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The distribution of inverses modulo a prime
in short intervals
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Let 7 denote the multiplicative inverse of ¥ modulo an odd prime p and
set

N ={7 (modp) : M <v <M+ N},
where M > 0 and N > 1 are integers such that (M,M + N] C (0,p).
The elements of N are known to be well-distributed in various senses. For
instance, C. Cobeli [1] has shown that the fractional parts of representatives
of N divided by p are uniformly distributed (mod1) when N > p'/2+e,
Here we wish to study the distribution of the elements of A in “short”
intervals (m, m + H], 1 <m < p, where H < p. To this end we set

f(m,H)=1|{n € (m,m+ H] :n (modp) € N'}|

(here | | denotes cardinality) and estimate
P

(1) My(H,p) =Y _(f(m,H) - HN/p)*.

m=1
Since each element of N is counted in exactly H of the intervals (m, m+ H],
1 <m < p, the mean of f(m,H) is

p
~ > Fm. H) = HNJp
m=1

Therefore, My, (H, p) is the kth moment of f(m, H) about its mean. Now the
probability that an integer selected at random from [1, p] is congruent to an
element of A/ is N/p. Thus, if the “events” m+h (modp) e N, 1 <h < H,
were independent, we should have

My (H,p) = px(H, N/p)p,
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where pp(H, P) is the kth moment of a binomial random variable X with
parameters H and P. That is,

pe(H, P) := E(X — HP)") = i <Z> P"(1 — P)H~"(n — HP).
h=1

We note that p;(H,P) =0 and pu(H,P) = HP(1 — P). C. Cobeli [1] has
recently shown that

Mo(H, p) = pa(H, N/p)p + O(H?p"/*log” p).
Our main result extends this to larger values of k.

THEOREM. Let k, N and H be positive integers with 1 < N, H < p.

Then
P

My(H,p) = (f(m,H) - NH/p)*"

m=1
= ux(H, N/p)p + O(H*p'/* log* p).
Here and elsewhere, unless otherwise indicated, implied constants depend
on k.
One can show (see Montgomery and Vaughan [3]) that for a fixed k,
ui(H, P) < (HP)*/2 + HP

uniformly for 0 < P <1 and H = 1,2,... Thus our theorem immediately
leads to an upper bound for My (H,p).

COROLLARY 1. Let k, H and N be positive integers with 1 < H, N < p.
Then

My (H,p) < p(HN/p)*% + HN + H*p'/logk p.
One can also show (see [3]) that
pie = (v + o(1)) (HP(L — P))*?
as HP(1 — P) — oo, where

_J1.3-...-(k—1) ifkiseven,
E= 0 if k is odd

denotes the moments of a normal random variable with mean 0 and standard
deviation 1. Using this together with our theorem, we obtain

COROLLARY 2. If H = o(p'/®¥ /logp) and (HN/p)(1 — N/p) — oo,
then
M(H,p) = (vi + o(1))p((HN/p)(1 — N/p))*/>.

Thus, f(m, H) is approximately normal with mean N H/p and variance
(HN/p)(1 — N/p) in appropriate ranges of H and N.
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Our final result is an estimate for the moments of gaps between consec-
utive terms of N. Let ni,...,ny be representatives of the residue classes
comprising A lying in (0, p) and arranged in increasing order. Also set

N-1

Se(p) = Y (nip1 — ni)".

i=1
From Corollary 1 we shall deduce

COROLLARY 3. Let € be an arbitrarily small positive number and let k
be any positive number less than 3/2. Then

Sk(p) < N(N/p)~"
for 1 < N < p when 0 < k < 1, and for p?/2G=R)*te « N < p when
1< Kk <3/2. We also have

Sk(p) > N(N/p)~™"

for pP/*te <« N < p and all 0 < k < 3/2. In particular, for 0 < Kk < 3/2
we have

Sk(p) = N(N/p)™",
provided that p™x{3/4,3/QB=r)}t+e « N < p.

1. Proof of the Theorem. For the convenience of the reader we state
two necessary lemmas without proof. The first, a special case of Theorem 1
in [2], depends on the Riemann hypothesis for curves.

LEMMA 1. Let p, N, and N, be as above and let aq,...,as be distinct
integers (mod p) with s < N. Then

> 1=p(N/p)®+O(sp"*log® p)
1<z<p
z+a; (mod p)eN

(1<i<s)
uniformly for 1 < s < N < p. Here the constant implied by the O-term is
absolute.

A proof of our second lemma may be found in Montgomery and

Vaughan [3].

LEMMA 2. Let pi(H, P) be as in the Theorem. Then

px(H, P) = Zk: <]:> (—HP)’“"”(i <Ij>5(r,t)t!Pt>,

r=0 t=0

where S(r,t) denotes a Stirling number of the second kind, that is, the num-
ber of partitions of a set of cardinality r into exactly t non-empty subsets.



318 S. M. Gonek et al.

We now proceed with the proof of the Theorem. Expanding the right-
hand side of (1) by the binomial theorem and taking the sum over m inside,
we find that

k

) Mittn) =3 (B) =N/ Y fm
m=1

r=0
Here we use the convention that f(m, H)? = 1 even when f(m, H) = 0. Let

us set
D
= [(m,H)
m=1

Then we have My(H) = p, and for r > 1,

p p p
(3) M.(H)= > ... > Z 1
=1 r=1 =
x1 (mxédp)e./\/’ Ty (nfodp)e./\/' m<z1<m+H

(1<i<r)

Let B be a subset of ¢ < r distinct elements of [1,p), each of which is
congruent (modp) to some element of N. By the definition of S(r,t), the
Stirling number of the second kind, we see that the number of maps from a
set of cardinality  onto a set of cardinality ¢ is S(r,t)t!. Hence, this is also
the number of terms in the r outer sums on the right-hand side of (3) for
which {z1,...,2,} = B. We therefore obtain

H):ZT:S(r,t)t! > Zp: 1.
t=1

B (mod p)CN m
|B|=t BC(m,m+H)|

Here B (modp) C N means that z (modp) € N for each z € B. Writing

d(B) = (e i — 1,

we see that the innermost sum equals max(0, H — d(B)). Thus, grouping
terms according to the size of d(B) as well as t, we find that

T H-1
(4) M.(H)=) Sttt > (H-d) > 1
t=1 d=0 BCN
|B|=t
d(B)=d
r H-1
= S(r,t)t! Z (H — d)N(t,d),
t=1 =0

say. Note that N(1,0) = N, while N(1,d) =0 for d > 0. For t > 1, if we set
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a1 = 0 and a; = d, then we find that

N(t,d) = > > 1.

1<ag,...,at—1<d 1<z<p
a; distinct z+a; (mod p)eN
(1<i<t)

The inner sum equals p(N/p)t + O(tp'/?log! p) by Lemma 1, and this is
counted (f:zl) times by the outer sum. Hence, for ¢t > 1,

t

Note that the implicit constant in the O-term depends on ¢, so ultimately
on k, but not on p or d. Using these estimates in (4), we obtain

N(t,d) = p<d B 21> (N/p)' +O(d"*p'/*1og" p).

t=2
H-1 d 1
- a)(p( 7 ) 70+ 0l 10t
d=0
| H g1
_HN—i—pZSrtt (N/p) ZH d( 2)

=0
+ O(Hrp1/2 log" p)

for » > 1. Here it is to be understood that if » = 1 the sum Vanishes.
The sum over d may be evaluated using the relation (l) = 1.(1,_1) and

. . J Jj\-—1
the identity
6+ () e+ ()-()
S+ )+ )= . .
J J J J+1

From these we find that
H
d—1 H
S-a;2y)= (1)
d=0

r

M,.(H HN—i—pZSrtt‘ (N/p) <?>+O(Hrpl/2logrp).
t=2

so that

As S(r,1) = 1 for r > 1, we can include the term HN in the sum by
beginning it at ¢ = 1. Moreover, since S(r,0) = 0 for » > 1, we may add the
term ¢ = 0 in as well. Thus, we find that when r > 1,

© M =Y st () ) + ot o ).
t=0
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Finally, using the convention S(0,0) = 1 and recalling our initial observation
that Mo(H) = p, we see that (5) actually holds for r > 0.

Using this in (2) and then applying Lemma 2, we obtain

r

My(H,p) = pg (5) i S () s v

t=0
+O(H*p'*log" p)
= ppx(H, N/p) + O(H*p"/* log" p).
This completes the proof of the Theorem.

2. Proof of Corollary 3. To prove Corollary 3 we modify an argument
of Montgomery and Vaughan [3]. Set

N—-1
D)= > 1
=1
Ni+1—N;>T
Then we have
p
(6) Se(p) = k| D(x)2" " da.

0

We first establish the upper bound. For 0 < z < 4p/N we use the trivial
estimate D(x) < N and find that

4P/N N —K
(7) K D(x)z" 'de < N(4p/N)* <« N| — :
| <y (5)

We bound D(z) for larger x by noting that if n;41 — n; > H, then
> 1-HN/p=-HN/p

m<n<m+H
n (mod p)eN

for n; <m < n;41 — H. Thus, if k is a non-negative integer, we have

N-1
(8) Y (nis1 —ni— H)(HN/p)™ < Moy (H, p).
mepr s H
Now suppose that HN > p. Then by Corollary 1 the right-hand side of (8) is
< p(HN/p)* + H**p'/*10g”" p.

Moreover, by the definition of My (H, p) this also holds when k£ = 0. On the
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other hand, taking H = [z/2], we see that the left-hand side of (8) is
N-1
> > (nipr—ni— H)(HN/p)™* > H(HN/p)* D(x).
=1
ni+1z_ni>x
Thus, for > 4p/N we find that
D(x) < N(zN/p) 5" + (N/p) 2~ 'p"*log™ p.
Suppose first that 0 < k£ < 1. Taking k£ = 0 in the above, we obtain
P P
(9) \ D@z tde<p | 2" 2de < N(N/p)™",
4p/N 4p/N
for 1 < N < p. On the other hand, if k > 1, we choose k large enough so
that k + 1 > k (so, in particular, k£ > 1), and obtain

p p
S D(z) 2" 'dx < N(N/p)~F! S 2" k=2 dy
4p/N 4p/N
p
+ (N/p)—Qkpl/Q lOngp S 252 do
4p/N

< N(N/p) (1 + (N/p)*= 2 1pr=3/210g? p).
Hence, we deduce in this case also that
P
(10) \ D(@)a"de < N(N/p)™",
4p/N
provided that

2k—1/2

k
PR+l 10g2k—2.‘1+1 p<N<p and k+1>k.

Note that in order for the N-range to be non-trivial when k > 1, we must
have k < 3/2. Thus, upon combining (6), (7), (9) and (10), we find

(11) Sx(p) < N(N/p)™"
2k—1/2 2k

for 1 < N <pif 0 < k < 1, and for p2k—++Tlog2k—r+ip < N < p if
1 < k < 3/2, where k is any integer such that k+1 > k. When 1 < k < 3/2,
we achieve the largest N-range by minimizing the exponent

2k —1/2 _1q 3/2—k

2k—rk+1  2k—r+1
of p subject to k + 1 > k. The minimum clearly occurs when £ = 1, so
we obtain (11) for p?/B=r))10g2/3=%) , < N < p. Finally, we note that
when k = 1, (11) follows from the definition of S;(p) for any N such that
1 < N < p. This gives the upper bound stated in Corollary 3.
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To treat the lower bound we again consider the cases 0 < k < 1 and
k > 1 separately. First suppose that x > 1. By Holder’s inequality we have

(12) S1(p)" < N*1 S (p),

and we require a lower bound for Si(p) = ny — n1. By Lemma 1 with
s = 2,a1 = 0, and ag = (p — 1)/2, say, it follows that there is a pair of
clements of N that are > p apart, provided that N > p3/4 log p. Hence
S1(p) > p for such N, and we deduce from (11) that

N —K
Sk(p) > N <—> .
p
For 0 < k < 1 we apply Holder’s inequality in the form

S1(p)? < Sk(P)(S(g—r)/(a-1)(@) T,
where ¢ is any real number greater than 1. We have S;1(p) > p when N >
p3/*1og p, as before, and also the upper bound

S(qem)/(q—1)(p) < N(N/p)~(@=m/(a=1)

for 1 < (¢ —k)/(g—1) < 3/2 and p%(3—f§%§‘)+€/2 < N < p. It therefore
follows, on taking ¢ sufficiently large, that

S(p) > p?/(NTH(N/p)"~%) = N(N/p)~"
for p3/4t¢ « N < p. This gives the required lower bound.

The final assertion of the corollary follows immediately on combining the
upper and lower bounds for Sk (p).

References

[1] C. I Cobeli, Topics in the distribution of inverses (modgq), doctoral dissertation,
University of Rochester, 1997.

[2] C. I Cobeli, S. M. Gonek and A. Zaharescu, The distribution of inverses modulo a
prime, to appear.

[3] H.L. Montgomery and R. C. Vaughan, On the distribution of reduced residues, Ann.
of Math. 123 (1986), 311-333.

Department of Mathematics
University of Rochester
Rochester, NY 14627, U.S.A.
E-mail: gonek@math.rohester.edu

Received on 30.10.2000 (3907)



