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1. Introduction. Let α be an irrational real number. In 1879 Markoff
[6], using the theory of quadratic forms, proved that there exist infinitely
many positive integers q satisfying the inequality

(1.1) q‖αq‖ ≤ 1/
√

5,

where ‖ · ‖ denotes the distance to the nearest integer function. Furthermore,
the constant 1/

√
5 is best possible. Twelve years later, Hurwitz [5] offered

a more direct argument and as a consequence this well-known result often
bears his name.

While we carefully define all objects and notation in the following two
sections, here we briefly review Markoff’s fundamental observations. If we
consider only those irrational α for which inequality (1.1) is not best possible,
then (1.1) can be replaced by the sharper inequality

q‖αq‖ ≤ 1/
√

8,

and this inequality cannot be improved for certain α. Repeating this pro-
cess we generate a sequence of best possible constants which comprise the
smallest values of the Lagrange spectrum. This sequence, which begins with
µ1 =

√
5, µ2 =

√
8, µ3 =

√
221/5, µ4 =

√
1517/13, was explicitly given

by Markoff in terms of the sequence of integers known as Markoff numbers
m1,m2, . . . arising from integer solutions to the diophantine equation

x2 + y2 + z2 = 3xyz.

In particular,

(1.2) µr =

√
9m2

r − 4
mr

.

Moreover the constant µr is best possible for any α equivalent to αmr as
defined in (3.2). In particular, we note that αm1 = (−1 +

√
5)/2 and αm2 =
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−1 +
√

2. It follows from (1.2) that the smallest accumulation point of the
Lagrange spectrum is 3.

In 1947, Davenport asked for the best constant when only a fixed, finite
number of solutions to an inequality of the form (1.1) is desired. The answer
was quickly found by Prasad [7] (see also [9]) and is given here as

Theorem 1.1. For n = 1, 2, . . . , let

C1(n) =
1 +
√

5
2

+
p2n−1

q2n−1
,

where pl/ql denotes the lth convergent of (−1 +
√

5)/2. Then for any irra-
tional number α, the inequality

q‖αq‖ ≤ 1/C1(n)

has at least n positive integer solutions q. Moreover , for any n, the constant
C1(n) cannot be improved when α = (−1 +

√
5)/2.

Theorem 1.1 inspired the problem of finding the best possible constants
C2(n) for those α not equivalent to αm1 . These constants were found by
Eggan [4] in 1961. In particular he showed that

C2(n) = 1 +
√

2 +
p2n−1

q2n−1
,

where pl/ql denotes the lth convergent of −1+
√

2. These constants are best
possible for α = −1 +

√
2. In 1971, Prasad and Prasad [8] showed that

C3(n) =
11 +

√
221

10
+
p4n−1

q4n−1
,

where pl/ql denotes the lth convergent of αm3 . These constants are best
possible for α = αm3 = (−11 +

√
221)/10.

While for the first three values of r, the constant Cr(n) equals the sum
of −αmr and a convergent of αmr , the question of finding an explicit formu-
lation for Cr(n) in general remained open. It is clear from the definition of
Cr(n) that

lim
n→∞

Cr(n) = µr.

However, while previous results give the best possible constant for all n in
the cases r = 1, 2, and 3, a question of greater interest is to explicitly find,
for example, Cr(1) for r = 1, 2, . . . This sequence would be the analogue of
the Lagrange spectrum in the case when only one solution is desired. Clearly,
finding the first accumulation point of this new spectrum as r → ∞ would
be of interest.

In this paper we resolve all these issues by explicitly computing Cr(n)
for arbitrary r and n. While we can define the values Cr(n) in a manner
sympathetic to the previously known values, in practice, it may be awkward
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to have the convergents appearing in the formulation. Thus we first provide
a definition for Cr(n) that depends only on n and the rth Markoff number
mr. In this direction, for a fixed, positive integer r, we define the recurrence
sequence Zr(n) by Zr(0) = 0, Zr(1) = 1, and for n > 1,

Zr(n) = 3mrZr(n− 1)− Zr(n− 2).

We may now state our main result as

Theorem 1.2. For positive integers r and n,

(1.3) Cr(n) =

√
9m2

r − 4
2mr

+
3
2
− Zr(n− 1)

mrZr(n)
.

More precisely , for an irrational number α not equivalent to αms for any s,
s < r, the inequality

q‖αq‖ ≤ 1/Cr(n)

has at least n positive integer solutions q. Moreover , the constant Cr(n) is
best possible for α = αmr .

From (1.2), it immediately follows that

(1.4) Cr(n) =
3 + µr

2
− Zr(n− 1)

mrZr(n)
.

In particular, we see that for all r,

Cr(1) = (3 + µr)/2.

It also follows from Lemma 4.2 that for any fixed r ≥ 1, Cr(n) is decreasing
as a function of n, and

lim
n→∞

Cr(n) = µr.

Hence the explicit formulation of Cr(n) given in Theorem 1.2 provides a
quantitative version of Markoff’s results on the Lagrange spectrum.

Furthermore, another application of Lemma 4.2 allows us to deduce the
following interesting corollary.

Corollary 1.3. Let Cr(n) be as defined in Theorem 1.2. Then

lim
r→∞

Cr(n) = 3.

Thus we conclude that for any fixed n, the first accumulation point in the
spectrum of best possible constants for which there are at least n solutions
to the associated diophantine inequality is equal to the first accumulation
point of the best possible constants that ensure infinitely many solutions.

As will be shown in Section 4, we can also express Cr(n) in terms of αmr
and its convergents, thus producing a formulation that is more in sympathy
with previous results.
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Theorem 1.4. Let Cr(n) be as defined in Theorem 1.2. For r = 1 and
r = 2, let L = 2, and for r ≥ 3, let L denote the smallest period length of
the continued fraction expansion for αmr . Then

Cr(n) = −αmr +
pnL−1

qnL−1
,

where pl/ql denotes the lth convergent of αmr and αmr denotes the conju-
gate of αmr .

Our work involves a number of generalizations and extensions of known
results that may be of some independent interest. For example, our results
allow us to deduce the following theorem (see the remark at the end of
Section 5).

Theorem 1.5. For r ≥ 3, let L denote the minimum period length of
the continued fraction expansion for αmr . Then the convergent pt/qt of αmr
satisfies

1
µrq2

t

<

∣∣∣∣αmr −
pt
qt

∣∣∣∣
if and only if t is a positive integer satisfying t 6≡ −1 mod L.

Thus, while it is well known that there are infinitely many solutions to∣∣∣∣αmr −
pk
qk

∣∣∣∣ ≤
1

µrq2
k

,

in view of Theorem 1.5 we now see that those solutions are precisely those
pk/qk for which the index k is congruent to −1 modulo L.

Acknowledgments. Funding for this project was provided, in part, by
a grant from the National Science Foundation.

2. Basic results involving continued fractions. Here we quickly re-
view the classical theory of continued fractions (see, for example, [1], Mod-
ules 4 and 5). For a real number α, we denote its (simple) continued fraction
expansion by

α = a0 +
1

a1 +
1

a2 +
1
.. .

= [a0, a1, a2, . . .].

We write
pn
qn

= [a0, a1, . . . , an]

for the nth convergent of α and (α)n = [an, an+1, . . .] for the nth complete
quotient of α. For n > 1, pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1.
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As ∣∣∣∣α−
pn
qn

∣∣∣∣ =
1

qn((α)n+1qn + qn−1)
,

it follows that ∣∣∣∣α−
pn
qn

∣∣∣∣ =
1

Anq2
n

,

where
An = [an+1, an+2, . . .] + [0, an, an−1, . . . , a1].

Also we recall that
p0

q0
<
p2

q2
< . . . < α < . . . <

p3

q3
<
p1

q1
.

Two irrational numbers α and β are equivalent, α ∼ β, if from some
point onward their continued fraction expansions agree. Alternatively, α ∼ β
if and only if β is a linear fractional transformation of α, that is, if and only
if there exist integers A,B,C,D satisfying AD −BC = ±1 and

β =
Aα+B

Cα+D
.

The continued fraction for α is periodic if and only if α is a quadratic
irrational. If α is a quadratic irrational, we denote its continued fraction
expansion as

α = [a0, a1, . . . , an, an+1, an+2, . . . , an+k ],

where (an+1, an+2, . . . , an+k) denotes a periodic string.
Finally, for a positive integer t, we introduce the notation

[a0, a1, . . . , an, (an+1, an+2, . . . , an+k)t, . . .]

to indicate that the string (an+1, an+2, . . . , an+k) is repeated t times.

3. Markoff forms and the Lagrange spectrum. In this section we
provide an overview of the fundamental work of Markoff [6] (see [2, Chapter
II] or [3, Chapter 2]). A positive integer m is a Markoff number if there
exist positive integers r, s, satisfying r < s < m with m, r, and s pairwise
relatively prime, such that the triple (m, r, s) is a solution to the diophantine
equation

x2 + y2 + z2 = 3xyz.

We let u denote the smallest positive integer satisfying u ≡ ±rs−1 mod m.
In view of the previous diophantine equation, there must exist a positive
integer v such that u2 + 1 = vm. Moreover, for m 6= 1, 2, we have

(3.1) 2v < u < 3v and 2u < m < 3u.
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For a Markoff number m, we define its associated Markoff form fm(x, y)
by

fm(x, y) = mx2 + (3m− 2u)xy + (v − 3u)y2.

By classical results it follows that

min{|fm(x, y)| : (x, y) ∈ Z2, (x, y) 6= (0, 0)} = fm(1, 0) = fm(u,m) = m.

We write αm for the positive root of fm(x, 1) = 0, that is,

(3.2) αm =
2u− 3m+

√
9m2 − 4

2m
,

and we remark that the conjugate of αm, αm, is equivalent to αm, and
satisfies αm < −1, while 0 < αm < 1. In order to clarify notation, we note
that in this paper, αm always represents the quantity defined in (3.2) while
(α)n denotes the nth complete quotient associated with a number α.

Clearly we can write fm(x, y) = m(αmy−x)(αmy−x). If αm ∼ β, where

β =
Dαm −B
−Cαm +A

,

AD −BC = 1, then

(3.3) fm(Ax+By,Cx+Dy)

= m(A− Cαm)(A− C αm)(βy − x)(βy − x).

We order the Markoff numbers and denote them by m1 < m2 < . . . . So,
for example, 1, 2, 5, 13, 29 are the first five Markoff numbers. We write ur
and vr for the integers u and v associated with the Markoff number mr.

The basic structure of the continued fraction expansion for αmr is some-
what understood. In particular, αm1 = [0, 1 ], αm2 = [0, 2 ], and for r ≥ 3,

αmr = [0, d1, d2, . . . , dL ] = [0, 2,W, 1, 1, 2 ],

where L = L(r) is an even integer, and W = W (r) is a (possibly empty)
string of 1’s and 2’s and is a palindrome. Moreover, any run of 1’s or 2’s in
the string W is of even length. It will be convenient to write αm1 = [0, 1, 1 ],
αm2 = [0, 2, 2 ]; that is, we declare L(1) = L(2) = 2. In all other cases, L
denotes the length of the smallest periodic string of partial quotients.

Given an irrational number α, a fundamental question in diophantine
approximation is to find the best possible constant µ(α) such that there
exist infinitely many positive integers q satisfying

q‖αq‖ ≤ 1/µ(α).

Thus
µ(α)−1 = lim inf

q→∞
q‖αq‖.

The collection of all such constants µ(α) is referred to as the Lagrange
spectrum.
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Markoff discovered that

µ(αmr) =
√

9m2
r − 4/mr,

which we denote as µr, and produced the following celebrated result.

Theorem 3.1. Let α be an irrational number not equivalent to αm1 ,
αm2 , . . . , αmr−1 . Then there are infinitely many positive integers q satisfying

q‖αq‖ ≤ 1/µr.

Furthermore, the constant µr is best possible for any α equivalent to αmr .

Thus the Markoff constants, µr, are the smallest elements in the La-
grange spectrum. It also immediately follows that the smallest accumulation
point of the Lagrange spectrum is 3.

4. Recurrence sequences and auxiliary quadratic forms. For a
fixed, positive integer r, we define the recurrence sequence Zr(n) by Zr(0) =
0, Zr(1) = 1, and for n > 1,

(4.1) Zr(n) = 3mrZr(n− 1)− Zr(n− 2).

We begin with two basic observations. The first identity immediately
follows by induction and thus we suppress its proof.

Lemma 4.1. For positive integers r and n,

(4.2) Zr(n)2 + Zr(n− 1)2 − 3mrZr(n)Zr(n− 1) = 1.

Lemma 4.2. For a fixed positive integer r, Zr(n− 1)/Zr(n) is a strictly
increasing function of n and

lim
n→∞

Zr(n− 1)
Zr(n)

=
3mr −

√
9m2

r − 4
2

.

If the integer n ≥ 1 is viewed as fixed , then Zr(n− 1)/Zr(n) is a decreasing
function of r. Finally , for any positive integers r and n,

Zr(n− 1)
Zr(n)

<
3−
√

5
2

.

Proof. We first fix r and write Z(n) for Zr(n). Two direct calcula-
tions reveal that Z(0)/Z(1) = 0 and Z(1)/Z(2) = 1/(3mr), and thus
Z(0)/Z(1) < Z(1)/Z(2). We now assume that for some n,

Z(n− 1)/Z(n) < Z(n)/Z(n+ 1),

or equivalently,
−Z(n)2 < −Z(n+ 1)Z(n− 1).

After adding 3mrZ(n)Z(n + 1) to both sides of the previous inequality
and recalling the recurrence Z(n + 2) = 3mrZ(n + 1) − Z(n), we see that
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Z(n+ 2)Z(n) < Z(n+ 1)2, which implies

Z(n)
Z(n+ 1)

<
Z(n+ 1)
Z(n+ 2)

.

Thus Zr(n− 1)/Zr(n) is a strictly increasing function of n.
The characteristic polynomial associated with the recurrence for Zr(n)

is easily seen to be X2− 3mrX + 1. Thus, after computing the smaller zero
of this polynomial, it follows that

lim
n→∞

Zr(n− 1)
Zr(n)

=
3mr −

√
9m2

r − 4
2

.

Adopting the previous induction argument and recalling the fact that
the Markoff numbers mr are increasing, one can verify that for s < r, the
inequality

Zr(n− 1)
Zr(n)

≤ Zs(n− 1)
Zs(n)

holds for all n ≥ 1. Thus for fixed n, Zr(n−1)/Zr(n) is a decreasing function
of r.

Combining the above observations and recalling that m1 = 1, we con-
clude that

Zr(n− 1)
Zr(n)

≤ Z1(n− 1)
Z1(n)

<
3m1 −

√
9m2

1 − 4
2m1

=
3−
√

5
2

,

which completes the proof.

Let Cr(n) be as defined in (1.3). Then Lemma 4.2 and identity (1.2)
reveal

lim
n→∞

Cr(n) = lim
n→∞

√
9m2

r − 4
2mr

+
3
2
− 3mr −

√
9m2

r − 4
2mr

= µr,

as claimed in Section 1. Furthermore, the inequality of Lemma 4.2 immedi-
ately implies

√
9m2

r − 4
2mr

+
3
2
−
√

5− 3
2mr

< Cr(n) ≤
√

9m2
r − 4

2mr
+

3
2
.

Thus we conclude that limr→∞ Cr(n) = 3, which establishes Corollary 1.3.
We now explore several important connections between the recurrence

sequence Zr(n) and the numbers αmr . We inspire these connections by first
recalling the following well known result (see, for example, [3, pp. 23–24]).

Lemma 4.3. If αmr = [0, d1, . . . , dL ], then pL−1 = ur, qL−1 = mr, and
pL = 3ur − vr, and qL = 3mr − ur.

Using the recurrence sequence Zr(n), we now extend this classical result.
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Theorem 4.4. If αmr = [0, d1, . . . , dL ], then for n ≥ 1,
(4.3) pnL−1 = urZr(n)− Zr(n− 1), qnL−1 = mrZr(n).

Proof. Let r ≥ 1 be fixed. We first claim that for all n ≥ 1,
pnL−1

qnL−1
=
p(n−1)L+(L−1)

q(n−1)L+(L−1)
= [0, (d1, . . . , dL)n−1, d1, . . . , dL−1](4.4)

=
urZr(n)− Zr(n− 1)

mrZr(n)
.

By the previous lemma we have
pL−1

qL−1
=

ur
mr

.

As Zr(1) = 1 and Zr(0) = 0, it follows that
urZr(n)−Zr(n− 1)

mrZr(n)
=

ur
mr

,

and thus (4.4) holds for n = 1.
Next we assume that for some n,
pnL−1

qnL−1
= [0, (d1, . . . , dL)n−1, d1, . . . , dL−1] =

urZr(n)− Zr(n− 1)
mrZr(n)

,

and therefore

[(d1, . . . , dL)n−1, d1, . . . , dL−1] =
mrZr(n)

urZr(n)− Zr(n− 1)
.

Hence we can write
p(n+1)L−1

q(n+1)L−1
= [0, (d1, . . . , dL)n, d1, . . . , dL−1]

= [0, d1, . . . , dL, (d1, . . . , dL)n−1, d1, . . . , dL−1]

=
[
0, d1, d2, . . . , dL,

mrZr(n)
urZr(n)− Zr(n− 1)

]
,

which, together with a well known identity involving continued fractions,
yields

p(n+1)L−1

q(n+1)L−1
=
pL
( mrZr(n)
urZr(n)−Zr(n−1)

)
+ pL−1

qL
( mrZr(n)
urZr(n)−Zr(n−1)

)
+ qL−1

.

Therefore Lemma 4.3, together with the recurrence Zr(n+1) = 3mrZr(n)−
Zr(n− 1), and the identity u2

r + 1 = vrmr imply

p(n+1)L−1

q(n+1)L−1
=
pL
( mrZr(n)
urZr(n)−Zr(n−1)

)
+ pL−1

qL
( mrZr(n)
urZr(n)−Zr(n−1)

)
+ qL−1

=
(3ur − vr)

( mrZr(n)
urZr(n)−Zr(n−1)

)
+ ur

(3mr − ur)
( mrZr(n)
urZr(n)−Zr(n−1)

)
+mr
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=
3urmrZr(n)− vrmrZr(n) + u2

rZr(n)− urZr(n− 1)
3m2

rZr(n)− urmrZr(n) +mrurZr(n)−mrZr(n− 1)

=
3urmrZr(n)−Zr(n)− urZr(n− 1)

3m2
rZr(n)−mrZr(n− 1)

=
ur(3mrZr(n)− Zr(n− 1))− Zr(n)

mr(3mrZr(n)−Zr(n− 1))

=
urZr(n+ 1)−Zr(n)

mrZr(n+ 1)
,

which establishes our claim.
Finally, we demonstrate that urZr(n) − Zr(n − 1) and mrZr(n) are

relatively prime. To establish this assertion, we apply the identity u2
r + 1 =

vrmr and Lemma 4.1 to deduce

(vrZr(n)− 3Zr(n− 1))(mrZr(n))

− (urZr(n) + Zr(n− 1))(urZr(n)− Zr(n− 1))

= mrvrZr(n)2 − 3mrZr(n)Zr(n− 1)

− (u2
rZr(n)2 + urZr(n)Zr(n− 1)− urZr(n)Zr(n− 1)− Zr(n− 1)2)

= (mrvr − u2
r)Zr(n)2 + Zr(n− 1)2 − 3mrZr(n)Zr(n− 1)

= Zr(n)2 + Zr(n− 1)2 − 3mrZr(n)Zr(n− 1) = 1.

Thus we have

(4.5) gcd(urZr(n)− Zr(n− 1),mrZr(n))

= gcd(vrZr(n)− 3Zr(n− 1), urZr(n) + Zr(n− 1)) = 1,

which, in view of our claim, completes the proof.

The previous theorem and the definition of αmr given in (3.2), imply

−αmr +
pnL−1

qnL−1

= −2ur − 3mr −
√

9m2
r − 4

2mr
+
urZr(n)− Zr(n− 1)

mrZr(n)

=

√
9m2

r − 4
2mr

+
2urZr(n)− 2Zr(n− 1)− 2urZr(n) + 3mrZr(n)

2mrZr(n)

=

√
9m2

r − 4
2mr

+
3
2
− Zr(n− 1)

mrZr(n)

= Cr(n).

Thus as an immediate consequence of Theorem 4.4 we have the following.
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Corollary 4.5. Let pl/ql denote the lth convergent of αmr . Then

Cr(n) = −αmr +
pnL−1

qnL−1
.

An adaptation of the argument used in Theorem 4.4 together with iden-
tity (4.2) allow us to deduce the following result which we state without
proof.

Theorem 4.6. Given the notation as in Theorem 4.4, for r ≥ 3 and
n ≥ 1,

(4.6) pnL−3 = vrZr(n)− 3Zr(n− 1), qnL−3 = urZr(n) + Zr(n− 1).

Moreover

(4.7) qnL−3pnL−1 − pnL−3qnL−1 = −1.

We now define a sequence of auxiliary quadratic irrational numbers λr(n)
that allow us to better understand the diophantine nature of αmr . Specif-
ically, we exploit a connection between these auxiliary numbers and the
convergents of αmr . For integers r ≥ 3 and n ≥ 1, we define

(4.8) λr(n) =
pnL−3 − pnL−1αmr
qnL−3 − qnL−1αmr

,

where, again, pl/ql denotes the lth convergent associated with αmr . We note
that in view of identity (4.7), λr(n) is equivalent to αmr .

Lemma 4.7. Let r ≥ 3 be a fixed integer. Then λr(1) = 3+αmr , and for
n ≥ 2, λr(n) satisfies the recurrence relation

λr(n) =
urλr(n− 1) + (3ur − vr)
mrλr(n− 1) + (3mr − ur)

.

Proof. By Lemma 4.3, we have pL−1/qL−1 = ur/mr and by a similar
classical result, pL−3/qL−3 = vr/ur. Thus,

λr(1) =
vr − urαmr
ur −mrαmr

,

which, in view of (3.2) and vrmr − u2
r = 1, reveals λr(1) = 3 + αmr .

Next, substituting identity (4.8) into the expression

urλr(n) + (3ur − vr)
mrλr(n) + (3mr − ur)

,

and applying Theorems 4.4 and 4.6, we conclude that

(4.9)
urλr(n) + (3ur − vr)
mrλr(n) + (3mr − ur)

=
(3ur − vr)qnL−3 + urpnL−3 − ((3ur − vr)qnL−1 + urpnL−1)αmr

(3mr − ur)qnL−3 +mrpnL−3 − ((3mr − ur)qnL−1 + urpnL−1)αmr
.
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In view of Theorems 4.4 and 4.6, the identity u2
r + 1 = vrmr, and the

recursion relation for Zr(n), we see

(3ur − vr)qnL−1 + urpnL−1

= (3ur − vr)mrZr(n) + ur(urZr(n)− Zr(n− 1))

= ur(3mrZr(n)− Zr(n− 1)) + (u2
r −mrvr)Zr(n)

= urZr(n+ 1)− Zr(n)

= p(n+1)L−1.

Similar arguments reveal that

(3ur − vr)qnL−3 + urpnL−3 = p(n+1)L−3,

(3mr − ur)qnL−1 +mrpnL−1 = q(n+1)L−1,

(3mr − ur)qnL−3 +mrpnL−3 = q(n+1)L−3.

These four identities, together with (4.9), imply

urλr(n) + (3ur − vr)
mrλr(n) + (3mr − ur)

=
p(n+1)L−3 − p(n+1)L−1αmr
q(n+1)L−3 − q(n+1)L−1αmr

= λr(n+ 1),

which completes the proof.

Lemma 4.8. For integers r ≥ 3 and n ≥ 1,

|λr(n)− λr(n)| =
√

9m2
r − 4

mr(qnL−3 − qnL−1αmr )(qnL−3 − qnL−1αmr )
,

where pl/ql denotes the lth convergent of αmr .

The lemma follows easily from the definition of λr(n) together with The-
orem 4.6 and the observation that

αmr − αmr =
√

9m2
r − 4/mr.

We now produce a critical result that connects the auxiliary numbers
λr(n) with the αmr and a subsequence of their convergents. We begin with
the following lemma which is a special case of a more general phenomenon;
however for ease of exposition we consider it separately.

Lemma 4.9. For r ≥ 3, the following string of inequalities holds

αmr <
pL−1

qL−1
< λr(1) <

pL−3

qL−3
< λr(1),

where pl/ql denotes the lth convergent associated with αmr .

Proof. As r is fixed, we suppress the subscript r. From Lemma 4.3 we
have pL−1/qL−1 = u/m and pL−3/qL−3 = v/u. By Lemma 4.7 we have
λ(1) = 3 + αm. As αm = [0, 2,W, 1, 1, 2 ], where W is some finite string,
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it follows that p1/q1 = 1/2. Finally we recall that L is even and the odd-
indexed convergents form a decreasing sequence. Given these remarks, it is
sufficient to prove

αm <
u

m
< 3 + αm <

v

u
≤ 1

2
< 3 + αm.

As pL−1/qL−1 = u/m and L− 1 is odd, we have that αm < u/m. Given
identity (3.2), a direct calculation reveals that

3 + αm −
u

m
=

3m−
√

9m2 − 4
2m

> 0,

thus, u/m < 3 + αm. A slightly more elaborate calculation involving the
identity u2 + 1 = vm, yields

v

u
− (3 + αm) =

1
mu

+

√
9m2 − 4− 3m

2m
.

It follows that 3 + αm < v/u if and only if u(3m −
√

9m2 − 4) < 2. From
(3.1), we have 2u < m, and hence

u(3m−
√

9m2 − 4) <
1
2
m(3m−

√
9m2 − 4).

It is easily verified that the function f(x) = 1
2x(3x−

√
9x2 − 4) is decreasing

for x ≥ 1. Thus for x ≥ 1, f(x) ≤ f(1) = 1
2 (3 −

√
5) < 2, and therefore

u(3m−
√

9m2 − 4) < 2, which implies that 3 + αm < v/u.
Clearly

v

u
=
pL−3

qL−3
≤ p1

q1
=

1
2
,

and 1/2 < 3 + αm, which completes the proof.

We now produce an important generalization of the previous lemma.

Theorem 4.10. For r ≥ 3, n ≥ 1, and k an odd integer satisfying 3 ≤
k ≤ L− 1, the following string of inequalities holds:

(4.10) αmr <
pnL−1

qnL−1
< λr(n) <

pnL−k
qnL−k

< λr(n),

where pl/ql denotes the lth convergent associated with αmr .

Proof. As the index nL − 1 is odd, we immediately see that αmr <
pnL−1/qnL−1. For the remaining string of inequalities, we proceed by induc-
tion on n.

The case n = 1 follows from Lemma 4.9. Suppose now that the inequal-
ities of (4.10) hold for n. For any k, 3 ≤ k ≤ L− 1, we observe that

p(n+1)L−k
q(n+1)L−k

= [0, (d1, d2, . . . , dL)n, d1, d2, . . . , dL−k]

= [0, d1, d2, . . . , dL, (d1, d2, . . . , dL)n−1, d1, d2, . . . , dL−k].
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By a well known identity involving continued fractions and Lemma 4.3, we
see that

(4.11)
p(n+1)L−k
q(n+1)L−k

=
pL

1
pnL−k
qnL−k

+ pL−1

qL
1

pnL−k
qnL−k

+ qL−1
=

ur
( pnL−k
qnL−k

)
+ (3ur − vr)

mr

( pnL−k
qnL−k

)
+ (3mr − ur)

.

Using the identity u2
r + 1 = vrmr, one can verify that the function F :

(0,+∞)→ (0,+∞) defined by

F (x) =
urx+ (3ur − vr)
mrx+ (3mr − ur)

,

is strictly increasing.
Thus, in view of our inductive hypothesis (4.10), we have

F

(
pnL−1

qnL−1

)
< F (λr(n)) < F

(
pnL−k
qnL−k

)
< F (λr(n)).

The previous string of inequalities together with (4.11) and Lemma 4.7
reveal

p(n+1)L−1

q(n+1)L−1
< λr(n+ 1) <

p(n+1)L−k
q(n+1)L−k

< λr(n+ 1),

which completes the proof.

Finally we will utilize the following result which connects the auxiliary
numbers λr(n) with the Markoff forms. For a fixed r, we define the quadratic
form hn(x, y) by

hn(x, y) = hn(r;x, y) = mr(λr(n)y − x)(λr(n)y − x) ∈ Z[x, y].

Lemma 4.11. For r ≥ 3 and n ≥ 1,

fmr(qnL−3x− pnL−3y, qnL−1x− pnL−1y)

= (qnL−3 − qnL−1αmr )(qnL−3 − qnL−1αmr)hn(x, y).

Proof. In view of (4.7), we have (qnL−3)(−pnL−1)− (−pnL−3)(qnL−1) =
1. Thus the lemma follows from the definition of λr(n) given in (4.8) and
identity (3.3).

5. The proof of Theorem 1.2 in the case α = αmr . In this section
we consider our main result in the case when α = αmr and demonstrate that
there are exactly n integer solutions to the inequality appearing in Theorem
1.2 with equality holding for one of the n solutions. Specifically we prove
the following.

Theorem 5.1. Let r be a positive integer. For r = 1 and r = 2, let
L = 2, and for r ≥ 3, let L denote the smallest period length of the continued
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fraction expansion for αmr . Then for any positive integer n, the inequality

(5.1)
∣∣∣∣αmr −

p

q

∣∣∣∣ ≤
1

Cr(n)q2

has exactly n rational solutions p/q. In particular , the only rational numbers
p/q satisfying inequality (5.1) are

pL−1

qL−1
,
p2L−1

q2L−1
, . . . ,

pnL−1

qnL−1
,

where pl/ql denotes the lth convergent of αmr . Moreover ,

(5.2)
∣∣∣∣αmr −

pnL−1

qnL−1

∣∣∣∣ =
1

Cr(n)q2
nL−1

.

We begin by verifying identity (5.2).

Lemma 5.2. If αmr = [0, d1, . . . , dL ], then for n ≥ 1,∣∣∣∣αmr −
pnL−1

qnL−1

∣∣∣∣ =
1

Cr(n)q2
nL−1

.

Proof. As r is fixed, we suppress the subscript r. We begin by recalling
that

αm =
2u− 3m+

√
9m2 − 4

2m
,

and

C(n) =

√
9m2 − 4

2m
+

3
2
− Z(n− 1)

mZ(n)
.

We also recall our convention that for αm1 = [0, 1, 1 ] and αm2 = [0, 2, 2 ],
we declare L = 2. Thus for any αm, L is known to be even, and thus nL− 1
is odd. This simple observation implies that αm < pnL−1/qnL−1. Hence
Lemma 4.4 reveals

C(n)
∣∣∣∣αm −

pnL−1

qnL−1

∣∣∣∣

=
(√

9m2 − 4
2m

+
3
2
− Z(n− 1)

mZ(n)

)(
pnL−1

qnL−1
− 2u− 3m+

√
9m2 − 4

2m

)

=
(√

9m2 − 4
2m

+
3
2
− Z(n− 1)

mZ(n)

)

×
(
uZ(n)− Z(n− 1)

mZ(n)
− 2u− 3m+

√
9m2 − 4

2m

)

=
(

3
2
− Z(n− 1)

mZ(n)
+

√
9m2 − 4

2m

)(
3
2
− Z(n− 1)

mZ(n)
−
√

9m2 − 4
2m

)

=
Z(n)2 + Z(n− 1)2 − 3mZ(n)Z(n− 1)

(mZ(n))2 .
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In view of identity (4.2), and the fact that qnL−1 = mZ(n) from Theorem
4.4, we see that ∣∣∣∣αm −

pnL−1

qnL−1

∣∣∣∣C(n) =
1

q2
nL−1

,

which establishes our desired identity.

Next we show that the convergents in Theorem 5.1 satisfy inequality
(5.1).

Lemma 5.3. For n ≥ 1, the n rational numbers
pL−1

qL−1
,
p2L−1

q2L−1
, . . . ,

pnL−1

qnL−1

each satisfy the inequality ∣∣∣∣αmr −
p

q

∣∣∣∣ ≤
1

Cr(n)q2 .

Proof. Again, as r is fixed, we suppress the subscript r. By the previous
lemma, for any integer l we have∣∣∣∣αm −

plL−1

qlL−1

∣∣∣∣ =
1

C(l)q2
lL−1

.

By Lemma 4.2, the ratio Z(n − 1)/Z(n) is increasing as a function of n.
Thus, as the Markoff number m is fixed, it follows that C(n) is a decreasing
function of n. Therefore for any l, 1 ≤ l ≤ n,∣∣∣∣αm −

plL−1

qlL−1

∣∣∣∣ =
1

C(l)q2
lL−1

≤ 1
C(n)q2

lL−1
,

which completes the proof.

Finally we demonstrate that there are no other rational solutions to
(5.1), that is, the n convergents in Lemma 5.3 form the complete list of
rational solutions. We begin by considering convergents p/q for which p/q <
pnL−1/qnL−1.

Lemma 5.4. Let r and n be positive integers. If p/q is a convergent of
αmr satisfying p/q < pnL−1/qnL−1, then

1
Cr(n)q2 <

∣∣∣∣αmr −
p

q

∣∣∣∣.

Proof. In Section 3 we noted that
(5.3) min{|fmr(x, y)| : (x, y) ∈ Z2, (x, y) 6= (0, 0)} = mr.

Thus we see that
mr

q2 ≤
|fmr(p, q)|

q2 =
|mr(αmrq − p)(αmrq − p)|

q2(5.4)

= mr

∣∣∣∣αmr −
p

q

∣∣∣∣ ·
∣∣∣∣αmr −

p

q

∣∣∣∣.
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From (3.1) and (3.2), it follows that αmr < 0. Since

αmr < 0 ≤ p

q
<
pnL−1

qnL−1
,

by Corollary 4.5 we have
∣∣∣∣αmr −

p

q

∣∣∣∣ <
∣∣∣∣αmr −

pnL−1

qnL−1

∣∣∣∣ = Cr(n).

The previous inequality together with (5.4) reveal

mr

q2 ≤ mr

∣∣∣∣αmr −
p

q

∣∣∣∣ ·
∣∣∣∣αmr −

p

q

∣∣∣∣ < mr

∣∣∣∣αmr −
p

q

∣∣∣∣Cr(n),

which establishes the lemma.

We now consider convergents p/q satisfying p/q > pnL−1/qnL−1. It is
enough to consider those convergents of the form plL−k/qlL−k, where k is
an odd integer satisfying 3 ≤ k ≤ L− 1.

Theorem 5.5. Let r ≥ 3 and l ≥ 1 be integers, and let L be the period
length of αmr . For an odd integer k, 3 ≤ k ≤ L− 1,

(5.5)
1

µrq2
lL−k

<

∣∣∣∣αmr −
plL−k
qlL−k

∣∣∣∣,

where µr denotes the rth Markoff constant.

Proof. As r is fixed, we again suppress the subscript r. The function

hl(x, y) = m(λ(l)y − x)(λ(l)y − x),

immediately yields

(5.6)
|hl(plL−k, qlL−k)|

q2
lL−k

= m

∣∣∣∣λ(l)− plL−k
qlL−k

∣∣∣∣ ·
∣∣∣∣λ(l)− plL−k

qlL−k

∣∣∣∣.

In view of Theorem 4.10, we are able to conclude
∣∣∣∣λ(l)− plL−k

qlL−k

∣∣∣∣ <
∣∣∣∣αm −

plL−k
qlL−k

∣∣∣∣ and
∣∣∣∣λ(l)− plL−k

qlL−k

∣∣∣∣ < |λ(l)− λ(l)|,

and by Lemma 4.8, the previous inequality can be written as
∣∣∣∣λ(l)− plL−k

qlL−k

∣∣∣∣ <
√

9m2 − 4
m|(qlL−3 − qlL−1αm)(qlL−3 − qlL−1αm)| .

The previous inequalities together with (5.6) reveal

(5.7)
|hl(plL−k, qlL−k)|

q2
lL−k

<

∣∣∣∣αm −
plL−k
qlL−k

∣∣∣∣
( √

9m2 − 4
|(qlL−3 − qlL−1αm)(qlL−3 − qlL−1αm)|

)
.
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By Lemma 4.11 we have

hl(x, y) =
fm(qlL−3x− plL−3y, qlL−1x− plL−1y)
(qlL−3 − qlL−1αm)(qlL−3 − qlL−1αm)

.

It is easily verified that (qlL−3plL−k−plL−3qlL−k, qlL−1plL−k−plL−1qlL−k) 6=
(0, 0), and thus as

min{|fm(x, y)| : (x, y) ∈ Z2, (x, y) 6= (0, 0)} = m,

inequality (5.7) implies
m

|(qlL−3 − qlL−1αm)(qlL−3 − qlL−1αm)|q2
lL−k

<

∣∣∣∣αm −
plL−k
qlL−k

∣∣∣∣
√

9m2 − 4
|(qlL−3 − qlL−1αm)(qlL−3 − qlL−1αm)| ,

and hence
1

q2
lL−k

<

∣∣∣∣αm −
plL−k
qlL−k

∣∣∣∣
(√

9m2 − 4
m

)
.

The theorem now follows from the fact that µ =
√

9m2 − 4/m.

Proof of Theorem 5.1. By Lemma 5.3 we see that (5.1) holds for the
n convergents stated in the theorem, and Lemma 5.2 establishes identity
(5.2). Thus we need only prove that there are no other rational solutions to
inequality (5.1).

It is clear from the definition that Cr(n) > 2. Thus if p/q is not a
convergent of αmr , then by Legendre’s Theorem,

∣∣∣∣αmr −
p

q

∣∣∣∣ ≥
1

2q2 >
1

Cr(n)q2 .

Hence any rational p/q satisfying (5.1) must be a convergent of αmr .
By Lemma 5.4, no convergent p/q < pnL−1/qnL−1 can satisfy inequality

(5.1). Thus we need only consider convergents p/q that exceed pnL−1/qnL−1.
We again recall that for r = 1 or r = 2, we declare the period L = 2.

Thus, in either case, the only convergents exceeding pnL−1/qnL−1 are
p1

q1
,
p3

q3
, . . . ,

p2n−1

q2n−1
,

and therefore the theorem holds for r = 1 and r = 2 by Lemma 5.3.
We now assume that r ≥ 3. If p/q is a convergent exceeding pnL−1/qnL−1,

then either there exists an integer l, 1 ≤ l ≤ n, such that

(5.8)
p

q
=
plL−1

qlL−1
,
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or there exist integers l, 1 ≤ l ≤ n, and k, k odd with 3 ≤ k ≤ L− 1, such
that

(5.9)
p

q
=
plL−k
qlL−k

.

As we have seen the convergents of the form (5.8) satisfy inequality (5.1),
we now assume that (5.9) holds. By Theorem 5.5 we have

∣∣∣∣αmr −
p

q

∣∣∣∣ =
∣∣∣∣αmr −

plL−k
qlL−k

∣∣∣∣ >
1

µrq2
lL−k

.

By Lemma 4.2 and the remarks that followed it, we see that Cr(n) > µr,
and hence ∣∣∣∣αmr −

plL−k
qlL−k

∣∣∣∣ >
1

µrq2
lL−k

>
1

Cr(n)q2
lL−k

.

Thus the only rational solutions p/q to inequality (5.1) are those n rational
numbers appearing in Lemma 5.3.

Remark. As an aside, we claim that inequality (5.5) also holds for con-
vergents pt/qt with t even. To establish this claim, if we assume that t is
even, then clearly αmr < 0 < pt/qt < αmr . Hence

∣∣∣∣αmr −
pt
qt

∣∣∣∣ =
pt
qt
− αmr < αmr − αmr =

√
9m2

r − 4
mr

= µr.

Thus in view of inequality (5.4) we have

1
µrq2

t

<

∣∣∣∣αmr −
pt
qt

∣∣∣∣,

which verifies our claim and, together with Lemma 5.2, also establishes
Theorem 1.5.

6. The proof of Theorem 1.2 when α is equivalent to αmr . In
this section we prove the following result.

Theorem 6.1. Let r and n be positive integers and suppose that α is
equivalent to αmr but α 6= αmr . Then there exist at least n rational solutions
to the inequality

(6.1)
∣∣∣∣α−

p

q

∣∣∣∣ ≤
1

Cr(n)q2 .

The cases r = 1 and r = 2 have been studied in a number of papers.
The following theorem summarizes the results of Prasad [7], Eggan [4], and
Prasad and Prasad [8].

Theorem 6.2. Let n be a positive integer , r = 1 or 2, and let α be
equivalent to αmr but α 6= αmr . Then there exist at least n rational solutions
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to the inequality ∣∣∣∣α−
p

q

∣∣∣∣ ≤
1

Cr(n)q2 .

Thus for the remainder of this section, we assume r ≥ 3 is fixed. We prove
our theorem by exhibiting particular convergents of α satisfying inequality
(6.1). If we write α = [a0, a1, . . .], then we recall that any convergent pl/ql
of α satisfies ∣∣∣∣α−

pl
ql

∣∣∣∣ =
1

Alq2
l

,

where

(6.2) Al = [al+1, al+2, . . .] + [0, al, al−1, . . . , a1].

Therefore, pl/ql satisfies (6.1), if and only if Al ≥ Cr(n). Thus it is enough
to find n convergents of α, pl/ql, for which Al ≥ Cr(n).

We begin with two technical lemmas. We write αm for αmr , and recall
that αm = [ 0, 2,W, 1, 1, 2 ], where W is a finite string of 1’s and 2’s forming
a palindrome. We denote this expansion as αm = [ 0, d1, d2, . . . , dL ]. We now
define

δm = 2 + αm = [ 2, 2,W, 1, 1, 2 ] = [ 2, 2,W, 1, 1 ](6.3)

= [ d0, d1, . . . , dL−1 ]

and

(6.4) γm = [ 2, 1, 1,W, 2 ] = [ dL, dL−1, . . . , d1 ].

We note that γm is simply 1/αm with its periodic string read backwards.
We denote this observation by expressing the continued fraction expansion
of γm as

γm =
[[

1
αm

]

⇐

]
.

Lemma 6.3. The numbers δm and γm are equivalent , and there exists
an odd index J , J < L, such that the Jth complete quotient of δm equals
γm. Moreover , for any 0 ≤ i ≤ L− 1, dL−i = dJ+i.

Proof. Clearly δm is equivalent to αm. As we remarked in Section 3,
αm ∼ αm, and thus αm ∼ −αm. By a well known identity involving purely
periodic continued fractions (see, for instance, [1, Lemma 8.7]), we have

−αm =
−1

1/αm
=
[[

1
αm

]

⇐

]
= [[ d1, d2, . . . , dL ]⇐ ]

= [ dL, dL−1, . . . , d1 ] = γm.

Since δm ∼ αm and αm ∼ −αm = γm, we have δm ∼ γm. As γm is purely
periodic, there exists an index J ′ such that (δm)J ′ = γm. Recalling that



Quantitative refinement of the Lagrange spectrum 75

δm is purely periodic with period length L, it is clear that we may take
J = J ′−kL for some non-negative integer k so that (δm)J = γm and J < L.
In view of (6.4) and (6.3), we now see

γm = [ dL, dL−1, . . . , d2, d1 ] = [ dJ , dJ+1, . . . , dJ+(L−2), dJ+(L−1) ],

and thus it is clear from our knowledge of the partial quotients of αm as
outlined in Section 3 that dL−i = dJ+i for all i, 0 ≤ i ≤ L− 1. We also see
that dJ = dL = 2 and dL−1 = dJ+1 = 1. As we know that each run of 1’s
or 2’s in the continued fraction of αm is of even length, it follows that if J
were even, then we would have dJ = dJ+1, which is a contradiction. Thus
we conclude that J is odd, which establishes the lemma.

The following lemma connects δm and γm with the constant Cr(n).

Lemma 6.4. Given the notation as in Lemma 6.3,

Cr(n) = δm + [0, (dL−1, dL−2, . . . , d0)n−1, dL−1, dL−2, . . . , d1]

= γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)n−1,

dJ+(L−1), dJ+(L−2), . . . , dJ+1].

Proof. We first note that
pnL−1

qnL−1
= [0, (d1, d2, . . . , dL)n−1, d1, d2, . . . , dL−1],

and by Theorem 5.2,
∣∣∣∣αm −

pnL−1

qnL−1

∣∣∣∣ =
1

Cr(n)q2
nL−1

.

From (6.2) it follows that

Cr(n) = [dnL, dnL+1, . . .] + [0, dnL−1, dnL−2, . . . , d1].

As the period length of αm is L and d0 = dL, we can write

Cr(n) = [d0, d1, . . .] + [0, dL−1, dL−2, . . . , d1, (dL, dL−1, . . . , d1)n−1]

= [ d0, d1, . . . , dL−1 ] + [0, (dL−1, dL−2, . . . , d1, dL)n−1,

dL−1, dL−2, . . . , d1]

= δm + [0, (dL−1, dL−2, . . . , d1, d0)n−1, dL−1, dL−2, . . . , d1].

Finally, by Corollary 4.5 we have

(6.5) Cr(n) = −αm + [0, d1, d2, . . . , dnL−1 ].

In the proof of Lemma 6.3 we observed that −αm = γm. Thus

Cr(n) = γm + [0, (d1, d2, . . . , dL)n−1, d1, d2, . . . , dL−1].

By Lemma 6.3, dJ+i = dL−i for any non-negative i, so (6.5) yields
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Cr(n) = γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)n−1, dJ+(L−1),

dJ+(L−2), . . . , dJ+1],

which completes the proof.

We are now able to provide a proof of Theorem 6.1 for r ≥ 3.

Proof of Theorem 6.1. By considering α− [α] instead of α, it follows that
there is no loss of generality in assuming that 0 < α < 1. Let r ≥ 3 be a
fixed integer. For ease of notation, we again suppress the subscript r.

Our method of proof is to explicitly exhibit n convergents of α that
satisfy inequality (6.1). By assumption, α is equivalent to αm and since
αm ∼ δm, we have α ∼ δm. We first consider the case when α is not equal
to 1/δm = [0, d0, d1, . . . , dL−1].

Since δm is purely periodic, there exists a smallest index, T , such that
the T th complete quotient αT is δm. Since α 6= 1/δm, we have T ≥ 2. Thus
we can express the continued fraction of α as

α = [0, a1, . . . , aT−1, aT , . . .] = [0, a1, . . . , aT−1, d0, d1, . . . , dL−1 ].

To make our exposition clearer, we re-index the partial quotients of
α by defining a′L−1 = aT−1, a

′
L−2 = aT−2 and so forth with a′S = a1,

where S is the appropriate integer (not necessarily positive). That is, we
write

α = [0, a1, a2, . . . , aT−2, aT−1, d0, d1, . . . , dL−1 ](6.6)

= [0, a′S, a
′
S+1, . . . , a

′
L−2, a

′
L−1, d0, d1, . . . , dL−1 ],

and thus
[aT , aT+1, . . .] = [a′L, a

′
L+1, . . .] = δm.

The advantage of this new notation is that it allows us to align indices and
write

(6.7) a′L+i = dL+i = di,

for all integers i ≥ 0. Furthermore, as in (6.2), we define A′t as

(6.8) A′t = [a′t+1, a
′
t+2, . . .] + [0, a′t, a

′
t−1, . . . , a

′
S+1, a

′
S ].

Of course for any given A′t there exists a non-negative integer u such that

A′t = Au = [au+1, au+2, . . .] + [0, au, au−1, . . . , a2, a1].

Thus to prove the theorem, it is enough to show that there exist n indices,
say t1, . . . , tn, such that A′ti ≥ C(n) for each i = 1, . . . , n.

For the remainder of the proof, references to the indices of partial quo-
tients of α will refer to the indices of the a′ terms. Of course each such index
will have a corresponding index when the continued fraction expansion for
α is expressed in terms of a’s. We now consider two cases:



Quantitative refinement of the Lagrange spectrum 77

(i) The index S satisfies S < 0.
(ii) The index S satisfies S ≥ 0.

We first examine case (i). Since the period length L > 0 is the smallest
index such that [a′L, a

′
L+1, . . .] = δm, we claim that there must exist an index

i, 0 ≤ i ≤ L− 1, such that a′i 6= di. If not, then we must have, a′i = di for all
i ≥ 0. In this case, we would have [a′0, a

′
1, . . .] = δm, which contradicts the

minimality of the index L and therefore establishes our claim.
Thus there exists some index i, 0 ≤ i ≤ L− 1, satisfying a′i 6= di. Let k

be the largest of all such indices. Therefore

a′i = di for all i, k + 1 ≤ i ≤ L− 1, and a′k 6= dk.

As a′k 6= dk, it follows that one of the following two subcases must hold.

Subcase I. Either a′k < dk and k is odd or a′k > dk and k is even.
Subcase II. Either a′k > dk and k is odd or a′k < dk and k is even.

We now examine subcase I and note that either k = 0 or k ≥ 1. If k = 0,
then we have a′0 > d0 = 2 and thus a′0 ≥ 3. Moreover for all i ≥ 1, a′i = di.
Hence, in view of identity (6.8) and Lemma 4.2 we have

A′−1 ≥ [a′0, a
′
1, . . .] ≥ [3, a′1, . . .] > 3 > C(n).

More generally, for any l, 2 ≤ l ≤ n, we obtain

A′(l−1)L−1 = [a′(l−1)L, a
′
(l−1)L+1, . . .] + [0, a′(l−1)L−1, a

′
(l−1)L−2, . . . , a

′
S ]

= [d(l−1)L, d(l−1)L+1, . . .]

+ [0, d(l−1)L−1, d(l−1)L−2, . . . , d1, a
′
0, . . . , a

′
S ].

As di = dL+i, we may write the previous identity as

(6.9) A′(l−1)L−1 = [ d0, d1, . . . , dL−1 ] + [0, (dL−1, dL−2, . . . , d0)l−2,

dL−1, dL−2, . . . , d1, a
′
0, . . . , a

′
S ].

We note that the number of partial quotients preceding a′0 in the previous
continued fraction is (l − 1)L. Recalling the fact that L is even and the
convention that first partial quotient is located in the 0th position, we see
that a′0 appears in an even position. As a′0 ≥ 3 > 2 = d0, we may use a
well known inequality involving continued fractions (see, for example, [3,
Chapter 1, Lemma 1]) to conclude that

[0, (dL−1, dL−2, . . . , d0)l−2, dL−1, dL−2, . . . , d1, a
′
0, . . . , a

′
S ]

≥ [0, (dL−1, dL−2, . . . , d0)l−2, dL−1, dL−2, . . . , d1, d0, dL−1, dL−2, . . . , d1]

= [0, (dL−1, dL−2, . . . , d0)l−1, dL−1, dL−2, . . . , d1].

Therefore identity (6.9) together with Lemma 6.4 and the fact that C(n) is
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a decreasing function of n yields

A′(l−1)L−1 ≥ δm + [0, (dL−1, dL−2, . . . , d0)l−1, dL−1, dL−2, . . . , d1]

= C(l) ≥ C(n).

Hence the n numbers, A′−1, A
′
L−1, . . . , A

′
(n−1)L−1, are all greater than or

equal to C(n). By our previous remarks, this fact implies that there are at
least n solutions to inequality (6.1), which establishes the desired result in
subcase I when k = 0.

Next we assume that k ≥ 1. For each l, 1 ≤ l ≤ n, we consider

A′lL−1 = [a′lL, a
′
lL+1, . . .] + [0, a′lL−1, a

′
lL−2, . . . , a

′
S ].

Thus as we observed in the k = 0 case, we may write

A′lL−1 = [ d0, d1, . . . , dL−1 ]

+ [0, (dL−1, dL−2, . . . , d0)l−1, dL−1, dL−2, . . . , dk+1, a
′
k, . . . , a

′
S ].

As there are lL− k partial quotients preceding a′k in the previous continued
fraction, and L is even, we see that if k is also even, then a′k is located in an
even-indexed location, and if k is odd, then a′k appears in an odd-indexed
position. As we are in subcase I, we know that either a′k < dk and a′k appears
in an odd-indexed position, or a′k > dk and a′k appears in an even-indexed
position. Therefore, in view of a well known inequality involving continued
fractions (see [3, Chapter 2, Lemma 1]), together with identity (6.3), and
Lemma 6.4, we conclude

A′lL−1 = [ d0, d1, . . . , dL−1 ]

+ [0, (dL−1, dL−2, . . . , d0)l−1, dL−1, dL−2, . . . , dk+1, a
′
k, . . . , a

′
S ]

≥ [ d0, d1, . . . , dL−1 ]

+ [0, (dL−1, dL−2, . . . , d0)l−1, dL−1, dL−2, . . . , dk+1, dk, . . . , d1]

= δm + [0, (dL−1, dL−2, . . . , d0)l−1, dL−1, dL−2, . . . , d1]

= C(l) ≥ C(n).

Thus each of the values A′L−1, A
′
2L−1, . . . , A

′
nL−1 is greater than or equal to

C(n), which implies that there are at least n solutions to inequality (6.1).
Hence we have established the result in subcase I.

We now examine subcase II; that is, either a′k > dk and k is odd or
a′k < dk and k is even. By Lemma 6.3, γm = [ dJ , dJ+1, . . . , dJ+(L−1) ] =
[ dL, dL−1, . . . , d1 ] for some odd positive integer J . We now consider the
three possibilities: k = J , J + 1 ≤ k ≤ L− 1, and S ≤ k ≤ J − 1.

If k = J , then as J is odd, we have a′J > dJ = dL = 2. That is, a′J ≥ 3
and for all i ≥ J + 1, a′i = di. In view of Lemma 4.2, we have

A′J−1 ≥ [a′J , a
′
J+1, . . .] ≥ [3, a′J+1, . . .] > 3 > C(n).
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More generally, for all l, 2 ≤ l ≤ n,

A′J+(l−1)L−1 = [a′J+(l−1)L, a
′
J+(l−1)L+1, . . .]

+ [0, a′J+(l−1)L−1, a
′
J+(l−1)L−2, . . . , a

′
S ]

= [dJ+(l−1)L, dJ+(l−1)L+1, . . .]

+ [0, dJ+(l−1)L−1, dJ+(l−1)L−2, . . . , dJ+1, a
′
J , . . . , a

′
S ],

which, given that di = dL+i, can be expressed as

(6.10) A′J+(l−1)L−1 = [ dJ , dJ+1, . . . , dJ+(L−1) ]

+ [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−2,

dJ+(L−1), dJ+(L−2), . . . , dJ+1, a
′
J , . . . , a

′
S ].

The number of partial quotients preceding a′J in the continued fraction is
(l − 1)L. Thus as L is even, a′J appears in an even-indexed position and
a′J ≥ 3 > dJ , we conclude that

[0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−2, dJ+(L−1), dJ+(L−2),

. . . , dJ+1, a
′
J , . . . , a

′
S ]

≥ [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−2, dJ+(L−1), dJ+(L−2),

. . . , dJ+1, dJ , dJ+(L−1), dJ+(L−2), . . . , dJ+1]

= [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1, dJ+(L−1), dJ+(L−2), . . . , dJ+1].

In view of identity (6.4), Lemma 6.4, and Lemma 4.2, inequality (6.10)
reveals
A′J+(l−1)L−1 ≥ γm

+ [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1, dJ+(L−2), . . . , dJ+1]

= C(l) ≥ C(n).

Thus each of A′J−1, A
′
J+(L−1), . . . , A

′
J+(n−1)L−1 is greater than or equal to

C(n), which establishes the desired result in subcase II when k = J .
Adopting the previous arguments in the case when J + 1 ≤ k ≤ L − 1,

it can be shown that for any l, 1 ≤ l ≤ n,

A′J+lL−1 ≥ [ dJ , dJ+1, . . . , dJ+(L−1) ]

+ [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1, dJ+(L−1), dJ+(L−2),

. . . , dk+1, dk, . . . , dJ+1]

= γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1, dJ+(L−1),

dJ+(L−2), . . . , dJ+1]

= C(l) ≥ C(n),

which establishes the theorem in this case.
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Finally, if S ≤ k ≤ J − 1, then it can be shown that for any l, 1 ≤ l ≤ n,

A′J+(l−1)L−1 ≥ [ dJ , dJ+1, . . . , dJ+(L−1) ]

+ [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1,

dJ+(L−1), dJ+(L−2), . . . , dk+1+L, dk+L, dJ+1]
= γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1,

dJ+(L−1), dJ+(L−2), . . . , dJ+1]
= C(l) ≥ C(n),

which implies the desired result for subcase II. Thus we have established the
theorem for case (i), that is, for S < 0.

We now turn our attention to case (ii), where the index S satisfies S ≥ 0.
If there exists an index i, 0 ≤ i ≤ L − 1, satisfying a′i 6= di, then we may
proceed exactly as in the previous case, consider two subcases and produce
the desired result. We remark that in adopting the previous argument in
this situation, if k = 0, then it would follow that α = 1/δm. However as we
are currently only considering the case α 6= 1/δm, we conclude that k 6= 0
when S ≥ 0. This point is crucial since in the previous case, when k = 0,
one of our solutions arose from the A′−1 term, which when S ≥ 0, would
not exist. We now see, however, that when α 6= 1/δm, we are never in the
situation of k = 0 and S ≥ 0.

Thus we may now assume that for all i ≥ 0, a′i = di. We note that
if S = 0 in this case, then we have α = 1/δm, which again is impossible.
Therefore we see that S > 0 and for all i ≥ S, a′i = di.

We first consider the case when S is odd. Here we can adopt the previous
arguments and verify that for any l, 1 ≤ l ≤ n,

A′lL−1 = [ dlL, dlL+1, dlL+(L−1) ] + [(dL−1, dL−2, . . . , d0)l−1, dL−1,

dL−2, . . . , dS ]
≥ δm + [(dL−1, dL−2, . . . , d0)l−1, dL−1, dL−2, . . . , d1]
= C(l) ≥ C(n),

which implies the desired result.
Next we assume that S is even and S ≥ J + 1. In this case it can be

shown that for each l, 1 ≤ l ≤ n,

A′J+lL−1 = γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1, dJ+(L−1),

dJ+(L−2), . . . , dS ]
≥ γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1, dJ+(L−1),

dJ+(L−2), . . . , dJ+1]
= C(l) ≥ C(n),

which establishes the theorem in this case.
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Finally, if S is even and S ≤ J − 1, then similar arguments show that
for any l, 1 ≤ l ≤ n,

A′J+(l−1)L−1 = γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1,

dJ+(L−1), dJ+(L−2), . . . , dS+L]

≥ γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1,

dJ+(L−1), dJ+(L−2), . . . , dJ+1]

= C(l) ≥ C(n),

which establishes the theorem in case (ii).
We now consider the special case when α = 1/δm = [0, d0, d1, . . . , dL−1 ].

In this case, for any l, 1 ≤ l ≤ n, by methods employed above, we can
deduce that

AJ+(l−1)L−1 = [ dJ , dJ+1, . . . , dJ+(L−1) ] + [(dJ+(L−1), dJ+(L−2), . . . , dJ)l−1,

dJ+(L−1), dJ+(L−2), . . . , dL]

≥ γm + [0, (dJ+(L−1), dJ+(L−2), . . . , dJ)l−1, dJ+(L−1),

dJ+(L−2), . . . , dJ+1]

= C(l) ≥ C(n),

which yields the desired result in this last remaining case and completes the
proof.

7. Proof of Theorem 1.2. Here we provide a proof of Theorem 1.2
which we state as:

Theorem 7.1. Let r and n be positive integers. For an irrational num-
ber α not equivalent to αms for any s, s < r, the inequality

(7.1) q‖αq‖ ≤ 1
Cr(n)

is satisfied for at least n positive integers q. Moreover , the constant Cr(n)
is best possible.

Proof. If α = αmr , then the result follows from Theorem 5.1. Moreover,
identity (5.2) shows that Cr(n) cannot be improved. If α ∼ αmr , α 6= αmr ,
then the result follows from Theorem 6.1.

Next we consider the case when α ∼ αmt for some t > r. By Lemma 4.2
and the remarks that follow it, we have Ct(n) > Cr(n) for all n. Thus in
view of Theorems 5.1 and 6.1, there are at least n rational solutions p/q to

∣∣∣∣α−
p

q

∣∣∣∣ ≤
1

Ct(n)q2 <
1

Cr(n)q2 ,

which establishes the desired result in this case.
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Finally we assume that α is not equivalent to any αmt . Thus the Markoff
constant for α satisfies µ(α) ≥ 3. It follows from Lemma 4.2 that Cr(n) < 3,
for any r and n. Hence,∣∣∣∣α−

p

q

∣∣∣∣ <
1

µ(α)q2 <
1

Cr(n)q2

has infinitely many rational solutions p/q, which completes our proof.
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