Densities of 4-ranks of $K_{2}(\mathcal{O})$

by
Robert Osburn (Baton Rouge, LA)

1. Introduction. Since the 1960 's, relationships between algebraic K theory and number theory have been intensely studied. For number fields F and their rings of integers \mathcal{O}_{F}, the K-groups $K_{0}\left(\mathcal{O}_{F}\right), K_{1}\left(\mathcal{O}_{F}\right), K_{2}\left(\mathcal{O}_{F}\right), \ldots$ were a main focus of attention. From [7] we have

$$
K_{0}\left(\mathcal{O}_{F}\right) \cong \mathbb{Z} \times C(F)
$$

where $C(F)$ is the ideal class group of F, and

$$
K_{1}\left(\mathcal{O}_{F}\right) \cong \mathcal{O}_{F}^{*}
$$

the group of units of \mathcal{O}_{F}.
What can we say in general about $K_{2}\left(\mathcal{O}_{F}\right)$? Garland and Quillen in [3] and [10] showed that $K_{2}\left(\mathcal{O}_{F}\right)$ is finite. A conjecture of Birch and Tate connects the order of $K_{2}\left(\mathcal{O}_{F}\right)$ and the value of the zeta function of F at -1 when F is a totally real field. For abelian number fields, this conjecture has been confirmed. For totally real fields, it has been confirmed up to powers of 2 (see [13]). In [11] a 2-rank formula for $K_{2}\left(\mathcal{O}_{F}\right)$ was given by Tate. Some results on the 4 -rank of $K_{2}\left(\mathcal{O}_{F}\right)$ were given in [8], [9], and [12]. To gain further insight into the 4-rank of $K_{2}\left(\mathcal{O}_{F}\right)$, we consider the following specific families of fields.

In this paper we deal with the 4 -rank of the Milnor K-group $K_{2}(\mathcal{O})$ for the quadratic number fields $\mathbb{Q}(\sqrt{p l}), \mathbb{Q}(\sqrt{2 p l}), \mathbb{Q}(\sqrt{-p l}), \mathbb{Q}(\sqrt{-2 p l})$ for primes $p \equiv 7 \bmod 8, l \equiv 1 \bmod 8$ with $\left(\frac{l}{p}\right)=1$. In $[1]$, the authors show that for the fields $E=\mathbb{Q}(\sqrt{p l}), \mathbb{Q}(\sqrt{2 p l})$ and $F=\mathbb{Q}(\sqrt{-p l}), \mathbb{Q}(\sqrt{-2 p l})$,

$$
\begin{aligned}
& \text { 4-rank } K_{2}\left(\mathcal{O}_{E}\right)=1 \text { or } 2 \\
& \text { 4-rank } K_{2}\left(\mathcal{O}_{F}\right)=0 \text { or } 1 .
\end{aligned}
$$

Each of the possible values of 4 -ranks is then characterized by checking which ones of the quadratic forms $X^{2}+32 Y^{2}, X^{2}+2 p Y^{2}, 2 X^{2}+p Y^{2}$

[^0]represent a certain power of l over \mathbb{Z}. This approach makes numerical computations accessible. We should note that this approach involves quadratic symbols and determining the matrix rank over \mathbb{F}_{2} of 3×3 matrices with Hilbert symbols as entries (see [4]). Fix a prime $p \equiv 7 \bmod 8$ and consider the set
$$
\Omega=\left\{l \text { rational prime }: l \equiv 1 \bmod 8 \text { and }\left(\frac{l}{p}\right)=\left(\frac{p}{l}\right)=1\right\}
$$

Let

$$
\begin{aligned}
v & =4-\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{p l})}\right), \\
\mu & =4-\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{2 p l})}\right), \\
\sigma & =4-\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{-p l})}\right) \\
\tau & =4-\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{-2 p l})}\right),
\end{aligned}
$$

and also consider the sets

$$
\begin{aligned}
\Omega_{1} & =\{l \in \Omega: v=1\}, \\
\Omega_{2} & =\{l \in \Omega: v=2\}, \\
\Omega_{3} & =\{l \in \Omega: \mu=1\}, \\
\Omega_{4} & =\{l \in \Omega: \mu=2\}, \\
\Lambda_{1} & =\{l \in \Omega: \sigma=0\}, \\
\Lambda_{2} & =\{l \in \Omega: \sigma=1\}, \\
\Lambda_{3} & =\{l \in \Omega: \tau=0\}, \\
\Lambda_{4} & =\{l \in \Omega: \tau=1\}
\end{aligned}
$$

We have computed the following (see Table 1 in Appendix): For $p=7$, there are 9730 primes l in Ω with $l \leq 10^{6}$. Among them, there are 4866 primes (50.01%) in Ω_{1} and Ω_{3} and 4864 primes (49.99\%) in Ω_{2} and Ω_{4}. Also, there are 4878 primes (50.13\%) in Λ_{1} and Λ_{3} and 4852 primes in Λ_{2} and Λ_{4}. The goal of this paper is to prove the following theorem.

Theorem 1.1. For the fields $\mathbb{Q}(\sqrt{p l})$ and $\mathbb{Q}(\sqrt{2 p l}), 4$-rank 1 and 2 each appear with natural density $1 / 2$ in Ω. For the fields $\mathbb{Q}(\sqrt{-p l})$ and $\mathbb{Q}(\sqrt{-2 p l})$, 4 -rank 0 and 1 each appear with natural density $1 / 2$ in Ω.

Now consider the tuple of 4-ranks (v, μ, σ, τ). By Corollary 5.6 in [1], there are eight possible tuples of 4-ranks. For $p=7$, among the 9730 primes $l \in \Omega$ with $l \leq 10^{6}$, the eight possible tuples are realized by $1215,1213,1228$, 1210, 1210, 1228, 1225, 1201 primes l respectively (see Table 2 in Appendix). And, in fact:

TheOrem 1.2. Each of the eight possible tuples of 4-ranks appear with natural density $1 / 8$ in Ω.
2. Preliminaries. Let \mathcal{D} be a Galois extension of \mathbb{Q}, and $G=\operatorname{Gal}(\mathcal{D} / \mathbb{Q})$. Let $Z(G)$ be the center of G and $\mathcal{D}^{Z(G)}$ the fixed field of $Z(G)$. Let p be a rational prime which is unramified in \mathcal{D} and β a prime of \mathcal{D} containing p. Let $\left(\frac{\mathcal{D} / \mathbb{Q}}{p}\right)$ denote the Artin symbol of p and $\{g\}$ the conjugacy class containing one element $g \in G$.

Lemma 2.1. $\left(\frac{\mathcal{D} / \mathbb{Q}}{p}\right)=\{g\}$ for some $g \in Z(G)$ if and only if p splits completely in $\mathcal{D}^{Z(G)}$.

Proof. $\left(\frac{\mathcal{D} / \mathbb{Q}}{p}\right)=\{g\}$ for some $g \in Z(G)$ if and only if $\left(\frac{\mathcal{D} / \mathbb{Q}}{\beta}\right)=g$ if and only if $\left(\frac{\mathcal{D}^{Z(G)} / \mathbb{Q}}{\beta}\right)=\left.\left(\frac{\mathcal{D} / \mathbb{Q}}{\beta}\right)\right|_{\mathcal{D}^{Z(G)}}=\left.g\right|_{\mathcal{D}^{Z(G)}}=\operatorname{Id}_{{\operatorname{Gal}\left(\mathcal{D}^{Z(G)} / \mathbb{Q}\right)} \text { if and only if } p .10 .}$ splits completely in $\mathcal{D}^{Z(G)}$.

Thus if we can show that rational primes split completely in the fixed field of the center of a certain Galois group G, then we know the associated Artin symbol is a conjugacy class containing one element. Hence we may identify the Artin symbol with this element and consider the symbol to be an automorphism which lies in $Z(G)$. Thus determining the order of $Z(G)$ gives us the number of possible choices for the Artin symbol.

Let G_{1} and G_{2} be finite groups and A a finite abelian group. Suppose $r_{1}: G_{1} \rightarrow A$ and $r_{2}: G_{2} \rightarrow A$ are two epimorphisms and $\mathcal{G} \subset G_{1} \times G_{2}$ is the set $\left\{\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}: r_{1}\left(g_{1}\right)=r_{2}\left(g_{2}\right)\right\}$. Since A is abelian, there is an epimorphism $r: G_{1} \times G_{2} \rightarrow A$ given by $r\left(g_{1}, g_{2}\right)=r_{1}\left(g_{1}\right) r_{2}\left(g_{2}\right)^{-1}$. Thus $\mathcal{G}=\operatorname{ker}(r) \subset G_{1} \times G_{2}$. One can check that $Z(\mathcal{G})=\mathcal{G} \cap Z\left(G_{1} \times G_{2}\right)$.

Lemma 2.2. (i) If $\left.r_{2}\right|_{Z\left(G_{2}\right)}$ is trivial, then $Z(\mathcal{G})=\operatorname{ker}\left(\left.r_{1}\right|_{Z\left(G_{1}\right)}\right) \times Z\left(G_{2}\right)$.
(ii) $Z(\mathcal{G})=Z\left(G_{1}\right) \times\left. Z\left(G_{2}\right) \Leftrightarrow r_{1}\right|_{Z\left(G_{1}\right)}$ and $\left.r_{2}\right|_{Z\left(G_{2}\right)}$ are both trivial.

Proof. (i) Suppose $\left(g_{1}, g_{2}\right) \in Z(\mathcal{G}) \subset \operatorname{ker}(r)$ where $g_{1} \in Z\left(G_{1}\right), g_{2} \in$ $Z\left(G_{2}\right)$. Thus $1=r\left(g_{1}, g_{2}\right)=r_{1}\left(g_{1}\right) r_{2}\left(g_{2}\right)^{-1}$ and so $r_{1}\left(g_{1}\right)=r_{2}\left(g_{2}\right)$. But $r_{2}\left(g_{2}\right)=1$, which yields $r_{1}\left(g_{1}\right)=1$. Thus $g_{1} \in \operatorname{ker}\left(\left.r_{1}\right|_{Z\left(G_{1}\right)}\right)$. The other inclusion is clear.
(ii) Take $\left(g_{1}, 1\right),\left(1, g_{2}\right) \in Z\left(G_{1}\right) \times Z\left(G_{2}\right)=Z(\mathcal{G}) \subset \operatorname{ker}(r)$ to obtain that $\left.r_{1}\right|_{Z\left(G_{1}\right)}$ and $\left.r_{2}\right|_{Z\left(G_{2}\right)}$ are both trivial. The converse follows from part (i).

We will use the following definition throughout this paper.
Definition 2.3. For primes $p \equiv 7 \bmod 8, l \equiv 1 \bmod 8$ with $\left(\frac{l}{p}\right)=$ $\left(\frac{p}{l}\right)=1, \mathcal{K}=\mathbb{Q}(\sqrt{-2 p})$, and $h(\mathcal{K})$ the class number of \mathcal{K}, we say:

- l satisfies $\langle 1,32\rangle$ if $l=x^{2}+32 y^{2}$ for some $x, y \in \mathbb{Z}$,
- l satisfies $\langle 2, p\rangle$ if $l^{h(\mathcal{K}) / 4}=2 n^{2}+p m^{2}$ for some $n, m \in \mathbb{Z}$ with $m \not \equiv 0$ $\bmod l$,
- l satisfies $\langle 1,2 p\rangle$ if $l^{h(\mathcal{K}) / 4}=n^{2}+2 p m^{2}$ for some $n, m \in \mathbb{Z}$ with $m \not \equiv 0 \bmod l$.

3. Three extensions. In this section, we consider three degree eight field extensions of \mathbb{Q}. The idea will be to study composites of these fields and relate Artin symbols to 4-ranks. Rational primes which split completely in a degree 64 extension of \mathbb{Q} will relate to Artin symbols and thus 4ranks. Therefore calculating the density of these primes will answer density questions involving 4-ranks.
3.1. First extension. Consider $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}. Let $\varepsilon=1+\sqrt{2} \in(\mathbb{Z}[\sqrt{2}])^{*}$. Then ε is a fundamental unit of $\mathbb{Q}(\sqrt{2})$ which has norm -1 . The degree 4 extension $\mathbb{Q}(\sqrt{2}, \sqrt{\varepsilon})$ over \mathbb{Q} has normal closure $\mathbb{Q}(\sqrt{2}, \sqrt{\varepsilon}, \sqrt{-1})$. Set

$$
N_{1}=\mathbb{Q}(\sqrt{2}, \sqrt{\varepsilon}, \sqrt{-1})
$$

Note that N_{1} is the splitting field of the polynomial $x^{4}-2 x^{2}-1$ and so has degree 8 over \mathbb{Q}. Therefore $\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)$ is the dihedral group of order 8 . Note that the automorphism induced by sending $\sqrt{\varepsilon}$ to $-\sqrt{\varepsilon}$ commutes with every element of $\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)$. Thus $Z\left(\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)\right)=\operatorname{Gal}\left(N_{1} / \mathbb{Q}(\sqrt{2}, \sqrt{-1})\right)$.

Observe that only the prime 2 ramifies in $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{\varepsilon})$, and so only the prime 2 ramifies in the compositum N_{1} over \mathbb{Q}. Now as $l \in \Omega$ is unramified in N_{1} over \mathbb{Q}, the Artin symbol $\left(\frac{N_{1} / \mathbb{Q}}{\beta}\right)$ is defined for primes β of $\mathcal{O}_{N_{1}}$ containing l. Let $\left(\frac{N_{1} / \mathbb{Q}}{l}\right)$ denote the conjugacy class of $\left(\frac{N_{1} / \mathbb{Q}}{\beta}\right)$ in $\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)$. The primes $l \in \Omega$ split completely in $\mathbb{Q}(\sqrt{2}, \sqrt{-1})$ and $N_{1}^{Z\left(\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)\right)}=\mathbb{Q}(\sqrt{2}, \sqrt{-1})$. Thus by Lemma 2.1 , we have $\left(\frac{N_{1} / \mathbb{Q}}{l}\right)=$ $\{g\} \subset Z\left(\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)\right)$. As $Z\left(\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)\right)$ has order 2 , there are two possible choices for $\left(\frac{N_{1} / \mathbb{Q}}{l}\right)$. Combining this statement with Addendum 3.7 from [1], we have

Remark 3.1.

$$
\begin{aligned}
\left(\frac{N_{1} / \mathbb{Q}}{l}\right)=\{\mathrm{id}\} & \Leftrightarrow l \text { splits completely in } N_{1} \\
& \Leftrightarrow l \text { satisfies }\langle 1,32\rangle .
\end{aligned}
$$

3.2. Second and third extension. Consider the fixed prime $p \equiv 7 \bmod 8$. Note p splits completely in $\mathcal{L}=\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} and so

$$
p \mathcal{O}_{\mathcal{L}}=\mathfrak{B} \mathfrak{B}^{\prime}
$$

for some primes $\mathfrak{B} \neq \mathfrak{B}^{\prime}$ in \mathcal{L}. The field \mathcal{L} has narrow class number $h^{+}(\mathcal{L})=$ 1 as $h(\mathcal{L})=1$ and $N_{\mathcal{L} / \mathbb{Q}}(\varepsilon)=-1$ where $\varepsilon=1+\sqrt{2}$ is a fundamental unit of $\mathbb{Q}(\sqrt{2})$ (see [5]). From [1], we have

Lemma 3.2. The prime \mathfrak{B} which occurs in the decomposition of $p \mathcal{O}_{\mathcal{L}}$ has a generator $\pi=a+b \sqrt{2} \in \mathcal{O}_{\mathcal{L}}$, unique up to a sign and to multiplication by the square of a unit in $\mathcal{O}_{\mathcal{L}}^{*}$ for which $N_{\mathcal{L} / \mathbb{Q}}(\pi)=a^{2}-2 b^{2}=-p$.

Since $N_{\mathcal{L} / \mathbb{Q}}(\pi)=-p$, the degree 4 extension $\mathbb{Q}(\sqrt{2}, \sqrt{\pi})$ over \mathbb{Q} has normal closure $\mathbb{Q}(\sqrt{2}, \sqrt{\pi}, \sqrt{-p})$. Set

$$
N_{2}=\mathbb{Q}(\sqrt{2}, \sqrt{\pi}, \sqrt{-p}) .
$$

Then N_{2} is Galois over \mathbb{Q} and $\left[N_{2}: \mathbb{Q}\right]=8$. Such an extension N_{2} exists since the 2-Sylow subgroup of the ideal class group of $\mathbb{Q}(\sqrt{-2 p})$ is cyclic of order divisible by 4 (see [2]). Thus the Hilbert class field of $\mathbb{Q}(\sqrt{-2 p})$ contains a unique unramified cyclic degree 4 extension over $\mathbb{Q}(\sqrt{-2 p})$. By Lemma 2.3 in [1], N_{2} is the unique unramified cyclic degree 4 extension over $\mathbb{Q}(\sqrt{-2 p})$. Also compare [6]. Similar to arguments in Section 3.1, $\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)$ is the dihedral group of order 8 . Note that the automorphism induced by sending $\sqrt{\pi}$ to $-\sqrt{\pi}$ commutes with every element of $\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)$. Thus $Z\left(\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)\right)=\operatorname{Gal}\left(N_{2} / \mathbb{Q}(\sqrt{2}, \sqrt{-p})\right)$.

Proposition 3.3. If $l \in \Omega$, then l is unramified in N_{2} over \mathbb{Q}.
Proof. Since $p \equiv 7 \bmod 8$, the discriminant of $\mathbb{Q}(\sqrt{-2 p})$ is $-8 p$. For $l \in \Omega$, we have $\left(\frac{-2 p}{l}\right)=1$ and so l is unramified in $\mathbb{Q}(\sqrt{-2 p})$. By Lemma 2.3 in [1], we conclude that l is unramified in N_{2} over \mathbb{Q}.

As $l \in \Omega$ is unramified in N_{2} over \mathbb{Q}, the $\operatorname{Artin} \operatorname{symbol}\left(\frac{N_{2} / \mathbb{Q}}{\beta}\right)$ is defined for primes β of $\mathcal{O}_{N_{2}}$ containing l. Let $\left(\frac{N_{2} / \mathbb{Q}}{l}\right)$ denote the conjugacy class of $\left(\frac{N_{2} / \mathbb{Q}}{\beta}\right)$ in $\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)$. The primes $l \in \Omega$ split completely in $\mathbb{Q}(\sqrt{2}, \sqrt{-p})$ and $N_{2}^{Z\left(\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)\right)}=\mathbb{Q}(\sqrt{2}, \sqrt{-p})$. By Lemma 2.1, we see that $\left(\frac{N_{2} / \mathbb{Q}}{l}\right)=$ $\{h\} \subset Z\left(\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)\right)$ for some $h \in Z\left(\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)\right)$. As $Z\left(\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)\right)$ has order 2 , there are two possible choices for $\left(\frac{N_{2} / \mathbb{Q}}{l}\right)$. Combining this statement and Lemmas 3.3 and 3.4 from [1], we have

Remark 3.4.

$$
\begin{aligned}
\left(\frac{N_{2} / \mathbb{Q}}{l}\right)=\{\mathrm{id}\} & \Leftrightarrow l \text { splits completely in } N_{2} \\
& \Leftrightarrow l \text { satisfies }\langle 1,2 p\rangle . \\
\left(\frac{N_{2} / \mathbb{Q}}{l}\right) \neq\{\mathrm{id}\} & \Leftrightarrow l \text { does not split completely in } N_{2} \\
& \Leftrightarrow l \text { satisfies }\langle 2, p\rangle .
\end{aligned}
$$

Finally, for $l \in \Omega, l$ splits completely in $\mathbb{Q}\left(\zeta_{16}\right) \Leftrightarrow l \equiv 1 \bmod 16$. This yields

Remark 3.5.

$$
\begin{aligned}
\left(\frac{\mathbb{Q}\left(\zeta_{16}\right) / \mathbb{Q}}{l}\right)=\{\mathrm{id}\} & \Leftrightarrow l \text { splits completely in } \mathbb{Q}\left(\zeta_{16}\right) \\
& \Leftrightarrow l \equiv 1 \bmod 16 .
\end{aligned}
$$

4. The composite and two theorems. In this section we consider the composite field $N_{1} N_{2} \mathbb{Q}\left(\zeta_{16}\right)$. Set

$$
L=N_{1} N_{2} \mathbb{Q}\left(\zeta_{16}\right)
$$

Note that $[L: \mathbb{Q}]=64$. As N_{1}, N_{2}, and $\mathbb{Q}\left(\zeta_{16}\right)$ are normal extensions of \mathbb{Q}, L is a normal extension of \mathbb{Q}.

For $l \in \Omega, l$ is unramified in L as it is unramified in N_{1}, N_{2}, and $\mathbb{Q}\left(\zeta_{16}\right)$. The Artin symbol $\left(\frac{L / \mathbb{Q}}{\beta}\right)$ is now defined for some prime β of \mathcal{O}_{L} containing l. Let $\left(\frac{L / \mathbb{Q}}{l}\right)$ denote the conjugacy class of $\left(\frac{L / \mathbb{Q}}{\beta}\right)$ in $\operatorname{Gal}(L / \mathbb{Q})$. Letting $M=$ $\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{-p}) \subset L$, we prove

Lemma 4.1. $Z(\operatorname{Gal}(L / \mathbb{Q}))=\operatorname{Gal}(L / M)$ is elementary abelian of order 8.

Proof. For $\sigma \in \operatorname{Gal}(L / M), \sigma$ can only change the sign of $\sqrt{\varepsilon}, \sqrt{\pi}$, and $\sqrt{\zeta_{8}}$ as $\varepsilon \in M$. Since $L=M\left(\sqrt{\varepsilon}, \sqrt{\pi}, \sqrt{\zeta_{8}}\right), \operatorname{Gal}(L / M)$ is elementary abelian of order 8. Now consider the restrictions $r_{1}: G_{1} \rightarrow \operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$ and $r_{2}: G_{2} \rightarrow \operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$ where $G_{1}=\operatorname{Gal}\left(N_{1} / \mathbb{Q}\right)$ and $G_{2}=\operatorname{Gal}\left(N_{2} / \mathbb{Q}\right)$. Clearly $\left.r_{1}\right|_{Z\left(G_{1}\right)}$ and $\left.r_{1}\right|_{Z\left(G_{2}\right)}$ are both trivial. Then by Lemma 2.2(ii), $Z(\mathcal{G})$ is elementary abelian of order 4 where $\mathcal{G}=\operatorname{Gal}\left(N_{1} N_{2} / \mathbb{Q}\right)$. Now consider the restrictions $R_{1}: \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{16}\right) / \mathbb{Q}\right) \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right)$ and $R_{2}:$ $\mathcal{G} \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right)$. Note that $\operatorname{ker}\left(R_{1}\right)$ is cyclic of order 2 and $Z(\mathcal{G})=$ $\operatorname{Gal}(M / \mathbb{Q})$. Thus $\left.R_{2}\right|_{Z(\mathcal{G})}$ is trivial and so by the above and Lemma 2.2(i), $Z(\operatorname{Gal}(L / \mathbb{Q})) \cong \mathbb{Z} / 2 \mathbb{Z} \times Z(\mathcal{G})=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Thus $Z(\operatorname{Gal}(L / \mathbb{Q}))=$ $\operatorname{Gal}(L / M)$.

Now for $l \in \Omega, l$ splits completely in $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{2}, \sqrt{-p})$ and so splits completely in the composite field $M=\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{-p})$. From Lemma 4.1, $L^{Z(\operatorname{Gal}(L / \mathbb{Q}))}=\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{-p})$. So by Lemma 2.1, we have

$$
\left(\frac{L / \mathbb{Q}}{l}\right)=\{k\} \subset Z(\operatorname{Gal}(L / \mathbb{Q})) \quad \text { for some } k \in \operatorname{Gal}(L / \mathbb{Q})
$$

As $Z(\operatorname{Gal}(L / \mathbb{Q}))$ has order 8 , there are eight possible choices for $\left(\frac{L / \mathbb{Q}}{l}\right)$. Using Remarks 3.1, 3.4, and 3.5, we now make the following one-to-one correspondences.

REMARK 4.2. (i) $\left(\frac{L / \mathbb{Q}}{l}\right)=\{\mathrm{id}\} \Leftrightarrow l$ splits completely in $L \Leftrightarrow$

$$
\left\{\begin{array}{l}
l \text { splits completely in } N_{1}, \\
N_{2}, \text { and } \mathbb{Q}\left(\zeta_{16}\right)
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
l \text { satisfies }\langle 1,32\rangle \\
l \text { satisfies }\langle 1,2 p\rangle \\
l \equiv 1 \bmod 16
\end{array}\right\}
$$

(ii) $\left(\frac{L / \mathbb{Q}}{l}\right) \neq\{\mathrm{id}\} \Leftrightarrow l$ does not split completely in L. Now there are
seven cases:
(1) $\left\{\begin{array}{l}l \text { splits completely in } N_{1}, \\ \text { but does not in } N_{2} \text { or } \mathbb{Q}\left(\zeta_{16}\right)\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}l \text { satisfies }\langle 1,32\rangle \\ l \text { satisfies }\langle 2, p\rangle \\ l \equiv 9 \bmod 16\end{array}\right\}$,
$\left\{\begin{array}{l}l \text { splits completely in } N_{1} \\ \text { and } N_{2}, \text { but does not in } \mathbb{Q}\left(\zeta_{16}\right)\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}l \text { satisfies }\langle 1,32\rangle \\ l \text { satisfies }\langle 1,2 p\rangle \\ l \equiv 9 \bmod 16\end{array}\right\}$,
$\left\{\begin{array}{l}l \text { splits completely in } \\ N_{2}, \text { but does not in } N_{1} \\ \text { or } \mathbb{Q}\left(\zeta_{16}\right)\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}l \text { does not satisfy }\langle 1,32\rangle \\ l \text { satisfies }\langle 1,2 p\rangle \\ l \equiv 9 \bmod 16\end{array}\right\}$,
$\left\{\begin{array}{l}l \text { splits completely in } \\ N_{2} \text { and } \mathbb{Q}\left(\zeta_{16}\right), \\ \text { but does not in } N_{1}\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}l \text { does not satisfy }\langle 1,32\rangle \\ l \text { satisfies }\langle 1,2 p\rangle \\ l \equiv 1 \bmod 16\end{array}\right\}$,
$\left\{\begin{array}{l}l \text { splits completely in } N_{1} \\ \text { and } \mathbb{Q}\left(\zeta_{16}\right), \text { but does not in } N_{2}\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}l \text { satisfies }\langle 1,32\rangle \\ l \text { satisfies }\langle 2, p\rangle \\ l \equiv 1 \bmod 16\end{array}\right\}$,

$$
\left\{\begin{array}{l}
l \text { splits completely in } \\
\mathbb{Q}\left(\zeta_{16}\right), \text { but does not in } N_{1} \\
\text { or } N_{2}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
l \text { does not satisfy }\langle 1,32\rangle \\
l \text { satisfies }\langle 2, p\rangle \\
l \equiv 1 \bmod 16
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
l \text { does not split completely } \tag{7}\\
\text { in } N_{1}, N_{2}, \text { or } \mathbb{Q}\left(\zeta_{16}\right)
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
l \text { does not satisfy }\langle 1,32\rangle \\
l \text { satisfies }\langle 2, p\rangle \\
l \equiv 9 \bmod 16
\end{array}\right\}
$$

Now using Theorems 5.2-5.5 from [1], we relate each Artin symbol ($\frac{L / \mathbb{Q}}{l}$) to each of the eight possible tuples of 4-ranks.

Remark 4.3. From Remark 4.2, case (i) occurs if and only if we have $(2,2,1,1)$. For case (ii),

- (1) occurs if and only if we have $(1,2,0,1)$,
- (2) occurs if and only if we have $(2,1,1,0)$,
- (3) occurs if and only if we have $(2,1,0,1)$,
- (4) occurs if and only if we have $(2,2,0,0)$,
- (5) occurs if and only if we have $(1,1,0,0)$,
- (6) occurs if and only if we have $(1,1,1,1)$,
- (7) occurs if and only if we have $(1,2,1,0)$.

We can now prove Theorem 1.2.
Proof. Consider the set $X=\left\{l\right.$ prime $: l$ is unramified in L and $\left(\frac{L / \mathbb{Q}}{l}\right)$ $=\{k\} \subset Z(\operatorname{Gal}(L / \mathbb{Q}))\}$ for some $k \in \operatorname{Gal}(L / \mathbb{Q})$. By the Chebotarev Density Theorem, the set X has natural density $1 / 64$ in the set of all primes. Recall

$$
\Omega=\left\{l \text { rational prime }: l \equiv 1 \bmod 8 \text { and }\left(\frac{l}{p}\right)=\left(\frac{p}{l}\right)=1\right\}
$$

for some fixed prime $p \equiv 7 \bmod 8$. By Dirichlet's Theorem on primes in arithmetic progressions, Ω has natural density $1 / 8$ in the set of all primes. Thus X has natural density $1 / 8$ in Ω. By Remarks 4.2 and 4.3 , each of the eight choices for $\left(\frac{L / \mathbb{Q}}{l}\right)$ is in one-to-one correspondence with each of the possible tuples of 4 -ranks. Thus each of the eight possible tuples of 4-ranks appear with natural density $1 / 8$ in Ω.

Now we can prove Theorem 1.1.
Proof. We see from Remark 4.3 that:

- 4-rank $K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{p l})}\right)=1$ in cases (ii)(1), (5), (6), (7),
- 4-rank $K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{2 p l})}\right)=2$ in cases (i) and (ii)(1), (4), (7),
- 4-rank $K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{-p l})}\right)=0$ in cases (ii)(1), (3), (4), (5),
- 4-rank $K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{-2 p l})}\right)=1$ in cases (i) and (ii)(1), (3), (6).

As each of the 4-rank tuples occur with natural density $1 / 8$, for the fields $\mathbb{Q}(\sqrt{p l})$ and $\mathbb{Q}(\sqrt{2 p l})$, we have 4-rank 1 and 2 each appear with natural density $4 \cdot \frac{1}{8}=\frac{1}{2}$ in Ω. For the fields $\mathbb{Q}(\sqrt{-p l})$ and $\mathbb{Q}(\sqrt{-2 p l}), 4$-rank 0 and 1 each appear with natural density $4 \cdot \frac{1}{8}=\frac{1}{2}$ in Ω.

Appendix. The following tables motivated possible density results of 4 -ranks of tame kernels. We consider primes $l \in \Omega$ with $l \leq N$ for a fixed prime $p \equiv 7 \bmod 8$ and positive integer N. For Table 1, we consider the sets $\Omega_{1}, \ldots, \Omega_{4}$ and $\Lambda_{1}, \ldots, \Lambda_{4}$ as in the introduction. For Table 2, we consider the sets

$$
\begin{aligned}
I_{1} & =\{l \in \Omega: 4 \text {-rank tuple is }(1,1,0,0)\}, \\
I_{2} & =\{l \in \Omega: 4 \text {-rank tuple is }(1,1,1,1)\}, \\
I_{3} & =\{l \in \Omega: 4 \text {-rank tuple is }(2,1,1,0)\}, \\
I_{4} & =\{l \in \Omega: 4 \text {-rank tuple is }(2,1,0,1)\}, \\
I_{5} & =\{l \in \Omega: 4 \text {-rank tuple is }(1,2,1,0)\}, \\
I_{6} & =\{l \in \Omega: 4 \text {-rank tuple is }(1,2,0,1)\}, \\
I_{7} & =\{l \in \Omega: \text { 4-rank tuple is }(2,2,0,0)\}, \\
I_{8} & =\{l \in \Omega: \text { 4-rank tuple is }(2,2,1,1)\} .
\end{aligned}
$$

Table 1

Primes	$p=7$		$p=23$		$p=31$	
Cardinality	$N=1000000$	$\%$	$N=1000000$	$\%$	$N=1000000$	$\%$
$\|\Omega\|$	9730		9742		9754	
$\left\|\Omega_{1}\right\|$	4866	50.01	4905	50.35	4916	50.40
$\left\|\Omega_{2}\right\|$	4864	49.99	4837	49.65	4838	49.60
$\left\|\Omega_{3}\right\|$	4866	50.01	4911	50.41	4851	49.73
$\left\|\Omega_{4}\right\|$	4864	49.99	4831	49.59	4903	50.27
$\left\|\Lambda_{1}\right\|$	4878	50.13	4912	50.42	4930	50.54
$\left\|\Lambda_{2}\right\|$	4852	49.87	4830	49.58	4824	49.46
$\left\|\Lambda_{3}\right\|$	4878	50.13	4876	50.05	4943	50.68
$\left\|\Lambda_{4}\right\|$	4852	49.87	4866	49.95	4811	49.32

Table 2

Primes	$p=7$		$p=23$		$p=31$	
Cardinality	$N=1000000$	$\%$	$N=1000000$	$\%$	$N=1000000$	$\%$
$\|\Omega\|$	9730		9742		9754	
$\left\|I_{1}\right\|$	1215	12.49	1246	12.79	1246	12.77
$\left\|I_{2}\right\|$	1213	12.46	1229	12.62	1203	12.33
$\left\|I_{3}\right\|$	1228	12.62	1211	12.43	1214	12.45
$\left\|I_{4}\right\|$	1210	12.44	1225	12.57	1188	12.18
$\left\|I_{5}\right\|$	1210	12.44	1204	12.36	1227	12.58
$\left\|I_{6}\right\|$	1228	12.62	1226	12.58	1240	12.71
$\left\|I_{7}\right\|$	1225	12.59	1215	12.47	1256	12.88
$\left\|I_{8}\right\|$	1201	12.34	1186	12.17	1180	12.10

Acknowledgments. I would like to thank the referee for the valuable comments and suggestions. I also deeply thank P. E. Conner and my advisor, J. Hurrelbrink.

References

[1] P. E. Conner and J. Hurrelbrink, On the 4-rank of the tame kernel $K_{2}(\mathcal{O})$ in positive definite terms, J. Number Theory 88 (2001), 263-282.
[2] -, —, Class Number Parity, Ser. Pure Math. 8, World Sci., Singapore, 1988.
[3] H. Garland, A finiteness theorem for K_{2} of a number field, Ann. of Math. 94 (1971), 534-548.
[4] J. Hurrelbrink and M. Kolster, Tame kernels under relative quadratic extensions and Hilbert symbols, J. Reine Angew. Math. 499 (1998), 145-188.
[5] G. Janusz, Algebraic Number Fields, Academic Press, New York, 1973.
[6] C. U. Jensen and N. Yui, Quaternion Extensions, in: Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, Tokyo, 1988, 155-182.
[7] J. Milnor, An Introduction to Algebraic K-Theory, Ann. of Math. Stud. 72, Princeton Univ. Press, Princeton, 1971.
[8] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169.
[9] -, The 4-rank of $K_{2} O_{F}$ for real quadratic fields F, ibid. 72 (1995), 323-333.
[10] D. Quillen, Higher algebraic K-theory, in: Algebraic K-Theory I, Lecture Notes in Math. 341, Springer, New York, 1973, 85-147.
[11] J. Tate, Relations between K_{2} and Galois cohomology, Invent. Math. 36 (1976), 257-274.
[12] A. Vazzana, 4-ranks of K_{2} of rings of integers in quadratic number fields, Ph.D. thesis, University of Michigan, 1998.
[13] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), 493-540.

Department of Mathematics
Louisiana State University
Baton Rouge, LA 70803, U.S.A.
E-mail: osburn@math.lsu.edu

Received on 5.2.2001
and in revised form on 12.7.2001

[^0]: 2000 Mathematics Subject Classification: Primary 11R70, 19F99; Secondary 11R11, 11R45.

