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Constructions of digital nets
by

HARALD NIEDERREITER (Singapore)
and CHAOPING XING (Singapore and Anhui)

1. Introduction. The theory of digital (¢, m, s)-nets provides powerful
tools for the construction of low-discrepancy point sets in the s-dimensional
unit cube. Various types of constructions of digital nets are already known;
see [9] for the most recent survey. In this paper we first apply the duality
theory for digital nets developed recently by Niederreiter and Pirsic [10] to
establish a new propagation rule for digital nets (see Section 2). In Section 3
we construct families of digital (¢, m, s)-nets with the property that if m —¢
is fixed and the dimension s tends to oo, then the quality parameter t grows
at the minimal rate.

We follow the standard terminology in the area which goes back to the
paper [7] and the monograph [8]. We refer also to the recent book of the
authors [12, Chapter 8] for an expository account of the theory of (¢, m, s)-
nets.

2. A propagation rule from duality theory. We recall the basic
definitions and facts of the duality theory for digital nets from [10]. In the
context of digital nets, we may always assume s > 2 to avoid the trivial
one-dimensional case. Let ¢ be an arbitrary prime power and let F, denote
the finite field of order ¢g. For a positive integer m and any vector a =
(a1,...,a,) € F* we introduce the weight v(a) by v(a) = 0 if a = 0 and
v(a) = max{j : a; # 0} if a # 0. We extend this definition to Fy" by writing
a vector A € F7™ as the concatenation of s vectors of length m, i.e.,

A=Y, . a¥)eFm™ witha® e F" for1<i<s,
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and putting

S

Vn(A) =) v(@®).

=1

The following concept is crucial.

DEFINITION 1. For any nonzero F,-linear subspace N of Fg™ we define
the minimum distance

dm(N) = min V,(A).
AeN\{0}

Let the m x m matrices C1, ..., Cs over IF, be the generating matrices of
a digital (¢, m, s)-net P constructed over F,. As in [10] we set up the overall
generating matrix

(C1]Cyl ... |Cs) € Tgrsm

and call its row space C the row space of the digital (¢,m,s)-net P. For
an arbitrary Fy-linear subspace A of F;™ we define its dual space N L as
in coding theory, i.e., as the dual space of A/ with respect to the standard
inner product on Fy™. Note that

dim(N*) = sm — dim(N) and (N1)L =N,

In particular, for the row space C of the digital (¢,m,s)-net P we have
dim(Ct) > sm — m. We note the following easy consequence of a result in
[10].

LEMMA 1. Let q be a prime power and let s > 2 and m > 1 be integers.
Then from any Fy-linear subspace N of Fe™ with dim(N) > sm — m we
obtain a digital (t,m, s)-net constructed over Fy with t = m — 0y, (N) + 1.

Proof. For C := N'* we have dim(C) < m, and so C is the row space of
a suitable digital net constructed over ;. This net has the parameter triple
(t,m, s) with
t=m—06,(CH)+1=m—06,(N)+1

according to [10, Corollary 1]. m

THEOREM 1. Let q be a prime power and let s,m,k, and h be positive
integers with k > h. Then, gien a nonzero F n-linear subspace M of IFZZ”,

we can construct an Fq-linear subspace N of ngm with
dimg, (V) = hdimg_, (M), Okm(N) = kdm(M) — (h = 1)s.
Proof. Let W be the [Fy-linear subspace of ¥ ’; given by
W ={(bs,...,by) €FF:b; =0for 1 <j<k-—h}
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Since dimg, (W) = h, there exists an Fy-linear isomorphism ¢ : Fn — W.
This induces the map

U F S TR (o, am) = ($lan), - Blam)).

Note that ¢(™ is an F-linear monomorphism. Now define ¢ : M — Ff]km
by taking
M= (m®Y, ... m®)eM, m(i)e]FZ}1 for 1 <1 <s,
and setting
(M) = (" (mM),..., " (m))).
Then ¢ is again an Fg-linear monomorphism. Put N' = ¢)(M). Then N is
an [F-linear subspace of F;km with

dimp,(N) = dimp, (M) = hdimg , (M).
Now we consider g, (N). A typical element of A is
Y(M) = (67 (mW), ..., ™ (m!)).
Then

S

Vi (M) = 3 v(6" (m(9).

=1

Let ¢(M) # 0, then M # 0. Put
u; = v(m(i)) for1 <i<s.

If u; = 0, that is, m() = 0, then ¢(™(m®) = 0, and so v(¢(™ (m®)) = 0.
If u; > 1, then 1 <wu; < m and

m(l) :(617"'7ﬁui707"'70)
with 3 € Fyn for 1 <1 < w; and By, # 0. It follows that
¢(M)(m(l)) = (¢(ﬂ1)77¢(ﬂu,)707 . 70) = (Cla“ . 7Cui707' 70)
with ¢; € W C F¥ for 1 <1 < u; and ¢, # 0. Thus,
v(o™ (M) = k(u; — 1) +v(cy,) > k(ui — 1) +k—h+1=ku; —h+1,

where we used the obvious fact that d;(WW) = k—h+1. The above inequality
holds trivially if u; = 0, and so in all cases. Therefore we obtain

Viem (¥(M)) > Z(ku —h+1)=k Zv<m<i>) —(h—1)s

=kV, (M) = (h —1)s > ko (M) — (h — 1)s,
which implies the desired lower bound on 0, (N). =

COROLLARY 1. Let q be a prime power and let s,m, and h be positive
integers with s > 2. Then, given a digital (t,m, s)-net constructed over Fn,
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we can obtain a digital (u, hm,s)-net constructed over Fy with uw < ht +
(h—1)(s—1).

Proof. Let C be the row space of the given digital (¢, m, s)-net. Then its
dual space M := C* satisfies

dimg , (M) >sm—m, 0p(M)>m—t+1,

where the second inequality follows from [10, Theorem 2]. Now we apply
Theorem 1 with k = h. This yields an Fy-linear subspace N of thm with

dimp,(N) > shm — hm
and
OhmN) >h(m—t+1)—(h—1)s=hm+1—(ht+ (h—1)(s—1)).
The rest follows from Lemma 1. u

Corollary 1 yields a new propagation rule for digital nets which can be
viewed as an analog of Propagation Rule 6 in [9] for general nets (see also
[11], [14] for the latter propagation rule).

In the following result we use the standard notation F/F . for a global
function field F* with full constant field F .

COROLLARY 2. Let q be a prime power and let s,m, h, and g be integers
with s > 2, h > 1, g > 0, and m > max(1,g). Then we get a digital
(hg + (h — 1)(s — 1), hm, s)-net constructed over F, whenever there is a
global function field F'/F . of genus g with at least s places of degree 1.

Proof. It was shown in [11], [13] that, under the given conditions, there
exists a digital (g,m,s)-net constructed over F,n. The rest follows from
Corollary 1. =

ExaMpPLE 1. We apply Corollary 2 with F being the rational func-
tion field over F . Then g = 0 and we can take s = q" + 1. Thus, for
any prime power ¢ and any positive integers h and m we obtain a digital
((h — 1)¢", hm, ¢" 4 1)-net constructed over F,.

3. Digital nets with good asymptotic behavior. We study the
existence of digital (¢,¢ + d, s)-nets constructed over I, for a fixed integer
d > 0 and a fixed prime power ¢. Since it is trivial that for d = 0,1 such
digital nets always exist, we assume d > 2 in the remainder of the paper. In
any sequence of such digital nets with the dimension s tending to co, the
quality parameter ¢ must have a certain minimal rate of growth. In detail,
if d > 2 and q are fixed, then for any sequence of digital (¢,,t, + d, s,)-nets
constructed over F, with s, — 00 as r — oo we have

tr d
(1) lim inf > {iJ,

r—oo log, sy
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where log, denotes the logarithm to the base g. This was deduced in [13]
from a result of Schmid and Wolf [15].

The interesting question is then whether one can construct such se-
quences of digital nets with the optimal growth rate t, = O(logs,). The
following result was obtained in [13] by using global function fields: if d > 2
and ¢ are fixed and € > 0 is given, then there exists a sequence of digital
(tr,tr + d, s, )-nets constructed over Fy such that s, — oo as r — oo and

(2) lim — —d4+ 14

r—oo log, sy
This still leaves the problem of improving the constant on the right-hand
side of (2), and it is this problem which we address in this section.

We use some tools from coding theory and refer to the standard mono-
graphs [6], [16] for the necessary background. For a linear code over F, the
parameter triple [n, k,> d + 1] indicates that the code has length n, dimen-
sion k, and minimum distance at least d 4+ 1. The following quantity is well
known in coding theory (see e.g. [3, Chapter 14]).

DEFINITION 2. For a given prime power ¢ and integers r > d > 2, let
My(r, q) be the largest value of n for which there exists a linear [n,n — r,
> d + 1] code over Fy.

It is trivial that My(r,q) > r 4+ 1. The following two remarks on the
asymptotic behavior of My(r,q) for fixed d and ¢ and r — oo belong to
the folklore of coding theory, but we give the short proofs for the sake of
completeness.

REMARK 1. If there exists a linear [n,n —r,> d+ 1] code over F,, then
by the Hamming bound

Zf: (7) (g-1)"<q"

i=0
with f:=[d/2]. Choose r > d > 2 and n = My(r,q) > r + 1. Then n > 2f,

and so
1 /n\' n ,
ﬁ<§> S<Jf>§q‘

log, cq+ flog,n <r

This implies

with some constant cg; > 0 depending only on d, and so

lim inf 4 > {dJ
iminf —— —1.
r—oo log, My(r,q) — |2
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REMARK 2. By the Gilbert—Varshamov bound there exists a linear
[n,n —r,>d+ 1] code over F, whenever

-1, '
q >Z< . >(q—1)’-
i=0
Choose again r > d > 2 and put
n=|¢"/4D3 1.
Then n — 1 > 2(d — 1) for sufficiently large r, and so

dZI <n i 1) (- 1) < d<z _ i) (-1 <d(n-1)""q"

=0
< dqr73(d71)qd — dqr72d+3 < qr‘

Thus, the Gilbert—Varshamov bound is satisfied for the chosen parameters,
and so
My(r,q) > g/ D73 +1

for sufficiently large r. This implies

lim sup <d-1.

r—00 logq Md(T’, Q>
The following result shows the connection between the problem raised
at the beginning of this section and the asymptotic behavior of My(r, q).

LEMMA 2. For every prime power q and every integer d > 2, there exists
a sequence of digital (t.,t, +d, s,)-nets constructed over F, with s, — oo as

r — oo and
lim = lim inf S
r—oo log, sy r—oo log, My(r,q)

Proof. Fix q and d and choose an integer r > d. Then by the definition
of My(r,q) there exists a linear [My(r,q), My(r,q) — r,> d + 1] code over
F,. Now an application of [4, Corollary 2] yields a digital (r — d,r, s,)-net
constructed over F, with

M,
Sr = d(r’ q) - 6(d7 T, q)7
ed
where e; > 0 is a constant depending only on d and 0 < 6(d, r,q) < 2. Then
ty r—d

log, s, log,(My(r,q)/eqa —0(d,7,q))’
and by letting r pass through a suitable sequence of values we get the desired
result. m

If we combine Remark 2 and Lemma 2, then we obtain the following
result: for every prime power ¢ and every integer d > 2, there exists a



Constructions of digital nets 195

sequence of digital (¢,,%, + d, s,)-nets constructed over F, with s, — oo as
r — 00 and

t
(3) lim —— <d— 1.
r—oo log, sy

This already yields an improvement on (2), though in a nonconstructive
manner (since the proof of the Gilbert—Varshamov bound is nonconstruc-
tive). We now show a constructive result which is at least as good as (3)
and in many cases yields an improvement on (3).

THEOREM 2. For every prime power q and every integer d > 2, there is
a sequence of digital (t,,t, + d, s,)-nets constructed over Fy with s, — oo as

r — 00 and
t, -
lim <d—1- {MJ
r—00 logq Sy q

Proof. We use BCH codes with the notation in [5, Section 8.2]. Let m
be an integer such that ¢ > d + 2 and let « be a primitive element of Fym.
For i =0,1,... let m(i)(:n) be the minimal polynomial of o’ over F,. Then
mO)(z) =z — 1 and deg(m'¥(x)) < m for all i > 1. Now consider the BCH
code C over F, of length ¢" — 1 and designed distance d 4 1 for which the
generator polynomial is

g(z) = lem(m @ (z), mM(z),...,m4V ().

Then C is a linear [¢™ — 1,¢™ — 1 — deg(g),> d + 1] code over F,. It is
obvious that
m(z) =m0l (z) for all i > 1.

Therefore, when we form the lem of the polynomials m(i)(x), 1<i1<d—1,
we can omit the polynomials m9 (z) with 1 <4 < |(d —1)/q]. Thus,

d—1
deg(g) < deg(m”) + 3 deg(m'”) <1+ m(d -1- V; 1J)
=1

qft

By passing to a suitable F,-linear subspace of C', we get a linear code over
F, with parameter triple

o oo |5 2av ]

The definition of My(r,q) implies that

wfssofon |5 )) o
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This holds for all sufficiently large m, and so

lim inf < liminf LHmido1- 15 )
i g, W = Y g S a1 (500

_ 1+m(d—1—t J) d—1
ST g -y { J

The proof is completed by invoking Lemma 2. =

COROLLARY 3. For every integer d > 2 there exists a sequence of digital
(ty,tr + d, s,)-nets constructed over Fy with s, — oo as r — oo and

| tr \\dJ
lim ==,
r—oo logy sy 2

and the constant |d/2] is best possible.
Proof. We use Theorem 2 with ¢ = 2 and note that

d—1-— {EJ — EJ for all d > 2.

2
The rest follows from (1). =

REMARK 3. A comparison with (1) shows that Theorem 2 is also best
possible in two other cases. An obvious case is d = 2. Another special case
in which Theorem 2 is best possible is (q,d) = (3,4). For (¢,d) = (2,4) and
(3,4), the result of Theorem 2 can also be deduced from the constructions
of Edel and Bierbrauer [1], [2].
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