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Restricted sums in a field

by

Qing-Hu Hou (Tianjin) and Zhi-Wei Sun (Nanjing)

1. Introduction. Let Zp = Z/pZ stand for the field of all residue
classes modulo prime p. In 1964 P. Erdős and H. Heilbronn (cf. [EH] and
[Gu]) conjectured that for each nonempty subset A of Zp there are at least
min{p, 2|A| − 3} residue classes modulo p that can be written as the sum
of two distinct elements of A. This had been open for thirty years until
J. A. Dias da Silva and Y. O. Hamidoune [DH] proved the following result
with the help of the representation theory of symmetric groups.

The Dias da Silva–Hamidoune Theorem. Let F be any field and n
a positive integer. Then for any finite subset A of F we have

(1.1) |n∧A| ≥ min{p(F ), n|A| − n2 + 1},
where n∧A denotes the set of all sums of n distinct elements of A, and p(F )
represents the additive order of the multiplicative identity of F .

Let F be a field and e be its multiplicative identity. If e has a finite
order as an element of the additive group of F , then the order p(F ) is a
prime and is called the characteristic of F ; otherwise, p(F ) is +∞ and the
characteristic of F is usually said to be 0.

In 1995–1996, N. Alon, M. B. Nathanson and I. Z. Ruzsa [ANR1, ANR2]
invented a polynomial method to obtain results similar to the Dias da Silva–
Hamidoune theorem.

By means of the polynomial method and the determination of certain
coefficients in a polynomial in product form, we obtain

Theorem 1.1. Let k,m be nonnegative integers and n a positive integer.
Let F be a field of characteristic p where p is zero or a prime with p/n
greater than m and k + m −mn − 1. Let A1, . . . , An be subsets of F with
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cardinality k. For any i, j = 1, . . . , n with i 6= j, let Sij ⊆ F and |Sij | ≤ m.
Then, for the set

(1.2) C = {a1 + . . .+ an : a1 ∈ A1, . . . , an ∈ An, ai − aj 6∈ Sij if i 6= j},
we have

(1.3) |C| ≥ (k +m−mn− 1)n+ 1.

Remark 1.1. In the case m = 0, the result also follows from the well
known Cauchy–Davenport theorem (cf. Theorem 2.2 of [N]) which asserts
that for any finite nonempty subsets A and B of a field F we have |A+B| ≥
min{p(F ), |A|+|B|−1}. When m = 1 and Sij = {0}, the set C given by (1.2)
coincides with n∧A if A1 = . . . = An = A. Since (k+m−mn−1)n−(k−1) =
(k−1−mn)(n−1), the condition p(F ) > nmax{m,k+m−mn−1} implies
that k ≤ p(F ). If the condition p(F ) > (k+m−mn−1)n in Theorem 1.1 is
violated, then k′+m−mn− 1 = [(p(F )− 1)/n] for some 0 < k′ < k (where
[α] denotes the greatest integer not exceeding the real number α), thus for
a certain C ′ ⊆ C we have

|C| ≥ |C ′| ≥ (k′ +m−mn− 1)n+ 1 = n

[
p(F )− 1

n

]
+ 1.

For convenience we now set

N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}.
If k, l ∈ Z then we put

[k, l) = {x ∈ Z : k ≤ x < l} and [k, l] = {x ∈ Z : k ≤ x ≤ l}.
The following example shows that the lower bound in (1.3) can be at-

tained if it is positive.

Example 1.1. Let F be a field and e be its multiplicative identity. Let
k,m ∈ N, n ∈ Z+ and m(n− 1) < k ≤ p(F ). Set A1 = . . . = An = {xe : x ∈
[0, k)}, S = {xe : x ∈ [0,m)} and

C = {a1 + . . .+ an : a1 ∈ A1, . . . , an ∈ An, ai − aj 6∈ S if i 6= j}.
Then |A1| = . . . = |An| = k, |S| ≤ m and C = {xe : x ∈ I} where

I = {a1 + . . .+ ak : a1, . . . , ak ∈ [0, k), |ai − aj | ≥ m whenever i 6= j}.
Observe that I is the union of the following intervals:

0 +m+ 2m+ . . .+ (n− 3)m+ (n− 2)m+ [(n− 1)m,k − 1],

0 +m+ 2m+ . . .+ (n− 3)m+ [(n− 2)m,k − 1−m] + k − 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0, k − 1− (n− 1)m] + (k − 1− (n− 2)m) + . . .+ (k − 1−m) + (k − 1).
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Therefore

I =
[ n−1∑

r=0

rm,
n−1∑

r=0

(k − 1− rm)
]

=
[
mn(n− 1)

2
, (k − 1)n− mn(n− 1)

2

]

and |I| = (k+m−mn−1)n+1. So |C| = min{p(F ), (k+m−mn−1)n+1}.
Corollary 1.1. Let k ∈ N, m,n ∈ Z+ and k > m(n − 1). Let F be a

field with p(F ) > nmax{m,k− 1−m(n− 1)}, and A1, . . . , An be subsets of
F with cardinality k. Let b1, . . . , bn ∈ F , 0 ∈ S ⊆ F and |S| = m. Then the
set

(1.4) {a1 + . . .+an : ai ∈ Ai, ai 6= aj and ai + bi− (aj + bj) 6∈ S if i 6= j}
is nonempty , and its cardinality is greater than (k − 1−m(n− 1))n.

Proof. For 1 ≤ i < j ≤ n we put

Sij = {0} ∪ {x− bi + bj : x ∈ S \ {0}} and Sji = {x− bj + bi : x ∈ S}.
Applying Theorem 1.1 we immediately get the required result.

Remark 1.2. The fact that (1.4) is nonempty under the assumptions of
Corollary 1.1 was realized by Alon [A2] in the case F = Zp with p being a
prime. In the special case k = n, m = 1 and S = {0}, the result implies that
for any odd prime p and subsets A,B of Zp with cardinality n, there is a
numbering {ai}ni=1 of the elements of A and a numbering {bi}ni=1 of those in
B such that the sums a1 + b1, . . . , an + bn are distinct. In fact, H. S. Snevily
[Sn] even conjectured that the above Zp can be replaced by any abelian
group whose order is odd.

Let us end this section with a conjecture posed by the second author.

Conjecture 1.1. Let F be any field , and A1, . . . , An be subsets of F
which are finite and nonempty. For 1 ≤ i < j ≤ n let Sij and Sji be finite
subsets of F with |Sij | ≡ |Sji| (mod 2). Then, for the set C given by (1.2),
we have

(1.5) |C| ≥ min
{
p(F ),

n∑

i=1

|Ai| −
∑

1≤i<j≤n
(|Sij |+ |Sji|)− n+ 1

}
.

The conjecture is open even when F is the rational field Q; the reader
may consult [Su] for related results.

2. Two auxiliary propositions

Proposition 2.1. Let A1, . . . , An be finite subsets of a field F with
|Ai|≥ki for i∈ [1, n] where k1, . . . , kn ∈ Z+. Let λ(x1, . . . , xn), µ(x1, . . . , xn)
∈ F [x1, . . . , xn] and degµ > 0. Put

(2.1) C = {µ(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An, λ(a1, . . . , an) 6= 0}.
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Then there is no ω(x1, . . . , xn) ∈ F [x1, . . . , xn] such that

λ(x1, . . . , xn)ω(x1, . . . , xn)µ(x1, . . . , xn)|C|

is of degree
∑n
i=1(ki − 1) and the coefficient of xk1−1

1 . . . xkn−1
n is nonzero.

Proof. Suppose that such an ω(x1, . . . , xn) exists. Write

f(x1, . . . , xn) = λ(x1, . . . , xn)ω(x1, . . . , xn)
∏

c∈C
(µ(x1, . . . , xn)− c).

Then deg f =
∑n
i=1(ki − 1), and the coefficient of

∏n
i=1 x

ki−1
i in f is

nonzero. By Theorem 1.2 of [A1], there are a1 ∈ A1, . . . , an ∈ An such
that f(a1, . . . , an) 6= 0. On the other hand, by the very definition of C,
f(a1, . . . , an) = 0 for all a1 ∈ A1, . . . , an ∈ An. So we get a contradiction.

Proposition 2.2. Let k,m, n be integers with m ≥ 0, n > 1 and k >
m(n− 1). Then the coefficient of xk−1

1 . . . xk−1
n in

∏

1≤i<j≤n
(xi − xj)2m(x1 + . . .+ xn)n(k+m−mn−1)

coincides with

(2.2) (−1)mn(n−1)/2 ((k +m−mn− 1)n)!
(m!)n

n∏

j=1

(jm)!
(k − 1− (j − 1)m)!

.

To prove this proposition is the main difficulty in our paper; the proof
will be presented in the next section.

Now we deduce Theorem 1.1 from Propositions 2.1 and 2.2.

Proof of Theorem 1.1. As |F | ≥ p(F ) > mn ≥ m, we can extend each Sij
(i 6= j) to a subset of F with cardinality m. Without any loss of generality,
we may assume that all the Sij have cardinality m.

Let l = k + m −mn − 1. The case l < 0 or n = 1 is trivial. Below we
handle the case l ≥ 0 and n ≥ 2.

Suppose on the contrary that |C| ≤ ln. Put

λ(x1, . . . , xn) =
∏

1≤i<j≤n

∏

cij∈Sij
(xi − xj − cij)

∏

cji∈Sji
(xi − xj + cji),

µ(x1, . . . , xn) = x1 + . . .+ xn,

ω(x1, . . . , xn) = (x1 + . . .+ xn)ln−|C|.

Then (2.1) holds. For

f(x1, . . . , xn) = λ(x1, . . . , xn)ω(x1, . . . , xn)µ(x1, . . . , xn)|C|,



Restricted sums in a field 243

the total degree is mn(n − 1) + ln = n(k − 1) =
∑n
i=1(|Ai| − 1) and the

coefficient of xk−1
1 . . . xk−1

n in f(x1, . . . , xn) is the same as that in
∏

1≤i<j≤n
(xi − xj)2m(x1 + . . .+ xn)ln ∈ F [x1, . . . , xn].

By Proposition 2.2, the coefficient of xk−1
1 . . . xk−1

n should be he where e is
the (multiplicative) identity of F and

h = (−1)mn(n−1)/2 (ln)!
(m!)n

n∏

j=1

(jm)!
(k − 1− (j − 1)m)!

∈ Z \ {0}.

In view of Proposition 2.1, we should have he = 0. So, p is a prime dividing h.
Since p is greater thanmn and ln, we have h 6≡ 0 (mod p) and a contradiction
follows.

3. Proof of Proposition 2.2. For k = 0, 1, 2, . . . we let

(x)k =
∏

j∈[0,k)

(x− j).

(The empty product is regarded as 1.) For f(x1, . . . , xn) ∈ Q[x1, . . . , xn], by
coeff [xi11 . . . xinn ] in f(x1, . . . , xn) we mean the coefficient of the monomial
xi11 . . . xinn in the polynomial f(x1, . . . , xn).

Let m ≥ 0 and n > 1 be integers. Write

fm(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj)2m =

∑

j1,...,jn

f
(m)
j1,...,jn

xj11 . . . xjnn .

For any integer k > m(n− 1), clearly

coeff [xk−1
1 . . . xk−1

n ] in fm(x1, . . . , xn)(x1 + . . .+ xn)n(k−1−m(n−1))

=
∑

j1,...,jn∈[0,k)
j1+...+jn=mn(n−1)

f
(m)
j1,...,jn

((k +m−mn− 1)n)!
(k − 1− j1)! . . . (k − 1− jn)!

=
((k +m−mn− 1)n)!

((k − 1)!)n
∑

j1,...,jn∈[0,k)
j1+...+jn=mn(n−1)

f
(m)
j1,...,jn

(k − 1)j1 . . . (k − 1)jn

=
((k +m−mn− 1)n)!

((k − 1)!)n
L(fm)(k − 1),

where L : Q[x1, . . . , xn]→ Q[x] is the linear operator given by

(3.1) L(xj11 . . . xjnn ) = (x)j1 . . . (x)jn .

Thus the main problem is to determine L(fm).
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Lemma 3.1. Let m be any positive integer. Then

(3.2) (x)0(x)m . . . (x)(n−1)m | L(fm).

Proof. Observe that

(x)0(x)m . . . (x)(n−1)m =
n−1∏

q=0

m−1∏

r=0

(x− (qm+ r))n−1−q

because {j ∈ [0, n) : jm−1 ≥ qm+r} = [q+1, n) has cardinality n−1−q. So
it suffices to show that (x− l)n−1−[l/m] | L(fm) for any l = 0, 1, . . . ,mn− 1.

Let j1, . . . , jn be nonnegative integers with f (m)
j1,...,jn

6= 0. In order to prove

that L(xj11 . . . xjnn ) = (x)j1 . . . (x)jn is divisible by (x− l)n−1−[l/m], we only
need to show that

|{1 ≤ i ≤ n : ji > l}| ≥ n− 1−
[
l

m

]
, i.e. |{1 ≤ i ≤ n : ji ≤ l}| ≤ 1 +

[
l

m

]
.

Let I={1≤ i≤n : ji ≤ l} 6=∅. The polynomial
∏
i,j∈I, i<j(xi−xj)2m divides

fm(x1, . . . , xn) and each monomial in it has degree 2m
( |I|

2

)
= m|I|(|I| − 1).

Since f (m)
j1,...,jn

6= 0, we have
∑
i∈I ji ≥ m|I|(|I| − 1) and hence l ≥ ji ≥

m(|I| − 1) for some i ∈ I. Therefore |I| ≤ 1 + [l/m]. This concludes the
proof.

Lemma 3.2. Let g(x1, . . . , xn) ∈ Q[x1, . . . , xn] and 1 ≤ s < t ≤ n. Then

L((xs − xt)g(x1, . . . , xn))

= L
(
xt
∂g(x1, . . . , xn)

∂xt

)
− L

(
xs
∂g(x1, . . . , xn)

∂xs

)
.

Proof. For any nonnegative integers j1, . . . , jn, we have

L((xs − xt)xj11 . . . xjnn )

=
n∏

i=1
i6=s,t

(x)ji · ((x)js+1(x)jt − (x)js(x)jt+1)

= (x)j1 . . . (x)jn(x− js − x+ jt) = jt(x)j1 . . . (x)jn − js(x)j1 . . . (x)jn

= L
(
xt
∂(xj11 . . . xjnn )

∂xt

)
− L

(
xs
∂(xj11 . . . xjnn )

∂xs

)
.

Write g(x1, . . . , xn) =
∑
j1,...,jn

gj1,...,jnx
j1
1 . . . xjnn where gj1,...,jn ∈ Q. Then,

by the above,
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L((xs − xt)g(x1, . . . , xn))

=
∑

j1,...,jn

gj1,...,jnL((xs − xt)xj11 . . . xjnn )

= L
(∑

gj1,...,jnxt
∂(xj11 . . . xjnn )

∂xt

)
− L

(∑
gj1,...,jnxs

∂(xj11 . . . xjnn )
∂xs

)

= L
(
xt
∂g(x1, . . . , xn)

∂xt

)
− L

(
xs
∂g(x1, . . . , xn)

∂xs

)
.

Lemma 3.3. Let ∆ 6= ∅ be a finite multi-set whose elements are ordered
pairs in the form (i, j) with 1 ≤ i < j ≤ n. Let g(x1, . . . , xn) ∈ Q[x1, . . . , xn]
and 1 ≤ r ≤ n. Then

∂

∂xr

(
g(x1, . . . , xn)

∏

(i,j)∈∆
(xi − xj)

)

=
∑

(s,t)∈∆

gs,t(x1, . . . , xn)
xs − xt

∏

(i,j)∈∆
(xi − xj)

where gs,t(x1, . . . , xn) ∈ Q[x1, . . . , xn] and deg gs,t ≤ deg g.

Proof. Let (u, v) be any element of ∆. Then

∂

∂xr

(
g(x1, . . . , xn)

∏

(i,j)∈∆
(xi − xj)

)

=
∂g(x1, . . . , xn)

∂xr

∏

(i,j)∈∆
(xi − xj) + g(x1, . . . , xn)

∂

∂xr

∏

(i,j)∈∆
(xi − xj)

=
(
∂g(x1, . . . , xn)

∂xr
(xu − xv)

)∏
(i,j)∈∆(xi − xj)
xu − xv

+ g(x1, . . . , xn)
∑

(s,t)∈∆

∂(xs − xt)
∂xr

·
∏

(i,j)∈∆(xi − xj)
xs − xt

.

Clearly deg g is not less than the degrees of those g(x1, . . . , xn)∂(xs−xt)
∂xr

(where (s, t) ∈ ∆) and ∂g(x1,...,xn)
∂xr

(xu − xv). So the desired result follows.

Combining Lemmas 3.2 and 3.3 we have

Lemma 3.4. Let m be a nonnegative integer and ∆ a multi-set with ele-
ments in the form (i, j) (1 ≤ i < j ≤ n) and |∆| equal to 2m. Then for any
g(x1, . . . , xn) ∈ Q[x1, . . . , xn] we have

(3.3) degL
(
g(x1, . . . , xn)

∏

(i,j)∈∆
(xi − xj)

)
≤ deg g +m.
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Proof. We use induction on m. The case m = 0 is trivial, so we proceed
to the induction step.

Assume m ∈ Z+. Let (s, t) be any element in ∆ and ∆′ denote the
multi-set ∆ with one (s, t) omitted. By Lemmas 3.2 and 3.3,

L
(
g(x1, . . . , xn)

∏

(i,j)∈∆
(xi − xj)

)

= L
(
xt
∂(g(x1, . . . , xn)

∏
(i,j)∈∆′(xi − xj))

∂xt

)

− L
(
xs
∂(g(x1, . . . , xn)

∏
(i,j)∈∆′(xi − xj))

∂xs

)

can be written in the form

L
( ∑

(u,v)∈∆′

guv(x1, . . . , xn)
xu − xv

∏

(i,j)∈∆′
(xi − xj)

)

=
∑

(u,v)∈∆′
L
(
guv(x1, . . . , xn)

xu − xv
∏

(i,j)∈∆′
(xi − xj)

)

where guv(x1, . . . , xn) ∈ Q[x1, . . . , xn] and deg guv ≤ deg g + 1. Choose
(u, v) ∈ ∆′ so that degL

( guv(x1,...,xn)
xu−xv

∏
(i,j)∈∆′(xi − xj)

)
is maximal. Let

∆′′ be the multi-set ∆′ with one (u, v) deleted. Then |∆′′| = 2(m− 1) and

degL
(
g(x1, . . . , xn)

∏

(i,j)∈∆
(xi − xj)

)

≤ degL
(
guv(x1, . . . , xn)

∏

(i,j)∈∆′′
(xi − xj)

)
.

By the induction hypothesis,

degL
(
guv(x1, . . . , xn)

∏

(i,j)∈∆′′
(xi − xj)

)
≤ deg guv + (m− 1) ≤ deg g +m.

So we have (3.3).

Lemma 3.5. Let m ≥ 0 and n > 1 be integers. Then

(3.4) coeff [xm(n−1)
1 . . . xm(n−1)

n ] in
∏

1≤i<j≤n
(xi − xj)2m

= (−1)mn(n−1)/2 (mn)!
(m!)n

.

Proof. Let m1, . . . ,mn ∈ N. When we expand
∏

1≤i,j≤n, i6=j(1−xi/xj)mj
as a Laurent polynomial in x1, . . . , xn (i.e., negative exponents allowed), the
constant term is the multinomial coefficient (

∑n
i=1 mi)!/

∏n
i=1(mi!). This
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result was conjectured by F. J. Dyson [D] in 1962. An elegant proof given
by I. J. Good [Go] in 1970 uses the Lagrange interpolation formula. D. Zeil-
berger [Z] gave a combinatorial proof of Dyson’s conjecture in the following
equivalent form:

coeff [xm1(n−1)
1 . . . xmn(n−1)

n ] in
∏

1≤i<j≤n
(xi − xj)mi+mj

= (−1)
∑n
j=1(j−1)mj (m1 + . . .+mn)!

m1! . . .mn!
.

Taking m1 = . . . = mn = m in the above equality, we get (3.4).

Now we are ready to prove

Theorem 3.1. Let f(x1, . . . , xn) =
∏

1≤i<j≤n(xi − xj)2m where m ∈ N
and n > 1. Then

(3.5) L(f) = (−1)mn(n−1)/2m!(2m)! . . . (nm)!
(m!)n

(x)0(x)m . . . (x)(n−1)m.

Proof. By Lemma 3.1, there exists a g(x) ∈ Q[x] such that

L(f) = (x)0(x)m . . . (x)(n−1)mg(x).

Note that deg
∏n−1
j=0 (x)jm =

∑n−1
j=0 jm = mn(n − 1)/2. By Lemma 3.4,

degL(f) ≤ deg 1 +m
(
n
2

)
. So g(x) is a constant c ∈ Q. As we mentioned at

the beginning of this section,

coeff [xmn−m1 . . . xmn−mn ] in f(x1, . . . , xn)

=
((mn−m+m−mn)n)!

((mn−m)!)n
L(f)(mn−m).

In view of Lemma 3.5, we have

c
n−1∏

j=0

(mn−m)jm = L(f)(mn−m) = ((mn−m)!)n · (−1)mn(n−1)/2 (mn)!
(m!)n

,

i.e.,

c = (−1)mn(n−1)/2 (mn)!
(m!)n

n−1∏

j=0

(mn−m− jm)! = (−1)mn(n−1)/2

∏n
i=1(im)!
(m!)n

.

This ends the proof.

Proof of Proposition 2.2. Let f(x1, . . . , xn) =
∏

1≤i<j≤n(xi− xj)2m. By
Theorem 3.1, we have

L(f)(k − 1) = (−1)mn(n−1)/2 m!(2m)! . . . (nm)!
(m!)n

n−1∏

i=0

(k − 1)im.
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Thus

coeff [xk−1
1 . . . xk−1

n ] in f(x1, . . . , xn)(x1 + . . .+ xn)(k−1−m(n−1))n

=
((k +m−mn− 1)n)!

((k − 1)!)n
L(f)(k − 1)

=
((k +m−mn− 1)n)!

((k − 1)!)n
(−1)mn(n−1)/2

∏n
j=1(jm)!

(m!)n

n∏

j=1

(k − 1)(j−1)m

= (−1)mn(n−1)/2

∏n
j=1(jm)!

(m!)n
· ((k +m−mn− 1)n)!∏n

j=1(k − 1− (j − 1)m)!
.

We are done.
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