0n

)
M =µ(M)

(
0n 1n
−1n 0n

)
, µ(M)> 0

}
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of integral symplectic matrices of order n with positive multipliers µ(M)
and its triangular subsemigroup

Σ0 = Σn
0 =

{(
A B
0n D

)
∈ Σn

}
.

The pairs K, Σ and K0, Σ0 satisfy the necessary conditions and one can
define the corresponding Hecke–Shimura rings

H = Hn(q) = H(K,Σ) and H0 = Hn0 = H(K0, Σ0).

The whole rings H and H0 are mainly used as playgrounds, where their
various subrings can meet together. We recall that a double class (M) of H
is called regular (resp., singular) if the multiplier µ(M) is coprime with q
(resp., divides a power of q); the class is called reducible if each left coset
KM contained in the double coset KMK has a representative in the semi-
group Σ0. The set of all finite linear combinations of regular (resp., singular,
reducible) double classes obviously form a subring of H, called, respectively,
the regular, singular , and reducible subring (see [An(99), §1.6]).

It is easy to see that, for each element T =
∑
i ci(KMi) of the re-

ducible subring Hred of H with all Mi in Σ0, the linear combination i(T ) =∑
i ci(Γ0Mi) is independent of the choice of Mi ∈ KMi∩Σ0, belongs to H0,

and the map

(1.1) i : Hred → H0

is a homomorphic embedding, the parabolic embedding of the ring Hred.
The Hecke–Shimura rings naturally act on the corresponding linear

spaces by Hecke operators. First, for matrices M =
(
A
C
B
D

)
of Σ, we de-

fine the Petersson operators of weight k on complex-valued functions on the
upper half-plane H by

‖M = ‖Mk : F → F‖M
= µ(M)nk−n(n+1)/2 det(CZ +D)−kF ((AZ +B)(CZ +D)−1).

The Petersson operators satisfy

(1.2) ‖(MM ′) = ‖M‖M ′ and F‖M = F if F ∈M and M ∈ K.
As a representation space for the ring H, we shall take the space of modular
forms M = Mn

k (q), and for the ring H0 the space F = Fnk of all absolutely
convergent Fourier series on H = Hn of the form (0.2) with constant Fourier
coefficients satisfying (0.3). For F in M (resp., F) and T =

∑
i ci(KMi) ∈ H

(resp., T =
∑
i ci(K0Mi) ∈ H0) we set

(1.3) F‖T = F‖kT =
∑

i

ciF‖Mi

with the Petersson operators ‖Mi. It follows from (1.2) that the opera-
tors (1.3), called Hecke operators, are independent of the choice of the rep-
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resentatives Mi ∈ KMi, map the corresponding spaces into themselves, and
satisfy ‖TT ′ = ‖T‖T ′. It is clear that M ⊂ F, and this embedding is com-
patible with the embedding (1.1) of the Hecke–Shimura rings in the sense
that

F‖T = F‖i(T ) (∀F ∈M and T ∈ Hred).

Note also that the subspace N of cusp forms of M is invariant under all the
Hecke operators of H.

If F in M (resp., F) is a function with Fourier coefficients f(A)
(A ∈ En, A ≥ 0), and T ∈ H (resp., T ∈ H0), we denote by (f‖T )(A)
the Fourier coefficients of the function F‖T . The map

(1.4) T : f 7→ f‖T
is clearly a linear representation of the corresponding ring, the representation
on Fourier coefficients.

In the forthcoming computations, it will be convenient to use certain
extensions of the rings H and H0 rather than the rings themselves. We recall
that if A is an associative ring with unity and S is a multiplicative subset
of the center of A containing the unity and not containing zero divisors,
then by using the standart procedure of localization with respect to the
multiplicative system S, one can construct the least extension A[S−1] of A
where all elements of S are invertible.

The following scalar double classes of H (resp., H0):

(1.5) [a] = (a12n)K (resp., (a12n)Γ0) (a ∈ N)

clearly satisfy the relations

[ab] = [a][b], [a](M) = (aM) (∀a ∈ N, M ∈ Σ (resp., Σ0)),

and therefore form a multiplicative system with the required properties. We
denote by

(1.6) H′ = H[[a]−1 | a ∈ N], H′0 = H0[[a]−1 | a ∈ N]

the corresponding localizations. Similarly, one can consider localizations of
subrings of H and H0 with respect to multiplicative subsystems of scalar
classes contained in the subrings. We shall refer to the localizations as the
quotient rings, or just quotients. Note that the scalar classes have the fol-
lowing simple action on Fourier coefficients of functions in M and F:

(1.7) (f‖[a])(A) = an(k−n−1)f(A) (a ∈ N, A ∈ E, A ≥ 0).

2. Euler factorization of theta-transforms. In this section we de-
duce Euler factorizations of the theta-transforms (0.4) of a modular form F
of the space M = Mn

k (q), assuming that F is an eigenfunction for an explicit
family of Hecke operators.
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Lemma 2.1. Let C+ (resp., C−) be the set of all linear combinations,
contained in H0, of double classes modulo Γ0 of matrices of the form

(2.1) M = U(µ,D) =
(
µ tD−1 0n

0n D

)
∈ Σ0

satisfying the conditions detD > 0 and

(2.2) µ | d(D)2 (resp., l(D)2 |µ),

where d(D) is the greatest common divisor of the elements of D, and l(D) is
the least positive integer such that the matrix l(D)D−1 is integral. Then C+
(resp., C−) is a commutative subring of H0. The double classes of the ma-
trices of the form (2.1) satisfying (2.2) act on Fourier coefficients f of
functions in F by the formulas

(f‖(M))(A) = µnk−n(n+1)(detD)n+1−k ∑

D′∈Λ\ΛDΛ
f(µ−1A[tD′])

(resp.,

(2.3) (f‖(M))(A) = µnk−n(n+1)/2(detD)−k
∑

D′∈Λ\ΛDΛ
A[tD′]∈µE

f(µ−1A[ tD′])),

where Λ = SLn(Z).

Proof. See [An(87), Proposition 3.4.4, Theorem 3.4.7, and Lemma
4.2.7].

Lemma 2.2. For a = 1, 2, . . . , set

(2.4) t+(a) = tn+(a) =
∑

D∈Λ\∆/Λ
detD=a

[a]−1(U(a2, aD)) ∈ H′0,

where Λ and ∆ are given by (0.5). Then:

(1) The elements (2.4) belong to the quotient C′+ of the ring C+ relative
to the multiplicative system (1.5); in particular , the elements commute with
each other.

(2) If a and b are coprime, then

t+(ab) = t+(a)t+(b).

(3) For the Fourier coefficients f(A) of any function in F, and a ∈ N,
one can write

(f‖t+(a))(A) = an+1−k ∑

M∈Λ\∆, detM=a

f(A[ tM ]) (A ∈ E, A ≥ 0).

Proof. The lemma follows easily from [An(87), Lemma 4.3.20].
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Lemma 2.3. For each prime number p, the following identity holds in
the ring of formal power series over C′+:

(2.5)
∞∑

δ=0

p−δnt+(pδ)vδ =
( n∑

i=0

(−1)ixi(p)vi
)−1

,

where

(2.6) xi(p) = xni (p) = pi(i−1)/2−in[p]−1
Γ0

(U(p2, pDi(p)))Γ0

with

Di(p) = Dn
i (p) =

(
1n−i 0n
0n p1i

)
.

Proof. The identity (2.5) is (3.5.74) of [An(87), Lemma 3.5.24]. The
formulas (2.6) follow from (3.5.34) of [An(87), Proposition 3.5.17].

Lemma 2.4. Let C+(q) be the set of all finite linear combinations of the
double classes modulo Γ0 of elements of the form (2.1) satisfying the condi-
tion µ | d(D)2 and such that detD divides some powers of q. Then C+(q)
is a subring of C+, and the mapping

(2.7) C+(q) 3 T =
∑

i

ai(Γ0Mi) 7→ T̃ =
∑

i

ai(KMi)

defines an isomorphism of the ring C+(q) onto the subring C̃+(q) of the
reducible subring Hred of H consisting of all finite combinations of double
classes modulo K of the same elements. The assertion remains true also
for the quotients C′+(q) and C̃′+(q) of the rings relative to the scalar classes
corresponding to positive integers dividing some powers of q.

Proof. The lemma follows from [An(99), Theorem 3.3].

Next we recall the definitions of local subrings of H′ and of Rankin poly-
nomials over the local subrings. For more details see, for example, [An(87),
§3.3–§3.5]. The (maximal) regular reducible subring of H can be described
as the Hecke–Shimura ring of the pair K, R∗(K), where

R∗(K) =
{
M =

(
A B
C D

)
∈ Σ

∣∣∣∣µ(M) is coprime with q, C ≡ 0 (mod q)
}

([An(99), Lemma 2.1]). For a prime number p not dividing the level q, we
set

Rp(K) = {M ∈ R∗(K) | µ(M) is a power of p},
and define the local (reducible) p-subring H′p of H′ as the quotient relative
to the system of scalar classes, for a = 1, p, p2, . . . , of the ring H(K,Rp(K)).
We now define the spherical map

Ω : H′p 7→ Q[x±1
0 , x±1

1 , . . . , x±1
n ],
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where x0, x1, . . . , xn are (commuting) independent variables over Q. If

T =
∑

i

ci[p]−ai(KMi)

is an element of H′p, one can assume that each Mi has the form

Mi =
(
µi

tD−1
i Bi

0n Di

)
,

where Di is an upper triangular matrix with powers of p, say, pdi1 , . . . , pdin ,
on the principal diagonal and µi = pδi . Then we set

Ω(T ) =
∑

i

cix
−2ai+δi
0

n∏

j=1

(xjp−j)dij−ai .

The spherical map is a homomorphic embedding and one can show that the
image Ω(H′p) contains, in particular, all the coefficients of the polynomial
in v

n∏

j=1

(1− xjv)(1− x−1
j v) =

2n∑

i=0

(−1)iri(x1, . . . , xn)vn.

The polynomial over H′p given by

Rp(v) = Rnp (v) =
2n∑

i=0

(−1)iri(p)vi with Ω(ri(p)) = ri(x1, . . . , xn)

is called the Rankin p-polynomial .
The coefficients of the Rankin polynomials satisfy the relations

r2n−i(p) = ri(p) (i = 0, . . . , 2n); r0(p) = r2n(p) = 1,

where 1 = (12n)K is the unit element of H. The coefficients

(2.8) r1(p) = rn1 (p), . . . , rn(p) = rnn(p)

together with the scalar classes [p] = (p12n)K and [p]−1 generate the even
subring of H′p.

If F ∈M is an eigenfunction for the Hecke operators

‖r1(p) = ‖krn1 (p), . . . , ‖rn(p) = ‖krnn(p)

with the eigenvalues λ(ri(p)), then the polynomial

λ(Rp)(v) =
2n∑

i=0

(−1)iλ(ri(p))vi (λ(r2n−i(p)) = λ(ri(p)))

has the factorization of the form

λ(Rp)(v) =
n∏

j=1

(1− αj(p)v)(1− αj(p)−1v).
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The numbers α1(p)±1, . . . , αn(p)±1 are called the Satake p-parameters of the
eigenfunction F .

The main result of this section is the following theorem.

Theorem 2.5. Let F ∈ M = Mn
k(q) be a modular form with Fourier

expansion (0.2). Suppose that F is an eigenfunction for the Hecke operators
‖T = ‖kT with eigenvalues

λ(T ) = λF (T )

for all elements T of the form

(2.9) x̃i(p) = x̃ni (p) = pi(i−1)/2−in[p]−1
K (U(p2, pDi(p)))K (i = 1, . . . , n),

where U(µ,D) and Di(p) = Dn
i (p) are the matrices defined in (2.1)

and (2.6), for all prime divisors of the level q (singular prime numbers),
and for all elements T of the form (2.8) for all prime numbers not divid-
ing the level (regular prime numbers). Then, for each Dirichlet character ψ
and each even positive definite matrix Q of order n, the following formal
factorization of the theta-transform (0.4) holds:

(2.10) DF (s, ψ,Q) = Z+(s, ψ, F )
(∏

p-q
Bp(ψ(p)p−s, Q)

)
XF (s, ψ,Q).

Here and below p runs over all prime numbers satisfying the corresponding
conditions, and the following notation is used :

Z+(s, ψ, F ) = Z+
s (s, ψ, F )Z+

r (s, ψ, F )

with

Z+
s (s, ψ, F ) =

∏

p|q

( n∑

i=0

(−1)iλF (x̃i(p))(ψ(p)p−s)i
)−1

,

and

Z+
r (s, ψ, F ) =

∏

p-q

( n∏

j=1

(1− αj(p, F )ψ(p)p−s)(1− αj(p, F )−1ψ(p)p−s)
)−1

,

where αj(p, F )±1 are the Satake p-parameters of F , is the even zeta function
of the eigenfunction F ;

Bp(v,Q) = Bnp (v,Q)

are polynomials in v depending only on the GLn(Fp)-equivalence class of
the quadratic form with matrix Q considered over the finite field Fp of p
elements and satisfying the following rules: Bnp (v,Q) = Bmp (v,Q′) if the
quadratic form with matrix Q is equivalent modulo p to a quadratic form in
m < n variables with matrix Q′, but if the form is nondegenerate modulo p,
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then

Bnp (v,Q) =

{
(1 + v)(1− χQ(p)p−lv)

∏l−1
i=1(1− p−2iv2) if n = 2l,

(1 + v)
∏l
i=1(1− p−2iv2) if n = 2l + 1,

where, for even n, χQ denotes the Dirichlet character of the quadratic form
with matrix Q; finally ,

XF (s, ψ,Q) =
(
f‖

∏

p-q
p|detQ

( n∑

i=0

(−1)ix−i(p)ψ(pi)p−is
))

(Q)

with the elements

x−i(p) = xn−i(p) = pi(i−1)/2−in[p]−1
Γ0

(U(p2,Dn−i(p)))Γ0

of the quotient ring C′− of the ring C− defined in Lemma 2.1, whose action
on the Fourier coefficients can be described by the formulas

(f‖x−i(p))(Q) = pi(k−n)+(i2−i)/2 ∑

D∈Λ\ΛDn−iΛ
A[tD]∈p2En

f(p−2A[tD]),

in particular ,
(f‖x−i(p))(Q) = 0 if p2i - detQ.

The Dirichlet series on the left side of (2.10) and the infinite products
on the right side converge absolutely and uniformly in any half-plane of the
form <s > (2τ − 1)k + n+ 1 + ε with ε > 0, where τ = 1/2 if F is a cusp
form, and τ = 1 otherwise.

Proof. By considering the Fourier coefficients f(A) of the function F
as values of a function f belonging to the space of Fourier coefficients of
functions in M ⊂ F and using the action (1.4) of the Hecke–Shimura rings
on the spaces of Fourier coefficients and Lemma 2.2, one can write

DF (s, ψ,Q) =
∞∑

a=1

ψ(a)(f‖a−nt+(a))(Q)
as

=
(
f‖

∏

p prime

∞∑

δ=0

p−δnt+(pδ)ψ(p)δp−δs
)

(Q),

which, by Lemma 2.3, can be written as

(2.11) DF (s, ψ,Q) =
(
f‖

∏

p prime

( n∑

i=0

(−1)ixi(p)(ψ(p)p−s)i
)−1)

(Q).

Note that the order of p-factors of the last product is unessential, by Lem-
ma 2.2(1). Consider first the action of singular p-factors. Since the map-
ping (2.7) is clearly compatible with the action of the corresponding Hecke
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operators on the functions in M ⊂ F and their Fourier coefficients, and
the function f together with F is an eigenfunction for the Hecke operators
corresponding to the elements (2.9), we have, for each singular prime, the
identity

(2.12) f‖
( n∑

i=0

(−1)ixi(p)(ψ(p)p−s)i
)−1

= f‖
( n∑

i=0

(−1)ix̃i(p)(ψ(p)p−s)i
)−1

=
( n∑

i=0

(−1)iλF (x̃i(p))(ψ(p)p−s)i
)−1

f.

Let us now turn to the regular primes. If p is one, then by the hypothesis of
the theorem,

(2.13)
( 2n∑

i=0

(−1)iλF (ri(p))(ψ(p)p−s)i
)
f‖
( n∑

i=0

(−1)ixi(p)(ψ(p)p−s)i
)−1

= f‖
( 2n∑

i=0

(−1)iri(p)(ψ(p)p−s)i
)( n∑

i=0

(−1)ixi(p)(ψ(p)p−s)i
)−1

,

where ri(p) are the coefficients of the Rankin polynomial Rp. According to
[An(87), Theorem 3.5.23],

(2.14) Rp(v)
( n∑

i=0

(−1)ixi(p)vi
)−1

=
( n∑

i=0

(−1)ix−i(p)vi
)
Bp(v),

where xi(p) are the elements (2.6) and

Bp(v) = Bnp (v) =
n∑

i=0

(−1)ibi(p)vi

is a polynomial over the ring H′0. Then, by [An(87), Proposition 4.2.24], for
every function g in the space of Fourier coefficients of functions in F and
every even matrix A of order n,

(2.15) (g‖Bp(v))(A) =
n∑

i=0

(−1)i(g‖bi(p))(A)vi = Bp(v,A)g(A),

where Bp(v,A) = Bnp (v,A) are polynomials in v independent of g. From
(2.13)–(2.15) we obtain the identity

(2.16)
(
f‖
( n∑

i=0

(−1)ixi(p)(ψ(p)p−s)i
)−1)

(Q)

= λF (Rp)(ψ(p)p−s)−1Bp(ψ(p)p−s, Q)
n∑

i=0

(−1)i(f‖x−i(p))(Q)(ψ(p)p−s)i
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valid for each regular prime p, where the polynomial

λF (Rp)(v) =
2n∑

i=0

(−1)iλF (ri(p))vi

can be expressed through the Satake p-parameters αi(p, F )±1 by

λF (Rp)(v) =
n∏

j=1

(1− αj(p, F )v)(1− αj(p, F )−1v).

From (2.11), by using first the identities (2.12) for each singular prime
and then (2.16) for each regular prime, we finally get the formal identity
(2.10). Explicit formulas for the polynomials Bn

p (v,Q) were obtained in
[An(87), Theorem 4.2.27]. The formulas for the action of the elements x−i(p)
on the Fourier coefficients follow from (2.3). The convergence of the series
and products follows from the known estimates of Fourier coefficients of
modular forms. For more details on regular primes and the convergence, see
[An(87), Proof of Theorem 4.3.19].

Remarks. (1) The formal identity of the theorem remains valid with the
same proof for an arbitrary completely multiplicative function ψ : N → C,
not necessarily a Dirichlet character.

(2) Similar results can be obtained for modular forms with Dirichlet
characters modulo q for the groups Γ n0 (q). For regular primes this was done
in [An(87), Theorem 4.3.19]. The singular primes can be treated analogously
to the above, with the groups Γ n0 (q) replaced by the subgroups

{
M =

(
A B
C D

)
∈ Γn0 (q)

∣∣∣∣ detD ≡ 1 (mod q)
}
.

(3) The product
∏
p prime Bp(ψ(p)p−s, Q)−1 looks very much like a “zeta

function” with the character ψ of the quadratic form with matrix Q.

3. Diagonalization of centralizers of singular Frobenius ele-
ments. According to [An(87), Theorem 4.1.8], the subspace of cusp forms of
Mn
k (q) has a basis consisting, in particular, of common eigenfunctions for all

Hecke operators corresponding to the coefficients (2.8) of the Rankin poly-
nomials Rp(v), for all regular prime numbers p. Therefore, in order to apply
the above theorem, one has first to consider the question of diagonalization
of Hecke operators corresponding to (2.9) for singular primes. It follows from
Lemma 2.4 and [An(87), Propositions 3.4.4, 3.4.7, and Theorem 3.2.17] that
the elements (2.9) together with the scalar classes [p]±1 for all p | q generate
the ring C̃′+(q) defined in Lemma 2.4. This ring, by [An(99), Theorem 3.3],
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can be characterized as the centralizer of the singular Frobenius elements

Π(a) = Πn
K(a) =

((
1n 0n
0n a1n

))

K

with a | q∞ (K = Γn0 (q))

(a | q∞ means that a divides a power of q) in the singular reducible subring
of H′ = Hn(q). In [An(99), Chapter 4] a subspace N = Nn

k(q) of “new”
cusp forms of Nn

k (q) was introduced for arbitrary n (for n = 1 it was done
in [A-L(70)]). In particular, it was proved there that, for n = 2, the space
of new forms has a basis of common eigenfunctions for all regular Hecke op-
erators and a number of singular Hecke operators including all the singular
Frobenius elements. Here we shall prove that in this case the list of Hecke
operators diagonalizable on new forms also includes the operators corre-
sponding to all elements of local centralizers of Frobenius elements Π(p) for
all primes p dividing q but not q/p (unramified primes). But first we recall re-
lated definitions and results from [An(99)] (that paper was originally issued
in English as a preprint of Max-Planck-Institut für Mathematik, Preprint
series 1998 (118)). For brevity, below we refer to, e.g., [An(99), Theorem 1.9]
or [An(99), formula (3.66)] just as [Theorem 1.9] or [(3.66)].

For arbitrary n, we consider the quotient H′ defined by (1.12) and its
action (1.3) on the space N of cusp forms. The star map of the ring H′ is a
linear map defined on the double classes by

(M)∗ = (µ(M)M−1), ([a]−1)∗ = [a]−1 (M ∈ Σ, a ∈ N).

The star map is an antiautomorphism of the second order of H′ ([Theo-
rem 1.9(1)]). The space N is a finite-dimensional Hilbert space with respect
to the Petersson scalar product N 3 F,F ′ 7→ (F,F ′) (see, for example,
[§1.4]). The Hecke operators ‖T and ‖T ∗ are conjugate with respect to this
scalar product:

(F‖T, F ′) = (F,F ′‖T ∗) (F,F ′ ∈ N, T ∈ H′)
([Theorem 1.9(2)]). It turns out that, for each prime divisor p of q not
dividing q/p (singular unramified prime), the Frobenius element Π(p) is
invertible in the singular subring H′s of H′. This allows one to define an
embedding of the (regular reducible) local p-subring H′p(q/p) of the Hecke–
Shimura ring H′(q/p) for the group Γn0 (q/p) into the ring H′s (see [§3.3]).
We denote by

H̃′p(q/p) ⊂ H′s = H′s(q)
the image of this embedding.

For each singular prime p, the subspace of p-new forms of N = Nn
k (q)

can be defined by

Np = Np(N) = {F ∈ N | F‖Π(p)iτ(p) = 0 for i = 0, 1, . . . , 2n − 1},
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if p2 - q, and by

Np = Np(N) = {F ∈ N | F‖τ(p) = 0, F‖Π(p)τ(p) = 0},
if p2 | q, where

τ(p) = τn(p, q) = [K ′ : K]−1
∑

Mi∈K\K′
(KMi)

with K ′ = Γn0 (q/p) and K = Γn0 (q) is the trace-idempotent of the pair
K ⊂ K ′. The subspace of new forms of N is then defined by

N = N(N) =
⋂

p|q
Np

(see [§4.2]).
Now we have the following theorem on diagonalization of Hecke operators

on new forms.

Theorem 3.1. (1) The subspace N = N(Nn
k(q)) of new forms of Nn

k (q)
is invariant under all the Hecke operators corresponding to elements of local
regular reducible p-subrings H′p of H′ for all regular prime numbers p.

(2) For every n and each prime number p satisfying p2 | q, the Hecke
operators ‖Π(p) and ‖Π∗(p) on N are equal to the zero operator.

(3) If n = 2, then, for all singular unramified prime numbers p, the space
N is invariant under all the Hecke operators corresponding to the following
elements of the singular Hecke–Shimura ring : elements of the local singular
unramified p-rings H̃′p(q/p); singular Frobenius elements Π(p) and their
dual elements Π∗(p); all elements of the form (2.9).

(4) If n = 2, then there is a basis of N consisting of common eigen-
functions for all the Hecke operators listed in (1)–(3). In particular , if q is
square-free, then N has a basis of common eigenfunctions for all the Hecke
operators listed in Theorem 2.5 above.

Proof. Part (1) is proved in [Theorem 4.6]. Part (2) for ‖Π(p) is proved in
[Lemma 4.13]. By [Proposition 3.12(2), (4)], we haveΠ∗(p) = (Π(p)τ(p))∗ =
τ(p)Π∗(p), which implies the assertion for ‖Π∗(p).

In order to prove (3) and (4), we note that in this case the set (2.9), for

each singular prime p, reduces to the two elements x̃2
1(p) and x̃2

2(p) which,
according to (1.7), can be replaced by

Π1(p2) = U(p2, pD2
1(p))K and U(p2, pD2

2(p))K = Π(p2).

By using [Theorem 3.3(1)], one can show that Π(p2) = Π(p)2. Then, by
taking into account [Theorem 4.15], it is sufficient to prove that the element
Π1(p2), for each singular unramified prime p, can be expressed as a polyno-
mial in elements of the ring H̃′p(q/p) and the Frobenius element Π(p). By
comparing the coefficients of v in both parts of the factorization [(3.66)], we
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get the relation

T̃ (p) = p3[p]Π(p)−1 + pΠ(p)−1Π1(p2) +Π(p),

where T̃ (p) is the image in the ring H̃′p(q/p) of the double class

T (p)K′ =
((

12 02

02 p12

))

K′
∈ H′p(q/p)

with K ′ = Γ 2
0 (q/p). We conclude that

Π1(p2) =
1
p

(Π(p)T̃ (p)−Π(p)2 − p3[p]).

The theorem follows.

Remark. It is easy to see that the last of the elements (2.9) has the
form

x̃nn(p) = p−n(n+1)/2[p]−1Π(p)2.

Then, according to (2), the corresponding Hecke operator on the space of
new forms of Nn

k (q) is the zero operator, for all primes p with p2 | q. So, for
such primes, the denominators of the corresponding p-factors of the even
zeta function have degree in ψ(p)p−s less than n. In particular, for n = 2,
the denominators have the form 1− λF (x̃1(p))ψ(p)p−s.
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