Constructions of digital nets

by
Harald Niederreiter (Singapore) and Chaoping Xing (Singapore and Anhui)

1. Introduction. The theory of digital (t, m, s)-nets provides powerful tools for the construction of low-discrepancy point sets in the s-dimensional unit cube. Various types of constructions of digital nets are already known; see [9] for the most recent survey. In this paper we first apply the duality theory for digital nets developed recently by Niederreiter and Pirsic [10] to establish a new propagation rule for digital nets (see Section 2). In Section 3 we construct families of digital (t, m, s)-nets with the property that if $m-t$ is fixed and the dimension s tends to ∞, then the quality parameter t grows at the minimal rate.

We follow the standard terminology in the area which goes back to the paper [7] and the monograph [8]. We refer also to the recent book of the authors [12, Chapter 8] for an expository account of the theory of (t, m, s) nets.
2. A propagation rule from duality theory. We recall the basic definitions and facts of the duality theory for digital nets from [10]. In the context of digital nets, we may always assume $s \geq 2$ to avoid the trivial one-dimensional case. Let q be an arbitrary prime power and let \mathbb{F}_{q} denote the finite field of order q. For a positive integer m and any vector $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{F}_{q}^{m}$ we introduce the weight $v(\mathbf{a})$ by $v(\mathbf{a})=0$ if $\mathbf{a}=\mathbf{0}$ and $v(\mathbf{a})=\max \left\{j: a_{j} \neq 0\right\}$ if $\mathbf{a} \neq \mathbf{0}$. We extend this definition to $\mathbb{F}_{q}^{s m}$ by writing a vector $\mathbf{A} \in \mathbb{F}_{q}^{s m}$ as the concatenation of s vectors of length m, i.e.,

$$
\mathbf{A}=\left(\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(s)}\right) \in \mathbb{F}_{q}^{s m} \quad \text { with } \mathbf{a}^{(i)} \in \mathbb{F}_{q}^{m} \text { for } 1 \leq i \leq s
$$

[^0]and putting
$$
V_{m}(\mathbf{A})=\sum_{i=1}^{s} v\left(\mathbf{a}^{(i)}\right)
$$

The following concept is crucial.
Definition 1. For any nonzero \mathbb{F}_{q}-linear subspace \mathcal{N} of $\mathbb{F}_{q}^{s m}$ we define the minimum distance

$$
\delta_{m}(\mathcal{N})=\min _{\mathbf{A} \in \mathcal{N} \backslash\{\mathbf{0}\}} V_{m}(\mathbf{A})
$$

Let the $m \times m$ matrices C_{1}, \ldots, C_{s} over \mathbb{F}_{q} be the generating matrices of a digital (t, m, s)-net \mathcal{P} constructed over \mathbb{F}_{q}. As in [10] we set up the overall generating matrix

$$
\left(C_{1}\left|C_{2}\right| \ldots \mid C_{s}\right) \in \mathbb{F}_{q}^{m \times s m}
$$

and call its row space \mathcal{C} the row space of the digital (t, m, s)-net \mathcal{P}. For an arbitrary \mathbb{F}_{q}-linear subspace \mathcal{N} of $\mathbb{F}_{q}^{s m}$ we define its dual space \mathcal{N}^{\perp} as in coding theory, i.e., as the dual space of \mathcal{N} with respect to the standard inner product on $\mathbb{F}_{q}^{s m}$. Note that

$$
\operatorname{dim}\left(\mathcal{N}^{\perp}\right)=s m-\operatorname{dim}(\mathcal{N}) \quad \text { and } \quad\left(\mathcal{N}^{\perp}\right)^{\perp}=\mathcal{N}
$$

In particular, for the row space \mathcal{C} of the digital (t, m, s)-net \mathcal{P} we have $\operatorname{dim}\left(\mathcal{C}^{\perp}\right) \geq s m-m$. We note the following easy consequence of a result in [10].

Lemma 1. Let q be a prime power and let $s \geq 2$ and $m \geq 1$ be integers. Then from any \mathbb{F}_{q}-linear subspace \mathcal{N} of $\mathbb{F}_{q}^{s m}$ with $\operatorname{dim}(\mathcal{N}) \geq s m-m$ we obtain a digital (t, m, s)-net constructed over \mathbb{F}_{q} with $t=m-\delta_{m}(\mathcal{N})+1$.

Proof. For $\mathcal{C}:=\mathcal{N}^{\perp}$ we have $\operatorname{dim}(\mathcal{C}) \leq m$, and so \mathcal{C} is the row space of a suitable digital net constructed over \mathbb{F}_{q}. This net has the parameter triple (t, m, s) with

$$
t=m-\delta_{m}\left(\mathcal{C}^{\perp}\right)+1=m-\delta_{m}(\mathcal{N})+1
$$

according to [10, Corollary 1].
Theorem 1. Let q be a prime power and let s, m, k, and h be positive integers with $k \geq h$. Then, given a nonzero $\mathbb{F}_{q^{h}}$-linear subspace \mathcal{M} of $\mathbb{F}_{q^{h}}^{s m}$, we can construct an \mathbb{F}_{q}-linear subspace \mathcal{N} of $\mathbb{F}_{q}^{\text {skm }}$ with

$$
\operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{N})=h \operatorname{dim}_{\mathbb{F}_{q^{h}}}(\mathcal{M}), \quad \delta_{k m}(\mathcal{N}) \geq k \delta_{m}(\mathcal{M})-(h-1) s
$$

Proof. Let \mathcal{W} be the \mathbb{F}_{q}-linear subspace of \mathbb{F}_{q}^{k} given by

$$
\mathcal{W}=\left\{\left(b_{1}, \ldots, b_{k}\right) \in \mathbb{F}_{q}^{k}: b_{j}=0 \text { for } 1 \leq j \leq k-h\right\}
$$

Since $\operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{W})=h$, there exists an $\mathbb{F}_{q^{-}}$-linear isomorphism $\phi: \mathbb{F}_{q^{h}} \rightarrow \mathcal{W}$. This induces the map

$$
\phi^{(m)}: \mathbb{F}_{q^{h}}^{m} \rightarrow \mathbb{F}_{q}^{k m}, \quad\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mapsto\left(\phi\left(\alpha_{1}\right), \ldots, \phi\left(\alpha_{m}\right)\right)
$$

Note that $\phi^{(m)}$ is an \mathbb{F}_{q}-linear monomorphism. Now define $\psi: \mathcal{M} \rightarrow \mathbb{F}_{q}^{s k m}$ by taking

$$
\mathbf{M}=\left(\mathbf{m}^{(1)}, \ldots, \mathbf{m}^{(s)}\right) \in \mathcal{M}, \quad \mathbf{m}^{(i)} \in \mathbb{F}_{q^{h}}^{m} \text { for } 1 \leq i \leq s
$$

and setting

$$
\psi(\mathbf{M})=\left(\phi^{(m)}\left(\mathbf{m}^{(1)}\right), \ldots, \phi^{(m)}\left(\mathbf{m}^{(s)}\right)\right)
$$

Then ψ is again an \mathbb{F}_{q}-linear monomorphism. Put $\mathcal{N}=\psi(\mathcal{M})$. Then \mathcal{N} is an \mathbb{F}_{q}-linear subspace of $\mathbb{F}_{q}^{s k m}$ with

$$
\operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{N})=\operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{M})=h \operatorname{dim}_{\mathbb{F}_{q^{h}}}(\mathcal{M})
$$

Now we consider $\delta_{k m}(\mathcal{N})$. A typical element of \mathcal{N} is

$$
\psi(\mathbf{M})=\left(\phi^{(m)}\left(\mathbf{m}^{(1)}\right), \ldots, \phi^{(m)}\left(\mathbf{m}^{(s)}\right)\right)
$$

Then

$$
V_{k m}(\psi(\mathbf{M}))=\sum_{i=1}^{s} v\left(\phi^{(m)}\left(\mathbf{m}^{(i)}\right)\right)
$$

Let $\psi(\mathbf{M}) \neq \mathbf{0}$, then $\mathbf{M} \neq \mathbf{0}$. Put

$$
u_{i}=v\left(\mathbf{m}^{(i)}\right) \quad \text { for } 1 \leq i \leq s
$$

If $u_{i}=0$, that is, $\mathbf{m}^{(i)}=\mathbf{0}$, then $\phi^{(m)}\left(\mathbf{m}^{(i)}\right)=\mathbf{0}$, and so $v\left(\phi^{(m)}\left(\mathbf{m}^{(i)}\right)\right)=0$. If $u_{i} \geq 1$, then $1 \leq u_{i} \leq m$ and

$$
\mathbf{m}^{(i)}=\left(\beta_{1}, \ldots, \beta_{u_{i}}, 0, \ldots, 0\right)
$$

with $\beta_{l} \in \mathbb{F}_{q^{h}}$ for $1 \leq l \leq u_{i}$ and $\beta_{u_{i}} \neq 0$. It follows that

$$
\phi^{(m)}\left(\mathbf{m}^{(i)}\right)=\left(\phi\left(\beta_{1}\right), \ldots, \phi\left(\beta_{u_{i}}\right), \mathbf{0}, \ldots, \mathbf{0}\right)=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{u_{i}}, \mathbf{0}, \ldots, \mathbf{0}\right)
$$

with $\mathbf{c}_{l} \in \mathcal{W} \subseteq \mathbb{F}_{q}^{k}$ for $1 \leq l \leq u_{i}$ and $\mathbf{c}_{u_{i}} \neq \mathbf{0}$. Thus,

$$
v\left(\phi^{(m)}\left(\mathbf{m}^{(i)}\right)\right)=k\left(u_{i}-1\right)+v\left(\mathbf{c}_{u_{i}}\right) \geq k\left(u_{i}-1\right)+k-h+1=k u_{i}-h+1
$$

where we used the obvious fact that $\delta_{k}(\mathcal{W})=k-h+1$. The above inequality holds trivially if $u_{i}=0$, and so in all cases. Therefore we obtain

$$
\begin{aligned}
V_{k m}(\psi(\mathbf{M})) & \geq \sum_{i=1}^{s}\left(k u_{i}-h+1\right)=k \sum_{i=1}^{s} v\left(\mathbf{m}^{(i)}\right)-(h-1) s \\
& =k V_{m}(\mathbf{M})-(h-1) s \geq k \delta_{m}(\mathcal{M})-(h-1) s
\end{aligned}
$$

which implies the desired lower bound on $\delta_{k m}(\mathcal{N})$.
Corollary 1. Let q be a prime power and let s, m, and h be positive integers with $s \geq 2$. Then, given a digital (t, m, s)-net constructed over $\mathbb{F}_{q^{h}}$,
we can obtain a digital $(u, h m, s)$-net constructed over \mathbb{F}_{q} with $u \leq h t+$ $(h-1)(s-1)$.

Proof. Let \mathcal{C} be the row space of the given digital (t, m, s)-net. Then its dual space $\mathcal{M}:=\mathcal{C}^{\perp}$ satisfies

$$
\operatorname{dim}_{\mathbb{F}_{q^{h}}}(\mathcal{M}) \geq s m-m, \quad \delta_{m}(\mathcal{M}) \geq m-t+1
$$

where the second inequality follows from [10, Theorem 2]. Now we apply Theorem 1 with $k=h$. This yields an \mathbb{F}_{q}-linear subspace \mathcal{N} of $\mathbb{F}_{q}^{s h m}$ with

$$
\operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{N}) \geq s h m-h m
$$

and

$$
\delta_{h m}(\mathcal{N}) \geq h(m-t+1)-(h-1) s=h m+1-(h t+(h-1)(s-1)) .
$$

The rest follows from Lemma 1.
Corollary 1 yields a new propagation rule for digital nets which can be viewed as an analog of Propagation Rule 6 in [9] for general nets (see also [11], [14] for the latter propagation rule).

In the following result we use the standard notation $F / \mathbb{F}_{q^{h}}$ for a global function field F with full constant field $\mathbb{F}_{q^{h}}$.

Corollary 2. Let q be a prime power and let s, m, h, and g be integers with $s \geq 2, h \geq 1, g \geq 0$, and $m \geq \max (1, g)$. Then we get a digital $(h g+(h-1)(s-1), h m, s)$-net constructed over \mathbb{F}_{q} whenever there is a global function field $F / \mathbb{F}_{q^{h}}$ of genus g with at least s places of degree 1.

Proof. It was shown in [11], [13] that, under the given conditions, there exists a digital (g, m, s)-net constructed over $\mathbb{F}_{q^{h}}$. The rest follows from Corollary 1.

Example 1. We apply Corollary 2 with F being the rational function field over $\mathbb{F}_{q^{h}}$. Then $g=0$ and we can take $s=q^{h}+1$. Thus, for any prime power q and any positive integers h and m we obtain a digital $\left((h-1) q^{h}, h m, q^{h}+1\right)$-net constructed over \mathbb{F}_{q}.
3. Digital nets with good asymptotic behavior. We study the existence of digital $(t, t+d, s)$-nets constructed over \mathbb{F}_{q} for a fixed integer $d \geq 0$ and a fixed prime power q. Since it is trivial that for $d=0,1$ such digital nets always exist, we assume $d \geq 2$ in the remainder of the paper. In any sequence of such digital nets with the dimension s tending to ∞, the quality parameter t must have a certain minimal rate of growth. In detail, if $d \geq 2$ and q are fixed, then for any sequence of digital $\left(t_{r}, t_{r}+d, s_{r}\right)$-nets constructed over \mathbb{F}_{q} with $s_{r} \rightarrow \infty$ as $r \rightarrow \infty$ we have

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{t_{r}}{\log _{q} s_{r}} \geq\left\lfloor\frac{d}{2}\right\rfloor \tag{1}
\end{equation*}
$$

where $\log _{q}$ denotes the logarithm to the base q. This was deduced in [13] from a result of Schmid and Wolf [15].

The interesting question is then whether one can construct such sequences of digital nets with the optimal growth rate $t_{r}=\mathcal{O}\left(\log s_{r}\right)$. The following result was obtained in [13] by using global function fields: if $d \geq 2$ and q are fixed and $\varepsilon>0$ is given, then there exists a sequence of digital $\left(t_{r}, t_{r}+d, s_{r}\right)$-nets constructed over \mathbb{F}_{q} such that $s_{r} \rightarrow \infty$ as $r \rightarrow \infty$ and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{t_{r}}{\log _{q} s_{r}}=d+1+\varepsilon . \tag{2}
\end{equation*}
$$

This still leaves the problem of improving the constant on the right-hand side of (2), and it is this problem which we address in this section.

We use some tools from coding theory and refer to the standard monographs [6], [16] for the necessary background. For a linear code over \mathbb{F}_{q} the parameter triple $[n, k, \geq d+1]$ indicates that the code has length n, dimension k, and minimum distance at least $d+1$. The following quantity is well known in coding theory (see e.g. [3, Chapter 14]).

Definition 2. For a given prime power q and integers $r \geq d \geq 2$, let $M_{d}(r, q)$ be the largest value of n for which there exists a linear $[n, n-r$, $\geq d+1]$ code over \mathbb{F}_{q}.

It is trivial that $M_{d}(r, q) \geq r+1$. The following two remarks on the asymptotic behavior of $M_{d}(r, q)$ for fixed d and q and $r \rightarrow \infty$ belong to the folklore of coding theory, but we give the short proofs for the sake of completeness.

Remark 1. If there exists a linear $[n, n-r, \geq d+1]$ code over \mathbb{F}_{q}, then by the Hamming bound

$$
\sum_{i=0}^{f}\binom{n}{i}(q-1)^{i} \leq q^{r}
$$

with $f:=\lfloor d / 2\rfloor$. Choose $r \geq d \geq 2$ and $n=M_{d}(r, q) \geq r+1$. Then $n \geq 2 f$, and so

$$
\frac{1}{f!}\left(\frac{n}{2}\right)^{f} \leq\binom{ n}{f} \leq q^{r}
$$

This implies

$$
\log _{q} c_{d}+f \log _{q} n \leq r
$$

with some constant $c_{d}>0$ depending only on d, and so

$$
\liminf _{r \rightarrow \infty} \frac{r}{\log _{q} M_{d}(r, q)} \geq\left\lfloor\frac{d}{2}\right\rfloor
$$

Remark 2. By the Gilbert-Varshamov bound there exists a linear $[n, n-r, \geq d+1]$ code over \mathbb{F}_{q} whenever

$$
q^{r}>\sum_{i=0}^{d-1}\binom{n-1}{i}(q-1)^{i}
$$

Choose again $r \geq d \geq 2$ and put

$$
n=\left\lfloor q^{r /(d-1)-3}\right\rfloor+1 .
$$

Then $n-1 \geq 2(d-1)$ for sufficiently large r, and so

$$
\begin{aligned}
\sum_{i=0}^{d-1}\binom{n-1}{i}(q-1)^{i} & \leq d\binom{n-1}{d-1}(q-1)^{d-1}<d(n-1)^{d-1} q^{d} \\
& \leq d q^{r-3(d-1)} q^{d}=d q^{r-2 d+3} \leq q^{r} .
\end{aligned}
$$

Thus, the Gilbert-Varshamov bound is satisfied for the chosen parameters, and so

$$
M_{d}(r, q) \geq\left\lfloor q^{r /(d-1)-3}\right\rfloor+1
$$

for sufficiently large r. This implies

$$
\limsup _{r \rightarrow \infty} \frac{r}{\log _{q} M_{d}(r, q)} \leq d-1 .
$$

The following result shows the connection between the problem raised at the beginning of this section and the asymptotic behavior of $M_{d}(r, q)$.

Lemma 2. For every prime power q and every integer $d \geq 2$, there exists a sequence of digital $\left(t_{r}, t_{r}+d, s_{r}\right)$-nets constructed over \mathbb{F}_{q} with $s_{r} \rightarrow \infty$ as $r \rightarrow \infty$ and

$$
\lim _{r \rightarrow \infty} \frac{t_{r}}{\log _{q} s_{r}}=\liminf _{r \rightarrow \infty} \frac{r}{\log _{q} M_{d}(r, q)} .
$$

Proof. Fix q and d and choose an integer $r \geq d$. Then by the definition of $M_{d}(r, q)$ there exists a linear $\left[M_{d}(r, q), M_{d}(r, q)-r, \geq d+1\right]$ code over \mathbb{F}_{q}. Now an application of [4, Corollary 2] yields a digital $\left(r-d, r, s_{r}\right)$-net constructed over \mathbb{F}_{q} with

$$
s_{r}=\frac{M_{d}(r, q)}{e_{d}}-\theta(d, r, q),
$$

where $e_{d}>0$ is a constant depending only on d and $0 \leq \theta(d, r, q) \leq 2$. Then

$$
\frac{t_{r}}{\log _{q} s_{r}}=\frac{r-d}{\log _{q}\left(M_{d}(r, q) / e_{d}-\theta(d, r, q)\right)},
$$

and by letting r pass through a suitable sequence of values we get the desired result. -

If we combine Remark 2 and Lemma 2, then we obtain the following result: for every prime power q and every integer $d \geq 2$, there exists a
sequence of digital $\left(t_{r}, t_{r}+d, s_{r}\right)$-nets constructed over \mathbb{F}_{q} with $s_{r} \rightarrow \infty$ as $r \rightarrow \infty$ and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{t_{r}}{\log _{q} s_{r}} \leq d-1 \tag{3}
\end{equation*}
$$

This already yields an improvement on (2), though in a nonconstructive manner (since the proof of the Gilbert-Varshamov bound is nonconstructive). We now show a constructive result which is at least as good as (3) and in many cases yields an improvement on (3).

Theorem 2. For every prime power q and every integer $d \geq 2$, there is a sequence of digital $\left(t_{r}, t_{r}+d, s_{r}\right)$-nets constructed over \mathbb{F}_{q} with $s_{r} \rightarrow \infty$ as $r \rightarrow \infty$ and

$$
\lim _{r \rightarrow \infty} \frac{t_{r}}{\log _{q} s_{r}} \leq d-1-\left\lfloor\frac{d-1}{q}\right\rfloor
$$

Proof. We use BCH codes with the notation in [5, Section 8.2]. Let m be an integer such that $q^{m} \geq d+2$ and let α be a primitive element of $\mathbb{F}_{q^{m}}$. For $i=0,1, \ldots$ let $m^{(i)}(x)$ be the minimal polynomial of α^{i} over \mathbb{F}_{q}. Then $m^{(0)}(x)=x-1$ and $\operatorname{deg}\left(m^{(i)}(x)\right) \leq m$ for all $i \geq 1$. Now consider the BCH code C over \mathbb{F}_{q} of length $q^{m}-1$ and designed distance $d+1$ for which the generator polynomial is

$$
g(x)=\operatorname{lcm}\left(m^{(0)}(x), m^{(1)}(x), \ldots, m^{(d-1)}(x)\right)
$$

Then C is a linear $\left[q^{m}-1, q^{m}-1-\operatorname{deg}(g), \geq d+1\right]$ code over \mathbb{F}_{q}. It is obvious that

$$
m^{(i)}(x)=m^{(i q)}(x) \quad \text { for all } i \geq 1
$$

Therefore, when we form the lcm of the polynomials $m^{(i)}(x), 1 \leq i \leq d-1$, we can omit the polynomials $m^{(i q)}(x)$ with $1 \leq i \leq\lfloor(d-1) / q\rfloor$. Thus,

$$
\operatorname{deg}(g) \leq \operatorname{deg}\left(m^{(0)}\right)+\sum_{i=1}^{d-1} \operatorname{deg}\left(m^{(i)}\right) \leq 1+m\left(d-1-\left\lfloor\frac{d-1}{q}\right\rfloor\right)
$$

$q \nmid i$
By passing to a suitable \mathbb{F}_{q}-linear subspace of C, we get a linear code over \mathbb{F}_{q} with parameter triple

$$
\left[q^{m}-1, q^{m}-1-\left(1+m\left(d-1-\left\lfloor\frac{d-1}{q}\right\rfloor\right)\right), \geq d+1\right]
$$

The definition of $M_{d}(r, q)$ implies that

$$
M_{d}\left(1+m\left(d-1-\left\lfloor\frac{d-1}{q}\right\rfloor\right), q\right) \geq q^{m}-1
$$

This holds for all sufficiently large m, and so

$$
\begin{aligned}
\liminf _{r \rightarrow \infty} \frac{r}{\log _{q} M_{d}(r, q)} & \leq \liminf _{m \rightarrow \infty} \frac{1+m\left(d-1-\left\lfloor\frac{d-1}{q}\right\rfloor\right)}{\log _{q} M_{d}\left(1+m\left(d-1-\left\lfloor\frac{d-1}{q}\right\rfloor\right), q\right)} \\
& \leq \lim _{m \rightarrow \infty} \frac{1+m\left(d-1-\left\lfloor\frac{d-1}{q}\right\rfloor\right)}{\log _{q}\left(q^{m}-1\right)}=d-1-\left\lfloor\frac{d-1}{q}\right\rfloor .
\end{aligned}
$$

The proof is completed by invoking Lemma 2 .
Corollary 3. For every integer $d \geq 2$ there exists a sequence of digital $\left(t_{r}, t_{r}+d, s_{r}\right)$-nets constructed over \mathbb{F}_{2} with $s_{r} \rightarrow \infty$ as $r \rightarrow \infty$ and

$$
\lim _{r \rightarrow \infty} \frac{t_{r}}{\log _{2} s_{r}}=\left\lfloor\frac{d}{2}\right\rfloor,
$$

and the constant $\lfloor d / 2\rfloor$ is best possible.
Proof. We use Theorem 2 with $q=2$ and note that

$$
d-1-\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{d}{2}\right\rfloor \quad \text { for all } d \geq 2 .
$$

The rest follows from (1).
Remark 3. A comparison with (1) shows that Theorem 2 is also best possible in two other cases. An obvious case is $d=2$. Another special case in which Theorem 2 is best possible is $(q, d)=(3,4)$. For $(q, d)=(2,4)$ and $(3,4)$, the result of Theorem 2 can also be deduced from the constructions of Edel and Bierbrauer [1], [2].

References

[1] Y. Edel and J. Bierbrauer, Construction of digital nets from BCH-codes, in: Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter et al. (eds.), Springer, New York, 1998, 221-231.
[2] —, 一, Families of ternary (t, m, s)-nets related to BCH-codes, Monatsh. Math. 132 (2001), 99-103.
[3] R. Hill, A First Course in Coding Theory, Oxford Univ. Press, Oxford, 1986.
[4] K. M. Lawrence, A. Mahalanabis, G. L. Mullen and W. C. Schmid, Construction of digital (t, m, s)-nets from linear codes, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), London Math. Soc. Lecture Note Ser. 233, Cambridge Univ. Press, Cambridge, 1996, 189-208.
[5] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, rev. ed., Cambridge Univ. Press, Cambridge, 1994.
[6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
[7] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337.
[8] -, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
[9] H. Niederreiter, Constructions of (t, m, s)-nets, in: Monte Carlo and Quasi-Monte Carlo Methods 1998, H. Niederreiter and J. Spanier (eds.), Springer, Berlin, 2000, 70-85.
[10] H. Niederreiter and G. Pirsic, Duality for digital nets and its applications, Acta Arith. 97 (2001), 173-182.
[11] H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273.
[12] -, -, Rational Points on Curves over Finite Fields: Theory and Applications, London Math. Soc. Lecture Note Ser. 285, Cambridge Univ. Press, Cambridge, 2001.
[13] -, —, A construction of digital nets with good asymptotic behavior, preprint, 2001.
[14] G. Pirsic, Base changes for (t, m, s)-nets and related sequences, Sitzungsber. Österr. Akad. Wiss. Math.-Naturw. Kl. Abt. II 208 (1999), 115-122.
[15] W. C. Schmid and R. Wolf, Bounds for digital nets and sequences, Acta Arith. 78 (1997), 377-399.
[16] J. H. van Lint, Introduction to Coding Theory, 3rd ed., Springer, Berlin, 2000.

Department of Mathematics
National University of Singapore
2 Science Drive 2
Singapore 117543
Republic of Singapore
E-mail: nied@math.nus.edu.sg matxcp@nus.edu.sg

Department of Mathematics
University of Science and Technology of China Hefei, Anhui, 230026, P.R. China

[^0]: 2000 Mathematics Subject Classification: 11K38, 11K45, 94B05.
 Both authors are partially supported by the MOE-ARF grant R-146-000-029-112, the second author is also partially supported by the 100 -person program of the Chinese Academy of Science. This paper was written while both authors were associated with the Institute for Mathematical Sciences at the National University of Singapore.

