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On a multiple trigonometric series

by

M. Z. Garaev (Taipei)

1. Introduction. Throughout the text c, c1, . . . , c5 denote absolute pos-
itive constants not necessarily the same in different cases. The constants
implicit in the O symbols are also absolute.

G. I. Arkhipov and K. I. Oskolkov [1] proved that for any polynomial
P (x) = α1x

n + . . . + αnx + αn+1 with real coefficients α1, . . . , αn+1 the
sequence

HN =
∑

1≤|x|≤N

e2πiP (x)

x

converges as N → ∞. They applied Vinogradov’s method of trigonometric
sums. Afterwards K. I. Oskolkov [3, 4] discovered a nontrivial application of
this result and Vinogradov’s method to the investigation of the properties
of solutions of Schrödinger type PDEs. To PDEs with mixed derivatives
correspond multiple trigonometric sums. The simplest type of such sums is
hN = hN (α) defined as follows:

hN =
N∑

x=1

N∑

y=1

sin(αxy)
xy

.(1)

The question of convergence of {hN}∞N=1 was discussed several times by
G. I. Arkhipov, V. N. Chubarikov and the author. But still it has not been
known to us whether this sequence is convergent for all real α or not.

In this note we give an answer to this question.

2. Theorem. There exists a real number α such that the sequence (1)
diverges as N →∞.

We will use the following well known statement (see e.g. [2, p. 473]):
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Lemma 1. For any real number t we have

%(t) =
∑

1≤y≤Y

sin(2πyt)
πy

+O

(
1

1 + Y |sinπt|

)

where %(t) = 1/2− {t}.
Lemma 2. For any positive integers x, q, N we have

∑

1≤y≤qN

sin
(
2π xyN

)

y
=

qN−1∑

y=1

Ty
y(y + 1)

where Ty =
∑y

k=1 sin
(
2π xkN

)
.

Lemma 2 follows from Abel transformation and TqN = 0.

Lemma 3. For any positive integers q,N we have

S =
N∑

x=1

qN∑

y=1

sin
(
2π xyN

)

xy
> c1 logN − c2.

Proof. As
∑

1≤y≤Y sin(αy)/y = O(1) uniformly in α and Y, by Lemma 2
we have

S =
∑

1≤x≤N/8
x−1

qN∑

y=1

Ty
y(y + 1)

+O
( ∑

N/8<x≤N
x−1

)

where

Ty =
y∑

k=1

sin
(

2π
xk

N

)
=

sin2
(
π x
N y
)

cos
(
π x
N

)

sin
(
π x
N

) +
1
2

sin
(

2π
xy

N

)
.

Using again
∑

1≤x≤N/8 sin(αx)/x = O(1) we have

S >
∑

1≤x≤N/8
x−1

∑

1≤y≤N/(2x)

sin2
(
π x
N y
)

cos
(
π x
N

)

y(y + 1) sin
(
π x
N

) −O(1).

The ranges of variables are such that

sin2
(
π
x

N
y

)
≥ 4x2y2

N2 , cos
(
π
x

N

)
≥ 1

2
, 0 < sin

(
π
x

N

)
< π

x

N
.

Therefore

S >
∑

1≤x≤N/8
x−1

∑

1≤y≤N/(2x)

x

πN
−O(1) > c1 logN − c2.

Lemma 3 is proved.
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3. Proof of the Theorem. We put

α = 2π
∞∑

n=1

1
qn

where the sequence q1, q2, . . . is defined as follows: q1 = 2, qn+1 = qnqn+1
n

for all positive integers n. In order to prove the Theorem it is enough to
establish that for this α the subsequence hqn of (1) diverges as n→∞.

For a given n set q = qn, N = qnqnn . We will prove that

hqn+1 = hqN > c1q
−1 logN − c2 log q > cn

for all large enough n.

Since

α = 2π
(
a

q
+

1
qN

)
+O

(
1

q3N3

)
,

we have

hqn+1 =
qN∑

x=1

qN∑

y=1

sin
(
2π
(
a
q + 1

qN

)
xy
)

xy
+O(1).

Put

S1 =
∑′

x≤qN

qN∑

y=1

sin
(
2π
(
a
q + 1

qN

)
xy
)

xy

and

S2 =
∑′′

x≤qN

qN∑

y=1

sin
(
2π
(
a
q + 1

qN

)
xy
)

xy

where the prime indicates the additional condition x ≡ 0 (mod q) while two
primes mean x 6≡ 0 (mod q).

We have

hqn+1 = S1 + S2 +O(1).(2)

From Lemma 3 it follows that S1 > c1q
−1 logN − c2 = c1n log q − c2, i.e.

S1 > c1n log q − c2.(3)

Now we prove that S2 > −c3 log q.
The subsum of S2 over 0 < x < q is O(log q). Therefore according to

Lemma 1 we have

S2 = πS3 + πS4 +O(log q)(4)



186 M. Z. Garaev

where

S3 =
∑′′

q<x<qN

x−1%

(
ax

q
+

x

qN

)
,

S4 =
∑′′

q<x<qN

x−1O

(
1

1 + qN
∣∣sinπ

(
ax
q + x

qN

)∣∣
)
.

Further, since x−1O(f) = O(x−2) +O(f2), we have

S4 = O(1) +O

( qN∑

x=1

1
1 + q2N2 sin2 π

(
ax
q + x

qN

)
)
.

Taking into account that q and N are powers of 2 we see that when x runs
through a complete system (mod qN), then so does (aN + 1)x. Hence

S4 = O(1) +O

( qN∑

x=1

1
1 + q2N2 sin2 πx

qN

)

= O(1) +O

( qN/2∑

x=1

1
1 + q2N2 sin2 πx

qN

)
.

Using the fact that

sin
πx

qN
>

x

qN
for 1 ≤ x ≤ qN/2

we obtain
S4 = O(1).(5)

In order to estimate S3 we note that
{
ax

q
+

x

qN

}
≤
{
ax

q

}
+
{
x

qN

}
=
{
ax

q

}
+

x

qN
.

Therefore

S3 ≥
∑′′

q<x<qN

x−1
(
%(axq−1)− x

qN

)
> −1 +

∑′′

q<x<qN

x−1%(axq−1).

Substitution x = qu+ l where 1 ≤ u ≤ N − 1, 1 ≤ l ≤ q − 1 gives us

1 + S3 >

N−1∑

u=1

q/2−1∑

l=1

(qu+ l)−1%(alq−1) +
N−1∑

u=1

q−1∑

l=q/2+1

(qu+ l)−1%(alq−1)

=
N−1∑

u=1

q/2−1∑

l=1

(qu+ l)−1%(alq−1) +
N−1∑

u=1

q/2−1∑

l=1

(qu+ q − l)−1%(−alq−1)

where we have used %(1/2) = 0.
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Now note that %(−alq−1) = −%(alq−1). Therefore

1 + S3 > −
N−1∑

u=1

q/2−1∑

l=1

(
1

qu+ l
− 1
qu+ q − l

)
> −

N−1∑

u=1

q/2−1∑

l=1

q

q2u2 > −2,

whence S3 > −3. Together with (5), (4), (3), (2) and q = qn we obtain

hqn+1 > c1n log qn − c4 log qn − c5.

The Theorem is proved.

Acknowledgements. The author would like to thank the referee for
the corrections.

References

[1] G. I. Arkhipov and K. I. Oskolkov, On special trigonometric series and its application,
Math. USSR-Sb. 62 (1989), 145–155.

[2] G. I. Arkhipov, V. A. Sadovnichii and V. N. Chubarikov, Lectures in Mathematical
Analysis, Vysshaya Shkola, Moscow, 1999 (in Russian).

[3] K. I. Oskolkov, Vinogradov series and integrals and their applications, Proc. Steklov
Inst. Math. 190 (1992), 193–229.

[4] —,Vinogradov series in the Cauchy problem for equations of Schrödinger type, ibid.
200 (1993), 291–315.

Institute of Mathematics
Academia Sinica
Taipei 11529, Taiwan
E-mail: garaev@math.sinica.edu.tw

Received on 28.5.2001
and in revised form on 30.7.2001 (4037)


