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Sums of two powers of linear forms
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Leonhard Summerer (Wien)

Introduction. In this paper we are interested in the proportion of forms
F (X) = F (X1, . . . ,Xn) of degree m with integral coefficients which can
be written as L1(X)m + L2(X)m with arbitrary linear forms L1, L2 with
algebraic coefficients.

We consider forms

(1) F (X) =
∑

α

qαXα =
∑

α1+...+αn=m

qα1...αnX
α1
1 . . .Xαn

n

with coefficients qα in Z and define their height H(F ) to be the maximum
modulus of these coefficients.

Write Z(n,m,X) for the number of such forms F with H(F ) ≤ X which
can be written as

F (X) = L1(X)m + L2(X)m,

where L1, L2 are linear forms.
Our main result is as follows:

Theorem 1.1. For m ≥ 3 and n > 4m,

Z(n,m,X) � X2n/m,

with the constants implicit in � depending only on n and m.

The particular quantity Z(n, 3,X) was estimated by the author in [Su],
the result there is covered by Theorem 1.1.

Two challenging open problems should be mentioned in this context (see
also [K], [E-K]):

Write Zr(n,m,X) for the number of forms F as in (1) with H(F ) ≤ X
which can be written as

F (X) = L1(X)m + . . .+ Lr(X)m.

The estimate of Zr(n,m,X) for r > 2 remains open.
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Write Z(n, f,X) for the number of forms F as in (1) with H(F ) ≤ X
that have a representation

F (X) = f(L1(X), L2(X))

where f is a binary form of degree m over Z and L1, L2 are linear forms.
The estimate of Z(n, f,X) represents a generalization of Theorem 1.1 in
another sense. Some of our methods, especially in Section 2, readily apply
to this more general situation.

1. The outline of the proof. We start with the observation that
forms F counted in Z(n,m,X) are the mth power of one single linear form
L (which we then call degenerate) precisely when the linear forms L1 and
L2 have proportional coefficient vectors a and b. Their number is of order
of magnitude Xn/m for n ≥ m and we may exclude this case from our
considerations and focus on non-degenerate forms.

The crucial fact and thus the base for all further investigation is con-
tained in

Proposition 1.1. Let F be a non-degenerate form of degree m over C.
If

F (X) = L1(X)m + L2(X)m = M1(X)m +M2(X)m,

then, after a suitable permutation of M1,M2,

Lm1 = Mm
1 and Lm2 = Mm

2 ,

so that L1 = ζM1 and L2 = ξM2, with mth roots of unity ζ, ξ.

Proof. Since L1, L2 are linearly independent, gradF = 0 precisely on
the space L1 = L2 = 0, which is therefore determined by F , and is thus
the same as the space M1 = M2 = 0. Therefore L1 = α1M1 + α2M2 and
L2 = β1M1 + β2M2 and we obtain a system

(?)
αm−j1 αj2 + βm−j1 βj2 = 1 = αj1α

m−j
2 + βj1β

m−j
2 for j ∈ {0,m},

αm−j1 αj2 + βm−j1 βj2 = 0 = αj1α
m−j
2 + βj1β

m−j
2 ∀j : 1 ≤ j ≤ m− 1.

If α1α2 6= 0, we must have β1β2 6= 0 and (?) for j = 1 implies

(α1/β1)m−1 = −(β2/α2) and (α1/β1) = −(β2/α2)m−1,

so that after a little computation

(α1/β1)m
2−2m = (−1)m.

For j = 2, (?) implies further

(α1/β1)m−2 = −(β2/α2)2 and (α1/β1)2 = −(β2/α2)m−2,

and a similar computation shows

(α1/β1)m
2−4m = (−1)m.
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The combination of these two facts yields (α1/β1)2m = 1 and we obtain

αm1 = βm1 , αm2 = βm2 or αm1 = −βm1 , αm2 = −βm2 .
Comparing coefficients in the case j = 0, we see that the right hand equalities
cannot be satisfied, whereas for j = 1, 2 the left hand equalities would give

β1α2 + α1β2 = 0 = β2
1α

2
2 + α2

1β
2
2 ,

which contradicts the assumption αiβj 6= 0. If α2 = 0, then β2 6= 0, β1 = 0,
and we get αm1 = βm2 , hence the desired conclusion follows. If α1 = 0, we
get β1 6= 0, β2 = 0 and we have to interchange M1,M2 to fall under the case
α2 = 0 again.

The uniqueness of the representation of non-degenerate forms of degree
m implies the existence of representations over certain number fields for
rational forms. Let F (X) = (

∑
aiXi)m + (

∑
a′iXi)m and K be the field

generated by the quotients ai/aj (1 ≤ i, j ≤ n; aj 6= 0).

Corollary 1.2. The field K depends only on the form F . It is either
the rational field or a quadratic number field. When K is rational , also
the quotients a′i/a

′
j are rational ; when K is quadratic, then a′i/a

′
j (1 ≤

i, j ≤ n; a′j 6= 0) is the conjugate of ai/aj in K. There exist representations
F (X) = λ(

∑
aiXi)m + λ′(

∑
a′iXi)m where a1, . . . , an, a

′
1, . . . , a

′
n, λ, λ

′ are
in K, and if K is quadratic, the pairs λ, λ′ respectively ai, a′i (i = 1, . . . , n)
are pairs of conjugates.

Proof. By Proposition 1.1 the pair of points (a1 : . . . : an), (a′1 : . . . : a′n)
in (n− 1)-dimensional projective space is uniquely determined by the form
F . Every automorphism either leaves these two points fixed (i.e., leaves the
quotients ai/aj and a′i/a

′
j , when defined, fixed), or interchanges these two

points (i.e., interchanges ai/aj and a′i/a
′
j). If every automorphism is of the

first kind, then K = Q and all the quotients ai/aj and a′i/a
′
j lie in Q. If

there is an automorphism of the second kind, then K is quadratic and ai/aj
and a′i/a

′
j are conjugates in K.

There are representations of F with (a1, . . . , an) and (a′1, . . . , a
′
n) in Kn

and these vectors are not proportional. Hence ifK = Q, every automorphism
maps λ(

∑
aiXi)m, λ′(

∑
a′iXi)m into themselves, and therefore λ, λ′ ∈ Q. If

K is quadratic, an automorphism may also interchange the two summands
of F . Since the coefficients of the two appearing linear forms are respective
conjugates in K, the same must hold for λ, λ′.

Definition 1.3. We call a non-degenerate form of degree m over Q
which has a representation of the shape

F (X) = λ
(∑

aiXi

)m
+ λ′

(∑
a′iXi

)m

with λ, λ′, ai, a′i ∈ Q, i = 1, . . . , n, representable over Q.
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Otherwise by Corollary 1.2 there exists a uniquely determined quadratic
number field Q(

√
d) in which λ, λ′, ai, a′i (i = 1, . . . , n) lie and are conjugates

respectively. We then call Q(
√
d) the representation field of F .

As a consequence of these results, we first split Z(n,m,X) into the quan-
tities Z(d, n,m,X), which refer to the possible representation fields of the
forms in question. With these notations, the uniqueness of the number field
associated to each form yields

Z(n,m,X) =
∑

d6=0
sq-free

Z(d, n,m,X),

and with a view toward the estimate of Z(n,m,X) we may first count all
forms with representation field Q(

√
d) for fixed d, and then sum over all

these number fields.

Theorem 1.4. Let n > 2m and h = h(d) be the class number of the
quadratic number field Q(

√
d). Then there exists a constant C > 0, depend-

ing on m only , with

Z(d, n,m,X)� X2n/mh2(d)Cω(d)|d|−n/(2m),

where ω(d) denotes the number of distinct prime factors of d, and the implied
constant in � depends only on n and m.

The proof of this theorem will only be given at the end of the paper, but
meanwhile we will show how Theorem 1.1 can be deduced from the above
result if we use a well known estimate for the class number of quadratic
number fields:

Proposition 1.5. Let Q(
√
d) be a quadratic number field with class

number h(d). Then for all ε > 0,

h(d)� |d|1/2+ε.

Moreover , if d < 0, then h(d) ∼ |d|1/2, and the exponent 1/2 cannot be
improved.

Proof. This is an immediate consequence of Dirichlet’s class number for-
mula (see e.g. [NRRL, p. 91, Theorem 8]).

Deduction (of Theorem 1.1): Theorem 1.4 yields, for n > 2m,

Z(n,m,X) =
∑

d6=0
sq-free

Z(d, n,m,X)�
∑

d6=0
sq-free

X2n/mh2(d)Cω(d)|d|−n/(2m)

= X2n/m
∑

d6=0
sq-free

h2(d)Cω(d)|d|−n/(2m).
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Proposition 1.5 then gives h(d) � |d|1/2+ε for ε > 0 and it is clear that
Cω(d) � |d|ε for ε > 0 with the implied constant depending on m, ε only.
Neglecting the condition that d be square-free we find

Z(n,m,X)� X2n/m
∞∑

d=1

d1−n/(2m)+ε.

Now 1 − n/(2m) + ε < −1 − 1/(2m) + ε < −1 for n > 4m and ε small, so
that our sum is convergent, and we finally obtain

Z(n,m,X)� X2n/m.

To round up our discussion of Z(n,m,X), it remains to give a lower
bound for this quantity. This turns out to be trivial since every pair of
non-collinear vectors ((a1, . . . , an), (b1, . . . , bn)) ∈ Zn × Zn with |ai|, |bi| ≤
c(n)X1/m determines a form of the required shape via

F (X) =
(∑

aiXi

)m
+
(∑

biXi

)m
.

The estimate
Z(n,m,X)� X2n/m

follows immediately.

Within a given number field, the representation of a given form F as

F (X) = λ
(∑

aiXi

)m
+ λ′

(∑
a′iXi

)m

with λ, λ′, ai, a′i ∈ Q(
√
d) for i = 1, . . . , n, which are supposed to be con-

jugates for d 6= 1, is far from being unique (e.g., ai, a′i may be replaced by
νai, νa

′
i).

Our next task is therefore to reduce the number of possible representa-
tions belonging to the same F , in order to be able to sum over all represen-
tations to consider. This amounts to imposing conditions on the pair (λ, λ′)
that appears in some representation of F .

Definition 1.6. Let F be a form of degree m counted by Z(d, n,m,X)
in the representation of Definition 1.3. Then we call (λ, λ′) the leading coef-
ficient pair of F in this representation, and we identify (λ, λ′) with (λ′, λ).
In the case d = 1 we get in this way a pair of rational numbers and for d 6= 1
a pair of conjugate numbers from the given quadratic number field.

As already noticed, the leading coefficient pair is not uniquely determined
for a given form, but it is an easy matter to show that there is always a
representation of F with integer leading coefficient pair and that moreover
two such pairs differ only by an mth power in the respective representation
field in each component.
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This leads us straight to the question of finding a sufficiently small
set that contains a system of representatives for Q(

√
d)∗/(Q(

√
d)∗)m. This

makes it necessary to pass to ideals, since Od need not be a factorial ring.
Let h = h(d) be the class number of Q(

√
d) and A1, . . . ,Ah the distinct

ideal classes, where it is assumed that A1 is the principal class. We then
choose from each class an integer prime ideal ℘i ∈ Ai that is relatively
prime to 2md such that when Ai 6= A1 and Aj = A−1

i , then ℘j = ℘′i.
This choice is possible, for in each class one can find a prime ideal that is
relatively prime to a given one (see e.g. [N, p. 22, exercise 5]). Once such a
℘i is chosen for Ai, i 6= 1, the conjugate ℘′i obviously lies in A−1

i and satisfies
all requirements as well.

A series of standard arguments from algebraic number theory allow us
to prove:

Proposition 1.7. Let πia be elements in Od satisfying (πia) = ℘mi a, 1 ≤
i ≤ h, with integral and mth power free a ∈ 〈℘mi 〉−1 and let εj , 1 ≤ j ≤ w
be units in Ud that build up a system of representatives of Ud/Umd . Then
the set {εjπia | 1 ≤ j ≤ w, 1 ≤ i ≤ h, a as above} contains a system of
representatives Π for Q(

√
d)∗/(Q(

√
d)∗)m.

Proof. We have to show that any λ ∈ Q(
√
d) may be written as λ =

εjπiab
m with εj , πia as indicated for suitable b in Q(

√
d). Let therefore (λ)

be the principal ideal generated by λ. Then we may write (λ) = am0 a uniquely
with an mth power free integral ideal a. Choosing the representative ℘i of
the ideal class Ai in which a0 lies, we have

(λ) = ℘mi a℘
−m
i am0 = ℘mi a(℘−1

i a0)m,

where ℘−1
i a0 is principal by construction, and thus the same is true for ℘mi a,

which shows that a ∈ 〈℘mi 〉−1. We have thus found some i ∈ {1, . . . , h} and
an integral ideal a ∈ 〈℘mi 〉−1 such that (λ) = ℘mi a modulo mth powers of
principal ideals. If we let πia ∈ Od be such that (πia) = ℘mi a, the element
πia is determined up to a unit ε ∈ Ud and for the required representation
λ = επiab

m we may obviously choose ε in a set of representatives of Ud/Umd .
This set is trivially finite for d < 0 and by Dirichlet’s Unit Theorem for
d > 0 as well, which concludes the proof.

A bound for Z(d, n,m,X) is thus obtained by counting all representa-
tions of forms in question whose leading coefficient pair lies in the subset
of Π × Π for which (λ, λ′) is a pair of conjugates for d 6= 1. We denote
this set by Πd and by Z((λ, λ′), d, n,m,X) the number of forms counted
in Z(d, n,m,X) which have leading coefficient pair (λ, λ′). We may thus
resume the preceding observations in the form

Z(d, n,m,X) =
∑

(λ,λ′)∈Πd
Z((λ, λ′), d, n,m,X),
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which turns out to be the crucial quantity to estimate. Special attention has
to be paid to the dependence of all the constants on (λ, λ′) and on d, in view
of a later summation over these parameters.

2. Some basic inequalities. Throughout this section, we recall the
fact already mentioned in the introduction, that

Z(n,m,X) = Z(n, f,X) with f(X,Y ) = Xm + Y m,

and since the following observations readily apply to arbitrary forms f of
degree m, we may as well treat the general case, keeping in mind f(X,Y ) =
Xm + Y m as an example. We thus have to consider forms F that have a
representation

F (X) = f
(∑

aiXi,
∑

biXi

)

with algebraic coefficients (ai, bi)i=1,...,n.
In order to study n-tuples (ai, bi) that guarantee that F is counted in

Z(n, f,X), we have to bring into evidence the assumptions

|qα|p ≤ 1 ∀p ∈ P and |qα|∞ ≤ X
for the coefficients of F .

For this purpose, we use the fact that Z[X,Y ] is a unique factorization
domain to write

f(X,Y ) = l1(X,Y ) . . . lm(X,Y ),

where l1, . . . , lm are linear forms with coefficients in a splitting field Q(f)
of f and these m factors are uniquely determined up to a constant factor.
Applying this decomposition to F we find

F (X) = l1

(∑
aiXi,

∑
biXi

)
. . . lm

(∑
aiXi,

∑
biXi

)
,

and this quantity has to be an integer for any X ∈ Zn. In particular, we
may choose Xi = 1 and Xj = 0 for i 6= j to obtain the coefficient q0,...,m,...,0

of F , which implies

|l1(ai, bi) . . . lm(ai, bi)|p ≤ 1 ∀p,
|l1(ai, bi) . . . lm(ai, bi)|∞ ≤ X.

If we abbreviate lj(ai, bi) by lij and consider products of the linear forms
l1, . . . , lm involving different variables, i.e. expressions of the type li11 . . . limm
with ij ∈ {1, . . . , n} for 1 ≤ j ≤ m, we cannot expect the same result since
this mixed product will in general not be a rational number.

Nevertheless a similar result holds for valuations in the field K obtained
by adjoining to Q(f) all the ai, bi, 1 ≤ i ≤ n:



206 L. Summerer

Proposition 2.1. There is a positive constant c(n,m) such that for ev-
ery (i1, . . . , im) ∈ {1, . . . , n}m, we have

|li11 . . . limm |v ≤ 1 for v ∈M0(K), the non-archimedean valuations of K,

|li11 . . . limm |v ≤ c(n,m)X for v |∞, the archimedean valuations of K.

Proof. If F = F1 . . . Fd is some decomposition of F with polynomi-
als Fi = Fi(X) in n variables, [La, Proposition 2.1, Sec. 3] asserts that
|F1|v . . . |Fd|v = |F |v for all non-archimedean valuations v. Proposition 2.3
in the same text handles the case of archimedean valuations as well: if
deg f ≤ m, then |F1|v . . . |Fd|v ≤ c(n,m)|F |v for v |∞ with some positive
constant depending on n,m only.

In the present context, let F (X) = L1(X) . . . Lm(X), where Lj(X) =
lj(
∑
aiXi,

∑
biXi), hence

(max
i1
|li11 |v) . . . (max

im
|limm |v) ≤ c(n,m)X

as claimed.

After this treatment of forms F represented by arbitrary binary forms
f , it is time to come back to the case f(X,Y ) = Xm + Y m or even better
f(X,Y ) = λXm + λ′Y m. Instead of the variables (ai, bi) we have (ai, a′i) ∈
Q(
√
d)2 where ai and a′i are conjugates for d 6= 1 and independent rationals

for d = 1. For the following it will even be convenient to deal with rational
variables only; we obtain this by the change of variables

ai = Ai +Bi
√
d and a′i = Ai −Bi

√
d

with (Ai, Bi) ∈ Q2. The factors in the decomposition of f(ai, a′i) thus be-
come

lj(ai, a′i) = λ1/mai + λ′
1/m

ζ2j−1a′i

= (λ1/m − ζ2j−1λ′
1/m)Ai + (λ1/m + ζ2j−1λ′

1/m)
√
dBi,

where ζ is a primitive 2mth root of unity, and we have

K = Q(
√
d, ζ, λ1/m, λ′

1/m)

so that [K : Q] ≤ 4m3. By abuse of notation, we write lj(Ai, Bi) for this
expression, and (A,B) for the n-tuple (Ai, Bi)i=1,...,n.

3. The archimedean bound. In this section we study rational solu-
tions (Ai, Bi)i=1,...,n of the inequalities

|li11 . . . limm |v ≤ c(n,m)X for v |∞,
obtained in the last section. We abbreviate c := c(n,m) and consider the
following domains S0(X) and S(X):
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Definition 3.1. Let S0(X) ⊂ R2 be the domain defined by

S0(X) := {(A,B) ∈ R2 : |l1(A,B) . . . lm(A,B)|∞ ≤ X}.
By S(X) we denote the domain in R2n defined by

S(X) := {(A,B) ∈ R2n : |li11 . . . limm |v ≤ cX for v |∞ and any (i1, . . . , im)}.
Proposition 3.2. Let f = l1 . . . lm be the decomposition of the binary

form f(X,Y ) = λXm + λ′Y m. For 1 ≤ s ≤ m, k = 0, 1, 2, . . . , let P (k)
s be

the set in R2 defined by the inequalities

|ls|v ≤ 2−(m−1)k(cX)1/m,∣∣∣
∏

j 6=s
lj

∣∣∣
v
≤ 2(m−1)(k+1)(cX)(m−1)/m.

Then if (A,B) lies in S(X), there exist s, k such that each component
(Ai, Bi) of (A,B) lies in P

(k)
s .

Proof. For 1 ≤ j ≤ m, pick ij with |lijj |v = maxi |lij |v, where as above
lij = lj(Ai, Bi). By Proposition 2.1,

|li11 . . . limm |v ≤ cX.
Pick s with |liss |v = minj |lijj |v, and then pick k ∈ Z with

2−(m−1)(k+1)(cX)1/m < |liss |v < 2−(m−1)k(cX)1/m.

In view of the aforementioned result of Proposition 2.1 and the minimality
of |liss |v, we have k ≥ 0 and we obtain

∣∣∣
∏

j 6=s
lj

∣∣∣
v
< 2(m−1)(k+1)(cX)−1/m(cX) = 2(m−1)(k+1)(cX)(m−1)/m.

By the choice of ij maximizing |lijj |v, for each i, 1 ≤ i ≤ n, we have

|lis|v ≤ 2−(m−1)k(cX)1/m and
∣∣∣
∏

j 6=s
lij

∣∣∣
v
≤ 2(m−1)(k+1)(cX)(m−1)/m;

thus indeed each (Ai, Bi) ∈ P (k)
s .

As a consequence of this result we have

S(X) ⊂
∞⋃

k=1

m⋃

s=1

(P (k)
s )n,

so that we may focus only on the two-dimensional pieces P (k)
s that build up

S0(X). However, it will be convenient to deal with convex sets containing
these P (k)

s and whose volumes may be bounded explicitly in k, (λ, λ′) and d.
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Lemma 3.3. For k ≥ 0 we have

V (P (k)
s )� 2−kd−1/2(λλ′)−1/mX2/m,

where the constant in � depends on n and m only.

Proof. Notice that the inequality
∣∣∣
∏

j 6=s
lj

∣∣∣
v
≤ 2(m−1)(k+1)(cX)(m−1)/m

implies the existence of some r 6= s with |lr|v ≤ 2k+1(cX)1/m since not all
the m− 1 factors can be greater than their geometric mean and we have to
deal with the system

|ls|v ≤ 2−(m−1)k(cX)1/m, |lr|v ≤ 2k+1(cX)1/m.

We start with the observation that the volume of the domain given by
the inequalities

|tA+ uB| ≤ X and |vA+ wB| ≤ Y
is XY /|tw − uv|. In the application below the coefficients t, u, v, w are the
ones of the linear forms ls and lr (see Section 2); in particular

|tw − uv| = (λλ′)1/m(ζ2r−1 − ζ2s−1),

so that |tw − uv| � |λλ′|1/m. Moreover XY = 2−(m−2)k+1(cX)2/m and we
indeed obtain

V (P (k)
s )� 2−kd−1/2(λλ′)−1/mX2/m,

since the change of variables from (ai, a′i) ∈ Q(
√
d) to rational (Ai, Bi) from

Section 2 has determinant 1/2
√
d.

From now on we will refer to P (k)
s as the sets defined by the inequalities

|ls|v ≤ 2−(m−1)k(cX)1/m, |lr|v ≤ 2k+1(cX)1/m for some r 6= s,

which have the same properties as the initial covering sets and the advantage
to be convex and symmetric with respect to the origin.

4. The non-archimedean bound. We start by analyzing the inequal-
ities |li11 . . . limm |v ≤ 1 for v | p with a fixed prime p that stem from Proposition
2.1. Our goal is to show that p-adic solutions (A,B) of these inequalities lie
in a finite number of discrete Zp-modules of Q2n

p , each of which being the
n-fold cartesian product of a two-dimensional such module. For this pur-
pose, the main tool is a result about the index of some discrete Zp-modules
determined by a system of equations over an algebraic number field. This
result, stated below as Theorem 4.1, was proved by the author in [Su] with
the purpose of applying it to the kind of problem in question.
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Remark. If A,B are rank r submodules of a free Zp-module N of rank
r, we define the index of B in A by [A : B] := [M : B]/[M : A], where M is
a module in N containing both A and B. This index is well defined, since
it is independent of the choice of M under the given restrictions.

Theorem 4.1. Let p ∈ P and K be an algebraic number field. For each
v | p let Av be a non-singular m × m matrix with entries from Kv. Then
every x = (x1, . . . , xm) ∈ Qmp satisfying |Avx|v ≤ 1 for v | p lies in a discrete
Zp-module Λ0(p) of Qmp of rank m. Moreover

Λ0(p) ⊂ Λ0(p) ⊂ Λ0(p),

where Λ0(p) denotes the module defined by |x|v ≤ |Av|−1
v for all v | p and

Λ0(p) is defined by |x|v ≤ |Av|m−1
v |detAv|−1

v for all v | p. For the index of
Λ0(p) in Zmp we have

[Zmp : Λ0(p)] ≥ {max
v|p
|detAv|v}p,

where {A}p := min{pg : g ∈ Z, pg ≥ A} and |Av|v denotes the maximum
norm of the entries of Av.

In order to apply this result, we first restrict ourselves to one pair of
variables (A,B) ∈ Q2

p and write lj for lj(A,B). This way of proceeding is
motivated by the following observation: Since |li11 . . . limm |v ≤ 1 for any choice
of (i1, . . . , im) by Proposition 2.1, this holds in particular for the maximum
of all such products. Consequently,

max
i
|lij |v ≤ pz

(v)
j for 1 ≤ j ≤ m

with z(v)
1 +. . .+z(v)

m ≤ 0 and the above system holds for any pair of variables
(Ai, Bi) with the same m-tuple (z(v)

1 , . . . , z
(v)
m ). The linear forms lj having

rational variables (A,B) and coefficients from a field K with [K : Q] ≤ 4m3,
the value group of v is a subset of (4m3)−1Z and we may restrict ourselves
to m-tuples in this discrete group. For any such m-tuple, we want to single
out the two most restrictive ones that define the system

(?) |lj0 |v ≤ pz
(v)
j0 , |lj1 |v ≤ pz

(v)
j1 ,

where j0 6= j1 and z(v) := −(zj0 + zj1) is maximal.
We have thus shown that each pair of variables (Ai, Bi) of (A,B) with

|li11 . . . limm |v ≤ 1 satisfies (?) for one of the m(m − 1) possible choices of
(j0, j1), where for given (A,B) the pair (j0, j1) is the same for all two-
dimensional components.

This argument applies to any v | p and we pick v0 such that

z(p)(A,B) := z(v0)(A,B) := max
v|p

z(v)(A,B),
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and let (lj0 , lj1) be the pair of linear forms corresponding to the choice of
(j0, j1) for v0.

Definition 4.2. To each (A,B) ∈ Q2n
p with |li11 . . . limm |v ≤ 1 for all v | p,

we associate the quantity z(p)(A,B) ∈ (4m3)−1N0 defined by

z(p)(A,B) := max
v|p
{− min

j0 6=j1
(zj0 + zj1)}.

Now, what can be said about |lj0 |v and |lj1 |v for v 6= v0? From z
(v)
1 +

. . .+ z
(v)
m ≤ 0 and z

(v)
1 ≤ . . . ≤ z(v)

m , we obtain z
(v)
m ≤ m−1

2 z(p) and thus

|lj0 |v0 ≤ pz
(v0)
j0 and |lj0 |v ≤ p

m−1
2 z(p)

,

|lj1 |v0 ≤ pz
(v0)
j1 and |lj1 |v ≤ p

m−1
2 z(p)

for v = v0 respectively v 6= v0.
Conversely, if (A,B) is given with z(p)(A,B) = z(p), there are at most

4m3 possible choices for the valuation v0 with z(v0) = z(p), and once v0 is
fixed, m(m− 1) possibilities for the pair of linear forms (lj0 , lj1).

In order to complete the data in the above system, it remains to estimate
the number of (z(v0)

j0
, z

(v0)
j1

) for which z(p) = −(z(v0)
j0

+ z
(v0)
j1

) in (4m3)−1Z.
By definition of z(p), for v = v0,

z
(v)
j1

+ . . .+ z(v)
m ≤ z(v)

j0
⇒ (m− 1)z(v)

j1
≤ z(v)

j0

⇒ −(m− 1)z(p) ≤ (m− 2)z(v)
j0
⇒ −m− 1

m− 2
z(p) ≤ z(v)

j0
,

which yields −m−1
m−2z

(p) ≤ z(v)
j0
≤ 0 and this leaves only Om(z(p)) possibilities

for z(v0)
j0

in (4m3)−1Z; z(v0)
j1

is then uniquely determined by z(p) = −(z(v0)
j0

+

z
(v0)
j1

).
In order to apply Theorem 4.1 to the given situation (with m = 2 vari-

ables), we need to bring the system (?) into a slightly different form. For any
linear forms lj 6= lk ∈ {l1, . . . , lm} we denote by Lj,k the matrix consisting
of the coefficients of lj and lk and by ∆j,k its determinant. In this case

(
λ1/m −ζ2j−1λ′1/m

λ1/m −ζ2k−1λ′1/m

)(
1
√
d

1 −
√
d

)

yields ∆j,k = (ζ2j−1 − ζ2k−1)(λλ′)1/m(−2
√
d). Notice that only the first

factor depends on (j, k) and that

|∆j,k|v = |ζ2j−1 − ζ2k−1|v|22m(λλ′)2dm|1/(2m)
v

=: |ζ2j−1 − ζ2k−1|v|∆|1/(2m)
v ,
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where ∆ ∈ Z and thus |∆|v = |∆|p for v | p. In view of the identity

2m = (1− ζ) . . . (1− ζ2(k−j)) . . . (1− ζ2m−1)

it is an easy exercise to show that |ζ2j−1 − ζ2k−1|v ≥ |2m|v = |2m|p and we
obtain

|∆j,k|v ≥ |2m|p|∆|1/(2m)
p ,

which is independent of v | p.
Now we are in a position to apply Theorem 4.1 with

Av0 :=

(
pz

(v0)
j0 0

0 pz
(v0)
j1

)
Lj0,j1 ,

Av :=
(
p
m−1

2 z(p)
0

0 p
m−1

2 z(p)

)
Lj0,j1 for v | p, v 6= v0.

Corollary 4.3. For given z(p), there is a positive constant c1(m), de-
pending on m only , such that the n-tuples (Ai, Bi)i=1,...,n of rational num-
bers satisfying z(A,B) = z(p) lie in the union of c1(m) discrete Zp-modules
Λ(p) of Q2n

p for which Λ(p) = Λ0(p)n, where Λ0(p) is a discrete Zp-module
in Q2

p with

detΛ0(p) := [Z2 : Λ0(p)] ≥ {|2m|p|∆|1/(2m)
p pz

(p)}p.

Proof. By assumption z(p)(A,B) = z(p) and the aforementioned argu-
ments yield that each component X=(Ai, Bi) of (A,B) satisfies |AvX|v≤1
for v | p for some pair (z(v0)

j0
, z

(v0)
j1

) defined above, the number of resulting
systems of matrices (Av, v | p) is bounded by c1(m)z(p) and each of the Av
is non-singular, as required. Moreover

max
v|p
|detAv|v = |detAv0 |v0 ≥ pz

(p) |2m|p|∆|1/(2m)
p ,

and each two-dimensional component (Ai, Bi) of (A,B) lies in a discrete
Zp-module Λ0(p) of index

[Z2 : Λ0(p)] ≥ {|2m|p|∆|1/(2m)
p pz

(p)}p.

Since the choice of (j0, j1) that determines z(p) is independent of the pair of
variables (Ai, Bi), we obtain Λ(p) = Λ0(p)n as desired.

Our next task is to combine the results of Corollary 4.3 for all p ∈ P. For
this purpose, we again refer to a general result of the author that establishes
the connection between the discrete Zp-modules of Theorem 4.1 and the
lattice built up by the rational points that lie in all those p-adic lattices. We
state this result here without proof, the details may be found in [Su].
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Theorem 4.4. Let K be an algebraic number field and suppose that for
every valuation v ∈ M0(K) we are given a non-singular m ×m matrix Av
with entries from K, such that Av ≡ Im mod v for almost all v ∈ M0(K).
For p ∈ P let Λ0(p) be the discrete Zp-module of Qmp of Theorem 4.1 con-
sisting of y = (y1, . . . , ym) ∈ Qmp that satisfy |Avy|v ≤ 1 for all v | p. Then
every x = (x1, . . . , xm) ∈ Qmp satisfying |Avx|v ≤ 1 for all v ∈ M0(K) lies
in the lattice Λ0 in Rm that is the intersection of the rational points of the
modules Λ0(p):

Λ0 =
⋂

p∈P
(Qm ∩ Λ0(p)).

Moreover ,

detΛ0 =
∏

p∈P
[Zmp : Λ0(p)] ≥

∏

p∈P
{max
v|p
|Av|v}p.

Following the strategy adopted for a fixed prime p, we now apply the
results of Theorem 4.4 to our problem. We will need:

Definition 4.5. To each (A,B) ∈ Q2n with |li11 . . . limm |v ≤ 1 for all
v ∈M0(K), we associate the quantity z ∈ ∏p∈P(4m

3)−1N0 defined by

z(A,B) := (z(p)(A,B))p∈P,

where z(p)(A,B) is as in Definition 4.2.

As the reader may easily check, for given (A,B) there are only finitely
many components of z(A,B) different from 0; we denote their number by
r(z) := r(z)(A,B) and we are reduced to considering z ∈⊕p∈P(4m

3)−1N0

so that the expression
∏
p∈P c1(m)z(p) = c1(m)r(z)∏

p∈P z
(p) is well defined.

This implies that the matrices Av fall under the hypotheses of Theorem 4.4
and we find:

Corollary 4.6. For given z, the n-tuples (A,B) of pairs (Ai, Bi) ∈ Q2

of rational numbers satisfying z(A,B) = z = (z(p))p∈P lie in the union of
c1(m)r(z)∏

p∈P z
(p) lattices Λ of R2n for which Λ = Λn0 , where Λ0 is a lattice

in R2 with

detΛ0 ≥
∏

p∈P
{|2m|p|∆|1/(2m)

p pz
(p)}p.

Proof. By assumption z(A,B) = z = (z(p))p∈P and z(p) = 0 for almost
all p ∈ P, so that Av reduces to Lj0,j1 for v | p in this case. If in addition to
z(p) = 0 we also have p - 2m∆, we obtain |Av|v = |Av|−1

v = 1, which yields
|AvX|v ≤ 1 ⇔ |X| ≤ 1, as required for the application of Theorem 4.4.
Trivially, for z(p) = 0 and fixed p, all solutions X = (Ai, Bi) of |AvX|v ≤ 1 lie
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in one single Zp-module Λ0(p) of determinant ≥ {|2m|p|∆|1/(2m)
p }p, whereas

for z(p) 6= 0, Corollary 4.3 yields c1(m)z(p) Zp-modules of determinant ≥
{|2m|p|∆|1/(2m)

p pz
(p)}p.

Consequently, we have c1(m)r(z)∏
p∈P z

(p) cases in which we may apply
Theorem 4.4 to find that many lattices Λ0 in R2 in which the (Ai, Bi) lie,
whose determinant is bounded from below by

∏

p∈P
{|2m|p|∆|1/(2m)

p pz
(p)}p.

Unfortunately this estimate may be too weak for those primes for which
|2m|p|∆|1/(2m)

p can be small, that is, for the divisors of 2m and ∆. That
is where the role of the chosen system Πd in which (λ, λ′) lies becomes
obvious. Since only primes p lying below the h prime ideals ℘1, . . . , ℘h that
were chosen as representatives for the ideal classes of Q(

√
d) may appear in

mth power in ∆, we can expect to get a sufficiently decent bound for all but
finitely many primes.

We consider a partition of P into 3 sets: P1, P2, P3, where

P1 = {p ∈ P : p | 2m or ℘j | p for some 1 ≤ j ≤ h}.
Note that P1 is finite for each d independently of (λ, λ′) and moreover, for
given (λ, λ′) ∈ Πd there is just one prime p0 lying below the ideal class
containing the mth power part of λ and λ′. We thus do not have to worry
about the estimate of the index of Λ0(p) in this exceptional case. Next, we
set

P2 = {p ∈ P : p |∆, p 6∈ P1}.
The set P2 is finite for any fixed (λ, λ′) ∈ Πd; it is for the primes in this set
that the estimate of the index of Λ0(p) will have to be improved so as to
allow a summation over all (λ, λ′) in a fixed field Q(

√
d). Finally, set

P3 = {p ∈ P : p 6∈ (P1 ∪ P2)} = {p ∈ P : p - 2m∆}.
This set causes no problems since |2m|p|∆|1/(2m)

p = 1 in this case.

Proposition 4.7. In the case p ∈ P2 the estimate for the index of Λ0(p)
in Z2

p from Corollary 4.3 can be replaced by

[Z2
p : Λ0(p)] ≥ |∆|1/(2m)

p pmax{z(p),1/(2m)}.

Proof. Since trivially {|∆|1/(2m)
p pz

(p)}p ≥ |∆|1/(2m)
p pz

(p)
by definition of

{ }p, the statement of the proposition is surely true for z(p) ≥ 1/(2m). Now
assume z(p) < 1/(2m) as well as p |∆ and p 6∈ P1. If ps ‖∆ (i.e. ps is the
greatest power of p dividing ∆) with s 6≡ 0 (mod 2m), then |∆|1/(2m)

p 6∈
{pν : ν ∈ Z} and the presence of { }p makes us gain at least p1/(2m), which
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leads to
{|∆|1/(2m)

p pz
(p)}p ≥ |∆|1/(2m)

p p1/(2m).

We are thus left with the case ps ‖∆ for some s ≡ 0 (mod 2m). We claim
s = 2m. Obviously s > 0 since p |∆. If we had p4m |∆, we would get
p4m | dm(λλ′)2 by definition of ∆ and further

p - d ⇒ p2m |λλ′ ⇒ ∃π | p : πm |λ, πm |λ′ ⇒ p = p0,

p | d ⇒ p3m | (λλ′)2 and p = π2 ⇒ π3m |λλ′ ⇒ πm |λ, πm |λ′ ⇒ p = p0,

a contradiction to p 6= p0 in both cases.
So we only have to consider the case |∆|p = p2m, where we will show

that z(p)(A,B) = z(p) < 1/(2m) and p2m ‖∆ already imply (A,B) ∈ Z2n
p

and
[Z2
p : Λ0(p)] ≥ 1 = |∆|1/(2m)

p p > |∆|1/(2m)
p p1/(2m)

will prove the assertion.
Note that p2m ‖∆ yields p2m ‖ dm(λλ′)2, hence for

p | d ⇒ (p) = π2, π4m ‖ dm(λλ′)2 ⇒ πm ‖λλ′ ⇒ p |λ and p |λ′

for m ≥ 4 since p | d⇒ m 6= 3, and

p - d, d = 1 ⇒ p2m | (λλ′)2 ⇒ pm |λλ′ ⇒ p |λ and p |λ′,
p - d, d 6= 1 ⇒ (p) = ππ′, (ππ′)m ‖λλ′ ⇒ ππ′ |λ, ππ′ |λ′ ⇒ p |λ, p |λ′,

since p 6= p0 by assumption.
Altogether every valuation v | p has

|λ|v ≤ p−1 and |λ′|v ≤ p−1;

the entries of Lj0,j1 being linear combinations of λ1/m, λ′1/m with integral
coefficients, this implies |Lj0,j1 |v ≤ p−1/m.

Now, by Theorem 4.1 (see notation there)

|Avx|v ≤ 1 ⇒ |X|v ≤ |A−1
v |v ≤ |Av|v|detAv|−1

v .

Plugging in, we find

|detAv|v ≥ pz
(p) |∆|1/(2m)

p = pz
(p)−1

and
|Av|v = p−z

(v)
j0 |Lj0,j1 |v ≤ p−z

(v)
j0 p−1/m.

As already seen −z(v)
j0
≤ m−1

m−2z
(p) and we conclude

|Av|v ≤ p
m−1
m−2 z

(p)

p−1/m.

In combination with the estimate of |detAv|v this yields

|X|v ≤ p−z
(p)+1p

m−1
m−2 z

(p)−1/m = p
z(p)
m−2 +m−1

m < p for m ≥ 3

since z(p) was supposed < 1/(2m) and everything is proved.
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5. The synthesis of both problems. It is now time to recombine the
archimedean and non-archimedean parts of the problem, that is, to establish
a relation between points in the lattices Λ and those in the domain S(X).
The appropriate context for this purpose is the two-dimensional level, i.e.
the centrally symmetric, convex sets P (k)

s and the lattices Λ0. For this lattice
point count, we refer to a result from the geometry of numbers:

Proposition 5.1. Let Λ denote a lattice in R2 and K a convex set in
R2 that is symmetric with respect to the origin and has volume V (K). Then
the number of n-tuples (g1, . . . ,gn) with gi ∈ Λ ∩ K for i = 1, . . . , n for
which g1, . . . ,gn span R2 is � (V (K)/detΛ)n, with the implied constant
depending on n only.

Proof. See [Su] for the details of this special case or [G-L] and [Sch] for
reference.

In the present situation, we have to deal with c1(m)r(z)∏
p∈P z

(p) lattices
Λ0 = Λ0(z) for given z and m possible covering sets P (k) for given k and
we write z∗(A,B) = (k, z) for those (A,B) whose components lie in the
intersection of one of the above lattices with one of the covering sets and
abbreviate c1 := c1(m).

Corollary 5.2. The number of n-tuples (A,B) of pairs (Ai, Bi) ∈ Q2

satisfying z∗(A,B) = (k, z) for which (A1, B1), . . . , (An, Bn) span R2 is

�X2n/mc
r(z)
1

∏

p∈P
z(p)

[
2nk

∏

p∈P1

pnz
(p) ∏

p∈P3

{pnz(p)}p
∏

p∈P2

pnmax{1/(2m),z(p)}
]−1

,

if we set
∏
p∈P z

(p) = 1 whenever z(p) = 0 for all p.

Proof. By assumption z(A,B) = z and the (A,B) in question lie in one
of cr(z)

1
∏
p∈P z

(p) lattices Λ0 with

detΛ0 ≥
∏

p∈P
{|2m|p|∆|1/(2m)

p pz
(p)}p.

Moreover all components of (A,B) lie in one of the m covering sets P (k)
s ,

each of which is convex, symmetric with respect to the origin in R2 with
volume

V (P (k)
s )� 2−k|∆|−1/(2m)

∞ X2/m.

Thus for a fixed lattice Λ0 and a given set P (k)
s the conditions of Propo-

sition 5.1 are fulfilled and in (V (K)/detΛ)n the main term X2n/m has a
factor
(

2k|∆|1/(2m)
∞

∏

p∈P1∪P3

{|2m|p|∆|1/(2m)
p pz

(p)}p
∏

p∈P2

|∆|1/(2m)
p pmax{1/(2m),z(p)}

)−n
.
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For p ∈ P1 we use the trivial estimate

{|2m|p|∆|1/(2m)
p pz

(p)}p ≥ |2m|p|∆|1/(2m)
p pz

(p) � |∆|1/(2m)
p pz

(p)
,

whereas for p ∈ P3 we have |2m|p|∆|1/(2m)
p = 1, which leaves us with {pz(p)}p

only.
By the product formula,

|∆|∞
∏

p∈P1

|∆|p
∏

p∈P2

|∆|p =
∏

p∈P∪∞
|∆|p = 1

and the dependence on ∆ cancels.
Finally, taking into account the number of possible lattices Λ0, we easily

get the desired result.

To get information about points (A,B) in S(X) that lie in the union of
the lattices Λ(z) for some z, we have to sum over all k ∈ N and z = (z(p))p∈P
with 4m3z(p) ∈ Z and z(p) = 0 for almost all p. The summation over k
is straightforward since

∑
k∈N 2−k � 1; for the one over z we need some

technical details, most of which may be left to the reader:

Lemma 5.3. The following estimates hold with positive constants c0(m),
c2(m), c3(m) that depend on m only and will be abbreviated as c0, c2, c3:

∏

p∈P1

(
1 +

∞∑

s=1

c1(m)
s

4m3 p
(−ns)/(4m3)

)
� c2(m)h(d),

∏

p∈P3

(
1 +

∞∑

s=1

c1(m)
s

4m3 p
n[−s/(4m3)]

)
� c3(m),

∏

p∈P2

( ∞∑

s=0

c1(m)
s

4m3 p
−nmax(1/(2m),s/(4m3))

)
� c0(m)|P2|

∏

p∈P2

p−n/(2m).

Proof. The following estimate is obtained by elementary calculus:
∞∑

s=1

sp−ns �
∞�

1

sp−ns ds� p−n

and the first assertion follows immediately since |P1| � h(d) by construction.
For the second one, we observe that only integer powers of p may appear
for p ∈ P3, so that
∏

p∈P3

(
1+

∞∑

s=1

c1
s

4m3 p
n[−s/(4m3)]

)
=
∏

p∈P3

(
1+c1

∞∑

s=1

sp−ns
)
�
∏

p∈P3

(1+c1p−n),

and extending the last product over all primes yields
∏

p∈P
(1 + c1p

−n)�
∑

s

c
ω(s)
1 s−n � c2(m)
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for n ≥ 2, if we use the well known estimate ω(s)� log s(log log s)−1 which
readily implies aω(s) � sε for any ε > 0 and any fixed parameter a. For
the third product, we split up the sum involved in two parts, namely for
0 ≤ s ≤ 2m2 − 1 and s ≥ 2m2 so that max(1/(2m), s/(4m3)) = 1/(2m)
respectively s/(4m3) to obtain

∏

p∈P2

( ∞∑

s=0

c1
s

4m3 p
−nmax(1/(2m),s/(4m3))

)

=
∏

p∈P2

( 2m2−1∑

s=0

c1
s

4m3 p
−n/(2m) +

∞∑

s=2m2

c1
s

4m3 p
(−ns)/(4m3)

)

�
∏

p∈P2

(c′1p
−n/(2m) + c′′1p

−n/(2m))

� c0(m)|P2|
∏

p∈P2

p−n/(2m),

for suitable constants c′1, c
′′
1 , c0 depending on m only.

Proposition 5.4. The number of n-tuples (A,B) = (Ai, Bi)i=1,...,n of
pairs (Ai, Bi) ∈ Q2 for which (A1, B1), . . . , (An, Bn) span R2 and which lie
in the union over k ∈ N and z ∈ ⊕p∈P(4m

3)−1N0 of the intersections of
P (k) with one of the lattices Λ(z) is

� X2n/mh(d)
(
c
|P2|
0

∏

p∈P2

p−n/(2m)
)
.

Proof. The n-tuples (A,B) in question are precisely those treated in
Corollary 5.2 for a given z∗ = (k, z). Thus we have to sum over the (A,B)
in this estimate over all parameters k and z. In
∑

k∈N

∑

z

c
r(z)
1 2−nk

∏

p∈P1

z(p)p−nz
(p) ∏

p∈P3

z(p){p−nz(p)}p
∏

p∈P2

z(p)p−nmax{1/(2m),z(p)}

we may take the sum over k and use the identity
∑

z

c
r(z)
1

∏

p∈P
pνp(z(p)) =

∏

p∈P

(
pνp(0) + c1

∑

z(p)

pνp(z(p))
)
,

with νp(z(p)) being one of the above exponents. This leads to

∏

p∈P1

(
1 +

∞∑

s=1

c1
s

4m3 p
(−ns)/(4m3)

) ∏

p∈P3

(
1 +

∞∑

s=1

c1
s

4m3 p
n[−s/(4m3)]

)

×
∏

p∈P2

( ∞∑

s=0

c1
s

4m3 p
−nmax(1/(2m),s/(4m3))

)
,

and those factors were estimated in Lemma 5.3 to give the predicted result.
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To determine the order of magnitude of Z((λ, λ′), d, n,m,X), it only
remains to show that the n-tuples (A,B) counted there are among the ones
Proposition 5.4 deals with.

This requires two steps. On the one hand, the condition that
(Ai, Bi)i=1,...,n span R2 means precisely that those n-tuples lead to non-
degenerate forms. On the other hand, (A,B) ∈ S(X) ⊂ ⋃∞k=1

⋃m
s=1(P (k)

s )n

and (A,B) ∈ ⋃z Λ(z) so that they fall under the conditions of the proposi-
tion. We have thus proved:

Theorem 5.5. For (λ, λ′) ∈ Πd and n ≥ 2 we have

Z((λ, λ′), d, n,m,X)� X2n/mh(d)
(
c
|P2|
0

∏

p∈P2

p−n/(2m)
)
,

where the constant in � depends on n and m only , in particular it is inde-
pendent of (λ, λ′) and d.

We are now in a position to estimate
∑

(λ,λ′)∈Πd Z((λ, λ′), d, n,m,X) as
was outlined in Section 1 to get the desired bound on Z(d, n,m,X).

In order to bring into evidence the dependence on (λ, λ′) of the sum-
mands on the right, we note that |P2| ≤ ω(d)+ω(λλ′) and summarizing the
conditions p |λλ′, p - d and p 6= p0 by p ∈ T (λλ′) gives

∏

p∈P2

p−n/(2m) � |d|−n/(2m)
∏

p∈T (λλ′)

p−n/(2m),

and we obtain

Z((λ, λ′), d, n,m,X)� X2n/mh(d)cω(d)
0 |d|−n/(2m)c

ω(λλ′)
0

∏

p∈T (λλ′)

p−n/(2m).

Let us keep the prime p0 and thus the ideal class of the mth power part of
λ fixed to deal with the expression

∑

(λλ′)∈Πd(p0)

c
ω(λλ′)
0

∏

p∈T (λλ′)

p−n/(2m),

where Πd(p0) abbreviates the above restriction on (λ, λ′). Note that each
summand depends only on N := N (λ) = λλ′, so we get:

Proposition 5.6. Let (λ, λ′) ∈ Πd with (λ) = ℘m0 a where ℘0 | p0 is
some fixed prime ideal from {℘1, . . . , ℘h}. Then the exponent of each prime
divisor of N := N (λ) = λλ′ is bounded by a constant φm that depends on
m only and there are at most mω(N) ideals of the form (λ) = ℘m0 a with
N (λ) = N . In particular , pm0 |N .

Proof. Since (λ) = ℘m0 a = ℘e00
∏
%eii where a is assumed to be free of

mth powers, the first statement of the proposition becomes obvious if we
note that m ≤ e0 ≤ 2m − 1 and ei ≤ m − 1 for i ≥ 0. Turning to the
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statement concerning the number of ideals that have norm N , we assume
N = ps00 p

s1
1 . . . psrr . If a prime pi does not split in Q(

√
d), its exponent is

already determined by ei, whereas when pi splits, there are only m possible
choices for the exponent of each of its two factors in the decomposition of
(λ) since the possible exponents are between 0 and m − 1 for i ≥ 0 and
between m and 2m − 1 for i = 0. Thus there are at most mω(N) ideals of
the form (λ) = ℘m0 a with given norm N .

Proposition 5.7. Let M denote the square-free part of N = N (λ),
τ := (M,d) und L := M/τ . Then there is a constant C0 > 0, depending on
m only , for which

∑

(λλ′)∈Πd(p0)

c
ω(N)
0

∏

p∈T (N)

p−n/(2m) � C
ω(d)
0

( ∞∑

L=1

C
ω(L)
0 L−n/(2m)

)
.

Proof. By Proposition 5.6 we have
∑

(λλ′)∈Πd(p0)

c
ω(λλ′)
0

∏

p∈T (λλ′)

p−n/(2m) �
∑

N∈Φ
(mc0)ω(N)

∏

p∈T (N)

p−n/(2m),

where Φ denotes the set of integers whose prime factors all have exponents
≤ φm. In the right hand sum, the summand depends on the square-free part
M of N only (⇒ ω(N) = ω(M)) and since N is free of φmth powers, we
may write
∑

N∈Φ
(mc0)ω(N)

∏

p∈T (N)

p−n/(2m) �
∑

M sq-free

(φmmc0)ω(M)
∏

p∈T (M)

p−n/(2m).

If we keep (M,d) := τ fixed, we have p0 - τ by assumption since (p0, d) = 1
and we obtain

∏

p∈T (M)

p−n/(2m) = (M/τ)−n/(2m) for p0 -M,

∏

p∈T (M)

p−n/(2m) = (M/p0τ)−n/(2m) for p0 |M.

This implies further
∞∑

(M,d)=τ
M sq-free

(φmc0)ω(M)
∏

p∈T (M)

p−n/(2m)

≤
∞∑

(M,d)=τ
(M,p0)=1
M sq-free

(φmc0)ω(M)(M/τ)−n/(2m) +
∞∑

(M,d)=τ
p0|M

M sq-free

(φmc0)ω(M)(M/p0τ)−n/(2m).
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Both sums differ by a factor that depends on m only, so
∑

(M,d)=τ
M sq-free

(φmc0)ω(M)
∏

p∈T (M)

p−n/(2m)�
∑

(M,d)=τ
M sq-free

(φmc0)ω(M)(M/τ)−n/(2m).

With M/τ = L we get ω(M) = ω(L)+ω(τ) and summation over all divisors
τ of d gives (dropping the condition M sq-free)

∑

τ |d

( ∞∑

(M,d)=τ

(φmc0)ω(M)(M/τ)−n/(2m)
)

=
∑

τ |d
(φmc0)ω(τ)

( ∞∑

L=1

(φmc0)ω(L)L−n/(2m)
)
.

The number of τ | d with ω(τ) = j is precisely
(
ω(d)
j

)
, and thus we find

∑

τ |d
(φmc0)ω(τ) =

ω(d)∑

j=0

(
ω(d)
j

)
(φmc0)j = (φmc0 + 1)ω(d) =: Cω(d)

0

by the binomial theorem, which concludes the proof.

At this stage, we need a restriction on n that guarantees the convergence
of
∑∞
L=1 C

ω(L)
0 L−n/(2m) to prove the final step in our deduction, namely

Theorem 1.4 already stated in Section 1.

Theorem 5.8. Let n > 2m and h = h(d) be the class number of the
quadratic field Q(

√
d). Then there exists a constant C > 0 that depends on

m only with

Z(d, n,m,X)� X2n/dh2(d)Cω(d)|d|−n/(2m),

with the constant in � depending on n and m.

Proof. As already seen, we have

Z(d, n,m,X)

=
∑

(λ,λ′)∈Πd
Z((λ, λ′), d, n,m,X)

�X2n/mh(d)
∑

p0∈{p1,...,ph}

( ∑

(λ,λ′)∈Πd(p0)

c
ω(λλ′)
0

∏

p∈T (λλ′)

p−n/(2m)
)
c
ω(d)
0 |d|−n/(2m)

�X2n/mh2(d)
(
C
ω(d)
0

( ∞∑

L=1

C
ω(L)
0 L−n/(2m)

))
c
ω(d)
0 |d|−n/(2m)

by Theorem 5.5 and Proposition 5.7. The estimate

ω(L)� logL(log logL)−1 ⇒ (C0)ω(L) � Lε
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for any ε > 0 with the constant in � depending on m, ε then implies
∞∑

L=1

C
ω(L)
0 L−n/(2m) � 1

for n > 2m. Putting C := c0C0 leads to

Z(d, n,m,X)� X2n/dh2(d)Cω(d)|d|−n/(2m),

and the proof is complete.
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