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Constructions of digital nets
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and Chaoping Xing (Singapore and Anhui)

1. Introduction. The theory of digital (t,m, s)-nets provides powerful
tools for the construction of low-discrepancy point sets in the s-dimensional
unit cube. Various types of constructions of digital nets are already known;
see [9] for the most recent survey. In this paper we first apply the duality
theory for digital nets developed recently by Niederreiter and Pirsic [10] to
establish a new propagation rule for digital nets (see Section 2). In Section 3
we construct families of digital (t,m, s)-nets with the property that if m− t
is fixed and the dimension s tends to∞, then the quality parameter t grows
at the minimal rate.

We follow the standard terminology in the area which goes back to the
paper [7] and the monograph [8]. We refer also to the recent book of the
authors [12, Chapter 8] for an expository account of the theory of (t,m, s)-
nets.

2. A propagation rule from duality theory. We recall the basic
definitions and facts of the duality theory for digital nets from [10]. In the
context of digital nets, we may always assume s ≥ 2 to avoid the trivial
one-dimensional case. Let q be an arbitrary prime power and let Fq denote
the finite field of order q. For a positive integer m and any vector a =
(a1, . . . , am) ∈ Fmq we introduce the weight v(a) by v(a) = 0 if a = 0 and
v(a) = max{j : aj 6= 0} if a 6= 0. We extend this definition to Fsmq by writing
a vector A ∈ Fsmq as the concatenation of s vectors of length m, i.e.,

A = (a(1), . . . ,a(s)) ∈ Fsmq with a(i) ∈ Fmq for 1 ≤ i ≤ s,
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and putting

Vm(A) =
s∑

i=1

v(a(i)).

The following concept is crucial.

Definition 1. For any nonzero Fq-linear subspace N of Fsmq we define
the minimum distance

δm(N ) = min
A∈N\{0}

Vm(A).

Let the m×m matrices C1, . . . , Cs over Fq be the generating matrices of
a digital (t,m, s)-net P constructed over Fq. As in [10] we set up the overall
generating matrix

(C1|C2| . . . |Cs) ∈ Fm×smq

and call its row space C the row space of the digital (t,m, s)-net P. For
an arbitrary Fq-linear subspace N of Fsmq we define its dual space N⊥ as
in coding theory, i.e., as the dual space of N with respect to the standard
inner product on Fsmq . Note that

dim(N⊥) = sm− dim(N ) and (N⊥)⊥ = N .
In particular, for the row space C of the digital (t,m, s)-net P we have
dim(C⊥) ≥ sm −m. We note the following easy consequence of a result in
[10].

Lemma 1. Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers.
Then from any Fq-linear subspace N of Fsmq with dim(N ) ≥ sm − m we
obtain a digital (t,m, s)-net constructed over Fq with t = m− δm(N ) + 1.

Proof. For C := N⊥ we have dim(C) ≤ m, and so C is the row space of
a suitable digital net constructed over Fq. This net has the parameter triple
(t,m, s) with

t = m− δm(C⊥) + 1 = m− δm(N ) + 1

according to [10, Corollary 1].

Theorem 1. Let q be a prime power and let s,m, k, and h be positive
integers with k ≥ h. Then, given a nonzero Fqh-linear subspace M of Fsm

qh
,

we can construct an Fq-linear subspace N of Fskmq with

dimFq(N ) = hdimF
qh

(M), δkm(N ) ≥ kδm(M)− (h− 1)s.

Proof. Let W be the Fq-linear subspace of Fkq given by

W = {(b1, . . . , bk) ∈ Fkq : bj = 0 for 1 ≤ j ≤ k − h}.
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Since dimFq(W) = h, there exists an Fq-linear isomorphism φ : Fqh → W.
This induces the map

φ(m) : Fmqh → Fkmq , (α1, . . . , αm) 7→ (φ(α1), . . . , φ(αm)).

Note that φ(m) is an Fq-linear monomorphism. Now define ψ : M → Fskmq

by taking

M = (m(1), . . . ,m(s)) ∈ M, m(i) ∈ Fm
qh

for 1 ≤ i ≤ s,
and setting

ψ(M) = (φ(m)(m(1)), . . . , φ(m)(m(s))).

Then ψ is again an Fq-linear monomorphism. Put N = ψ(M). Then N is
an Fq-linear subspace of Fskmq with

dimFq(N ) = dimFq(M) = hdimF
qh

(M).

Now we consider δkm(N ). A typical element of N is

ψ(M) = (φ(m)(m(1)), . . . , φ(m)(m(s))).

Then

Vkm(ψ(M)) =
s∑

i=1

v(φ(m)(m(i))).

Let ψ(M) 6= 0, then M 6= 0. Put

ui = v(m(i)) for 1 ≤ i ≤ s.
If ui = 0, that is, m(i) = 0, then φ(m)(m(i)) = 0, and so v(φ(m)(m(i))) = 0.
If ui ≥ 1, then 1 ≤ ui ≤ m and

m(i) = (β1, . . . , βui , 0, . . . , 0)

with βl ∈ Fqh for 1 ≤ l ≤ ui and βui 6= 0. It follows that

φ(m)(m(i)) = (φ(β1), . . . , φ(βui),0, . . . ,0) = (c1, . . . , cui ,0, . . . ,0)

with cl ∈ W ⊆ Fkq for 1 ≤ l ≤ ui and cui 6= 0. Thus,

v(φ(m)(m(i))) = k(ui − 1) + v(cui) ≥ k(ui − 1) + k − h+ 1 = kui − h+ 1,

where we used the obvious fact that δk(W) = k−h+1. The above inequality
holds trivially if ui = 0, and so in all cases. Therefore we obtain

Vkm(ψ(M)) ≥
s∑

i=1

(kui − h+ 1) = k

s∑

i=1

v(m(i))− (h− 1)s

= kVm(M)− (h− 1)s ≥ kδm(M)− (h− 1)s,

which implies the desired lower bound on δkm(N ).

Corollary 1. Let q be a prime power and let s,m, and h be positive
integers with s ≥ 2. Then, given a digital (t,m, s)-net constructed over Fqh ,
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we can obtain a digital (u, hm, s)-net constructed over Fq with u ≤ ht +
(h− 1)(s− 1).

Proof. Let C be the row space of the given digital (t,m, s)-net. Then its
dual space M := C⊥ satisfies

dimF
qh

(M) ≥ sm−m, δm(M) ≥ m− t+ 1,

where the second inequality follows from [10, Theorem 2]. Now we apply
Theorem 1 with k = h. This yields an Fq-linear subspace N of Fshmq with

dimFq(N ) ≥ shm− hm
and

δhm(N ) ≥ h(m− t+ 1)− (h− 1)s = hm+ 1− (ht+ (h− 1)(s− 1)).

The rest follows from Lemma 1.

Corollary 1 yields a new propagation rule for digital nets which can be
viewed as an analog of Propagation Rule 6 in [9] for general nets (see also
[11], [14] for the latter propagation rule).

In the following result we use the standard notation F/Fqh for a global
function field F with full constant field Fqh .

Corollary 2. Let q be a prime power and let s,m, h, and g be integers
with s ≥ 2, h ≥ 1, g ≥ 0, and m ≥ max(1, g). Then we get a digital
(hg + (h − 1)(s − 1), hm, s)-net constructed over Fq whenever there is a
global function field F/Fqh of genus g with at least s places of degree 1.

Proof. It was shown in [11], [13] that, under the given conditions, there
exists a digital (g,m, s)-net constructed over Fqh . The rest follows from
Corollary 1.

Example 1. We apply Corollary 2 with F being the rational func-
tion field over Fqh . Then g = 0 and we can take s = qh + 1. Thus, for
any prime power q and any positive integers h and m we obtain a digital
((h− 1)qh, hm, qh + 1)-net constructed over Fq.

3. Digital nets with good asymptotic behavior. We study the
existence of digital (t, t + d, s)-nets constructed over Fq for a fixed integer
d ≥ 0 and a fixed prime power q. Since it is trivial that for d = 0, 1 such
digital nets always exist, we assume d ≥ 2 in the remainder of the paper. In
any sequence of such digital nets with the dimension s tending to ∞, the
quality parameter t must have a certain minimal rate of growth. In detail,
if d ≥ 2 and q are fixed, then for any sequence of digital (tr, tr + d, sr)-nets
constructed over Fq with sr →∞ as r →∞ we have

lim inf
r→∞

tr
logq sr

≥
⌊
d

2

⌋
,(1)
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where logq denotes the logarithm to the base q. This was deduced in [13]
from a result of Schmid and Wolf [15].

The interesting question is then whether one can construct such se-
quences of digital nets with the optimal growth rate tr = O(log sr). The
following result was obtained in [13] by using global function fields: if d ≥ 2
and q are fixed and ε > 0 is given, then there exists a sequence of digital
(tr, tr + d, sr)-nets constructed over Fq such that sr →∞ as r →∞ and

lim
r→∞

tr
logq sr

= d+ 1 + ε.(2)

This still leaves the problem of improving the constant on the right-hand
side of (2), and it is this problem which we address in this section.

We use some tools from coding theory and refer to the standard mono-
graphs [6], [16] for the necessary background. For a linear code over Fq the
parameter triple [n, k,≥ d+ 1] indicates that the code has length n, dimen-
sion k, and minimum distance at least d+ 1. The following quantity is well
known in coding theory (see e.g. [3, Chapter 14]).

Definition 2. For a given prime power q and integers r ≥ d ≥ 2, let
Md(r, q) be the largest value of n for which there exists a linear [n, n − r,
≥ d+ 1] code over Fq.

It is trivial that Md(r, q) ≥ r + 1. The following two remarks on the
asymptotic behavior of Md(r, q) for fixed d and q and r → ∞ belong to
the folklore of coding theory, but we give the short proofs for the sake of
completeness.

Remark 1. If there exists a linear [n, n− r,≥ d+ 1] code over Fq, then
by the Hamming bound

f∑

i=0

(
n

i

)
(q − 1)i ≤ qr

with f := bd/2c. Choose r ≥ d ≥ 2 and n = Md(r, q) ≥ r+ 1. Then n ≥ 2f ,
and so

1
f !

(
n

2

)f
≤
(
n

f

)
≤ qr.

This implies
logq cd + f logq n ≤ r

with some constant cd > 0 depending only on d, and so

lim inf
r→∞

r

logqMd(r, q)
≥
⌊
d

2

⌋
.
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Remark 2. By the Gilbert–Varshamov bound there exists a linear
[n, n− r,≥ d+ 1] code over Fq whenever

qr >

d−1∑

i=0

(
n− 1
i

)
(q − 1)i.

Choose again r ≥ d ≥ 2 and put

n = bqr/(d−1)−3c+ 1.

Then n− 1 ≥ 2(d− 1) for sufficiently large r, and so
d−1∑

i=0

(
n− 1
i

)
(q − 1)i ≤ d

(
n− 1
d− 1

)
(q − 1)d−1 < d(n− 1)d−1qd

≤ dqr−3(d−1)qd = dqr−2d+3 ≤ qr.
Thus, the Gilbert–Varshamov bound is satisfied for the chosen parameters,
and so

Md(r, q) ≥ bqr/(d−1)−3c+ 1

for sufficiently large r. This implies

lim sup
r→∞

r

logqMd(r, q)
≤ d− 1.

The following result shows the connection between the problem raised
at the beginning of this section and the asymptotic behavior of Md(r, q).

Lemma 2. For every prime power q and every integer d ≥ 2, there exists
a sequence of digital (tr, tr + d, sr)-nets constructed over Fq with sr →∞ as
r →∞ and

lim
r→∞

tr
logq sr

= lim inf
r→∞

r

logqMd(r, q)
.

Proof. Fix q and d and choose an integer r ≥ d. Then by the definition
of Md(r, q) there exists a linear [Md(r, q),Md(r, q) − r,≥ d + 1] code over
Fq. Now an application of [4, Corollary 2] yields a digital (r − d, r, sr)-net
constructed over Fq with

sr =
Md(r, q)

ed
− θ(d, r, q),

where ed > 0 is a constant depending only on d and 0 ≤ θ(d, r, q) ≤ 2. Then
tr

logq sr
=

r − d
logq(Md(r, q)/ed − θ(d, r, q))

,

and by letting r pass through a suitable sequence of values we get the desired
result.

If we combine Remark 2 and Lemma 2, then we obtain the following
result: for every prime power q and every integer d ≥ 2, there exists a
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sequence of digital (tr, tr + d, sr)-nets constructed over Fq with sr → ∞ as
r →∞ and

lim
r→∞

tr
logq sr

≤ d− 1.(3)

This already yields an improvement on (2), though in a nonconstructive
manner (since the proof of the Gilbert–Varshamov bound is nonconstruc-
tive). We now show a constructive result which is at least as good as (3)
and in many cases yields an improvement on (3).

Theorem 2. For every prime power q and every integer d ≥ 2, there is
a sequence of digital (tr, tr + d, sr)-nets constructed over Fq with sr→∞ as
r →∞ and

lim
r→∞

tr
logq sr

≤ d− 1−
⌊
d− 1
q

⌋
.

Proof. We use BCH codes with the notation in [5, Section 8.2]. Let m
be an integer such that qm ≥ d+ 2 and let α be a primitive element of Fqm .
For i = 0, 1, . . . let m(i)(x) be the minimal polynomial of αi over Fq. Then
m(0)(x) = x− 1 and deg(m(i)(x)) ≤ m for all i ≥ 1. Now consider the BCH
code C over Fq of length qm − 1 and designed distance d+ 1 for which the
generator polynomial is

g(x) = lcm(m(0)(x),m(1)(x), . . . ,m(d−1)(x)).

Then C is a linear [qm − 1, qm − 1 − deg(g),≥ d + 1] code over Fq. It is
obvious that

m(i)(x) = m(iq)(x) for all i ≥ 1.

Therefore, when we form the lcm of the polynomials m(i)(x), 1 ≤ i ≤ d− 1,
we can omit the polynomials m(iq)(x) with 1 ≤ i ≤ b(d− 1)/qc. Thus,

deg(g) ≤ deg(m(0)) +
d−1∑

i=1
q-i

deg(m(i)) ≤ 1 +m

(
d− 1−

⌊
d− 1
q

⌋)
.

By passing to a suitable Fq-linear subspace of C, we get a linear code over
Fq with parameter triple

[
qm − 1, qm − 1−

(
1 +m

(
d− 1−

⌊
d− 1
q

⌋))
,≥ d+ 1

]
.

The definition of Md(r, q) implies that

Md

(
1 +m

(
d− 1−

⌊
d− 1
q

⌋)
, q

)
≥ qm − 1.
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This holds for all sufficiently large m, and so

lim inf
r→∞

r

logqMd(r, q)
≤ lim inf

m→∞

1 +m
(
d− 1−

⌊
d−1
q

⌋)

logqMd

(
1 +m

(
d− 1−

⌊
d−1
q

⌋)
, q
)

≤ lim
m→∞

1 +m
(
d− 1−

⌊
d−1
q

⌋)

logq(qm − 1)
= d− 1−

⌊
d− 1
q

⌋
.

The proof is completed by invoking Lemma 2.

Corollary 3. For every integer d ≥ 2 there exists a sequence of digital
(tr, tr + d, sr)-nets constructed over F2 with sr →∞ as r →∞ and

lim
r→∞

tr
log2 sr

=
⌊
d

2

⌋
,

and the constant bd/2c is best possible.

Proof. We use Theorem 2 with q = 2 and note that

d− 1−
⌊
d− 1

2

⌋
=
⌊
d

2

⌋
for all d ≥ 2.

The rest follows from (1).

Remark 3. A comparison with (1) shows that Theorem 2 is also best
possible in two other cases. An obvious case is d = 2. Another special case
in which Theorem 2 is best possible is (q, d) = (3, 4). For (q, d) = (2, 4) and
(3, 4), the result of Theorem 2 can also be deduced from the constructions
of Edel and Bierbrauer [1], [2].
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