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A. Popescu (Bucureşti), N. Popescu (Bucureşti),
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1. Introduction. By a local field we mean a field K which is complete
with respect to a discrete non-archimedean absolute value | · |. The main
example we have in mind is that of a p-adic field, that is, a finite extension
of the field Qp of p-adic numbers. If Qp ⊆ K we normalize the absolute value
|·| on K so that |p| = 1/p. We associate two finite chains of metric invariants
to each element α separable over K, and investigate the connection between
these chains. In what follows by a finite chain we mean a matrix

A =
(
t1 . . . tl
D1 . . . Dl

)

such that t1 > . . . > tl = 0 are real numbers and 1 = D1 < . . . < Dl are
integers with the property that Dj divides Dj+1 for any j ∈ {1, . . . , l − 1}.
We call l the length of the chain A. By an infinite chain we mean a pair
of sequences ((tn)n≥1, (Dn)n≥1) such that (tn)n≥1 is a strictly decreasing
sequence of real numbers with limn→∞ tn = 0 and (Dn)n≥1 is a strictly
increasing sequence of integers such that D1 = 1 and each Dj divides Dj+1.
We will associate a pair of infinite chains to each element T ∈ Ω which is
transcendental over K, where Ω denotes the completion of a fixed separable
closure K of K with respect to the unique absolute value induced by | · | on
K. In case K is a p-adic field we denote Ω as usual by Cp. The chains we are
going to construct consist of some of the most basic metric invariants which
can be associated to α and respectively T . In this paper our goal is to show
that although the two chains associated to the same element are defined in
completely different ways, they are very much related to each other.

The first chain associated to α is given in terms of the distances between
α and the elements of K of smaller degree over K. In order to define this
chain we first prove the following theorem, which reveals a nice structure
for the set of degrees over K of elements from any (open or closed) ball in
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K. For any β ∈ K we denote by degK β the degree of β over K, that is,
degK β = [K(β) : K].

Theorem 1. For any ball B in K there is a positive integer D=D(K,B)
such that

{degK β : β ∈ B} = DN∗ = {D, 2D, 3D, . . .}.
Let now α ∈ K and consider the map from (0,∞) to N∗ given by t 7→

D(K,B[α, t]), where B[α, t] denotes the closed ball in K of radius t centered
at α. This is a decreasing step function which is bounded by degK α since
α ∈ B[α, t] for any t, thus its image consists of finitely many positive integers
D1 < . . . < Dl. From Theorem 1 it follows that Dj divides Dj+1 for any
j ∈ {1, . . . , l− 1}. Note that for t large enough B[α, t] will contain elements
from K, hence D1 = 1. Also, from Krasner’s Lemma we know that if t <
min{|α−σ(α)| : σ ∈ Gal(K/K), σ(α) 6= α} then for any β ∈ B[α, t] one has
K(α) ⊆ K(β), and so degK α divides degK β. This shows that for t small
enough we have

D(K,B[α, t]) = Dl = degK α.(1.1)

For any j ∈ {1, . . . , l} we set

tj = inf{t > 0 : D(K,B[α, t]) = Dj}.(1.2)

Thus t1 > . . . > tl = 0 and we have a chain

DK(α) =
(
t1 . . . tl
D1 . . . Dl

)
.(1.3)

Note that t1 equals the distance from α to K

t1 = d(α,K) := inf{|α− z| : z ∈ K}.(1.4)

The length l of the chain DK(α) in (1.3) will be denoted by lK(α). These
chains DK(α) play an essential role in the description of the structure of
irreducible polynomials over K. We mention in this context that they can
also be defined in terms of the so-called saturated distinguished chains in-
troduced in [6] and later studied also in [1] and [5]. In this paper we try to
keep the presentation short and as self-contained as possible. In particular
we chose to define the chains DK(α) via Theorem 1 rather than to recall the
terminology from the above mentioned papers. If one replaces α by an ele-
ment T ∈ Ω \K, the construction is similar. We intersect the balls centered
at T with K, so we work with the function t 7→ D(K,B[T, t] ∩K). This is
a decreasing step function whose image consists of infinitely many integer
numbers 1 = D1 < D2 < . . . Then we define for any Dj a real number tj > 0
as in (1.2) and obtain an infinite chain

DK(T ) =
(
t1 t2 . . .
D1 D2 . . .

)
.(1.5)
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Clearly any finite part
(
t1 . . . tr
D1 . . . Dr

)

of DK(T ) coincides with the corresponding part in a chain DK(α) as in (1.3),
provided α is close enough to T .

In this connection we point out that the distinguished sequences (αn)n∈N
associated to T (see [1]) provide in some sense best possible approximations
to T , and some of their properties are reminiscent of those of continued
fractions associated to real numbers. In particular they have the property
that for each such αn the entire chain DK(αn) (with the obvious exception
of tlK(αn) = 0) is contained in DK(T ). This is analogous to the property
of convergents αn to the continued fraction of an irrational real number T
to have the same continued fraction as the corresponding part of the con-
tinued fraction of T . We remark that even when K is a p-adic field our
chains have nothing to do with continued fractions in Qp which approx-
imate the elements of Qp with rational numbers and which are the true
analogs of the continued fractions in R. The chains DQp(T ) are produced
by algebraic elements of higher and higher degree over Qp and this has no
analogue in the archimedean case where the only algebraic extensions of R
are R and C.

We now proceed to construct a second chain for each element T ∈ Ω.
This chain is defined in terms of the distances between T and its conjugates
over K, and plays an important role in various questions concerned with the
action of the Galois group GK = Gal(K/K) ∼= Galcont(Ω/K) on Ω, such
as the problem of extending the definition of the trace over K to elements
from Ω which are not algebraic over K (see [2]). In order to define this
chain, we consider for each ε > 0 all the closed balls of radius ε in Ω and
intersect them with the orbit CK(T ) := {σ(T ) : σ ∈ GK}. The set CK(T )
is finite if T ∈ K, and infinite, but still compact, if T ∈ Ω \K. Since Ω is
an ultrametric space, any two balls of radius ε either coincide or they are
disjoint. Denote by N(K,T, ε) the number of disjoint closed balls of radius
ε which cover CK(T ). The map from (0,∞) to N∗ given by ε 7→ N(K,T, ε)
is a decreasing step function which is bounded precisely if T ∈ K. Thus its
image consists of a sequence of positive integers 1 = N1 < N2 < . . . , which
is finite or infinite according as T ∈ K or T ∈ Ω \K. For any Nj we set

εj = inf{ε > 0 : N(K,T, ε) = Nj}.(1.6)

Since the Galois group GK acts transitively on CK(T ) and each auto-
morphism σ ∈ GK is an isometry one easily sees that for any j, each of
the Nj closed balls of radius εj which cover CK(T ) will produce the same
number of closed balls of radius εj+1 which intersect CK(T ). Thus each Nj
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divides Nj+1. If T ∈ Ω \K we get an infinite chain

NK(T ) =
(
ε1 ε2 . . .
N1 N2 . . .

)
.(1.7)

In case of an α ∈ K this construction produces a finite chain, say of
length l′K(α),

NK(α) =
(
ε1 . . . εl′K(α)
N1 . . . Nl′K(α)

)
.(1.8)

Here εl′K(α) = 0 and Nl′K(α) = degK α. Note that for any T ∈ Ω, ε1 equals
the diameter of CK(T ):

ε1 = diamCK(T ) = sup {|T − σ(T )| : σ ∈ GK}.(1.9)

Several precise relations involving the chains DK(α) and NK(α) have
been established by Ota in [5]. For instance, Theorem 3.2 and Proposition 3.4
of [5] imply that the chains DK(α) and NK(α) coincide if the characteristic
of the residue field of K does not divide degK α or if K(α)/K is unramified.
There are however elements α ∈ K for which the chains DK(α) and NK(α)
do not coincide. To see this, use (1.4) and (1.9) which give t1 = d(α,K)
and ε1 = diamCK(α). One always has diamCK(α) ≤ d(α,K), but there
are elements α ∈ K for which this inequality is strict. One does have an
inequality of the form

d(α,K) ≤ cp diamCK(α)

valid for any α ∈ K, where cp is a constant (the so-called Sen–Ax constant)
which depends on the characteristic p (or 0) of the residue field of K only,
and this inequality was the key ingredient in the construction of the Galois
theory in Ω (see Tate [8], Sen [7] and Ax [4]). Thus, for any α ∈ K, the first
elements t1 and ε1 from DK(α) and respectively NK(α), do not differ too
much.

We would like to have a result which gives some control over the other
elements of the chains DK(α) and NK(α) as well. In Section 4 we will prove
such a result, which is valid for all elements of Ω. Here we state a simpler
version of it, for elements T ∈ Ω which are transcendental over K. If

A =
(
a1 . . . an . . .
A1 . . . An . . .

)
and B =

(
b1 . . . bm . . .
B1 . . . Bm . . .

)

are two infinite chains, we say that A is dominated by B if there exists a
real number c > 0 such that for any pair

( an
An

)
from A there is a pair

( bm
Bm

)

in B such that
bm ≤ can(1.10)

and
Bm divides An.(1.11)
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If A is dominated by B and B is dominated by A we say that A and B
are equivalent. One checks that this is indeed an equivalence relation on the
set of all infinite chains. The reader might wonder at this point whether our
definition of equivalence is strong enough to enable us to transfer relevant
information from an infinite chain to an equivalent one. Lemma 3 from
Section 2 below provides a quantitative version of equivalence where one
can conclude that two chains actually coincide. Also, Lemma 5 shows an
effective way of exploiting a natural descent procedure in moving back and
forth between two equivalent chains. We will prove the following

Theorem 2. For any T ∈ Ω which is transcendental over K, the chains
DK(T ) and NK(T ) are equivalent.

In many cases one has more information on DK(T ) than on NK(T ) (see
for example the constructive approach from [1] and [6] which gives all the
elements T of Ω, where the chain DK(T ) is built into the construction). So
from this point of view one may interpret Theorem 2 as giving information on
the chain NK(T ) in terms of the “known” chain DK(T ). As an application of
Theorem 2, we will see in Section 2 how one can express a metric obstruction
appearing in the definition of the trace over K for elements T ∈ Ω \K, in
terms of the chain DK(T ).

2. Chains. We start with a discussion on chains, which is self-contained
and independent of local fields. We use the definition of finite and infinite
chains given in the introduction. Let c > 0 be a real number and let

A =
(
a1 a2 . . .
A1 A2 . . .

)
and B =

(
b1 b2 . . .
B1 B2 . . .

)

be two finite or infinite chains. We say that A is c-dominated by B and write

A
c
≤ B, provided for any pair

( an
An

)
from A there is a pair

( bm
Bm

)
in B such

that (1.10) and (1.11) hold true. Note that if A
c
≤ B and B

c′

≤ A for some
c, c′ > 0 then the chains A and B are either both finite or both infinite.
Indeed, A is finite if and only if it contains a pair

( an
An

)
with an = 0, and

similarly for B, from which the above statement follows immediately.

Lemma 3. If A and B are finite or infinite chains such that A
1
≤ B and

B
1
≤ A, then A and B coincide.

Proof. Let A and B be as in the statement of the lemma. Since A
1
≤ B,

for any pair
( an
An

)
from A there is a pair

( bm
Bm

)
in B such that

bm ≤ an(2.1)
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and
Bm divides An.(2.2)

From B
1
≤ A it follows that there exists a pair

( an′
An′
)

in A such that

an′ ≤ bm(2.3)

and
An′ divides Bm.(2.4)

Relations (2.1) and (2.3) imply an′ ≤ an so n′ ≥ n, while from (2.2) and
(2.4) it follows that An′ divides An, which implies n′ ≤ n. Hence n = n′,
and from (2.1)–(2.4) we see that an = bm and An = Bm. Therefore each
pair

( an
An

)
from A belongs to B. Similarly each pair from B belongs to A,

thus A and B consist of the same pairs. Clearly the order of pairs will also
be the same, thus the chains A and B coincide and the lemma is proved.

Let A = ((an)n≥1, (An)n≥1) be an infinite chain. We say that A has the
property (♦) provided

lim
n→∞

an
|An|

= 0(2.5)

where | · | denotes the absolute value on K. The motivation for introducing
this property comes from the definition of the trace over Qp, or over a finite
extension K of Qp, for elements T ∈ Cp \K, as an integral with respect to
the p-adic Haar measure πT on the orbit CK(T ) (see [2])

TrCp/K(T ) :=
�

CK(T )

z dπT (z).(2.6)

In general πT is an unbounded measure and the integral on the right
hand side of (2.6) may or may not be defined. By breaking CK(T ) into balls
of radius ε and reasoning in terms of the corresponding Riemann sums, a
sufficient condition in order for this integral to be defined has been given
in [2], in terms of the chain NK(T ). Similarly, one finds that a necessary
condition in terms of NK(T ) for the integral to be defined is to have (in the
notation from the introduction)

lim
n→∞

εn
|Nn|

= 0,

in other words the condition is NK(T ) to have property (♦). We would like
to have this condition expressed if possible in terms of the chain DK(T ).
Keeping in mind the fact that the chains DK(T ) and NK(T ) are equivalent
by Theorem 2, we ask whether any infinite chain equivalent to one which
has the property (♦), will also satisfy (♦). The answer is “no”. In order
to see this, we construct two equivalent chains A = ((an)n≥1, (An)n≥1) and
B = ((bm)m≥1, (Bm)m≥1) in the p-adic case such that A satisfies (♦) but B
does not satisfy (♦). We first construct the sequences (An)n≥1 and (Bm)m≥1.



Chains of metric invariants 33

We set A1 = B1 = 1, B2 = p. Next, we let A2 = B3 and B4 = p2A2. Then we
let A3 = B5 and B6 = p3A3, and so on. Here there is no connection between
the numbers A1, A2, . . . , An, . . . , except we have to arrange that each An di-
vides An+1 and each Bn divides Bn+1. Assuming the sequences (An)n≥1 and
(Bm)m≥1 are already constructed, we choose a strictly decreasing sequence
(an)n≥1 such that

an
|An|

→ 0 and
an
|pnAn|

→ ∞.

Next, we set b1 = a1, b3 = a2, b5 = a3, . . . , and then we choose the numbers
b2, b4, . . . so as to have, for any k,

b2k−1 > b2k > max{b2k−1/2, b2k+1}.
In this way we obtain two equivalent chains A = ((an)n≥1, (An)n≥1) and
B = ((bm)m≥1, (Bm)m≥1) such that A satisfies (♦) while B does not satisfy
(♦).

Let now A = ((an)n≥1, (An)n≥1) and B = ((bm)m≥1, (Bm)m≥1) be ar-
bitrary infinite chains. We say that A and B have finite intersection if the
intersection of the sets {A1, A2, . . . , An, . . .} and {B1, B2, . . . , Bm, . . .} is fi-
nite. Note that the chains from the above example do not have finite inter-
section. For pairs of chains (A,B) which have finite intersection we are able
to prove a result of the desired shape:

Theorem 4. Let A and B be two equivalent infinite chains which have
finite intersection. If A has the property (♦) then so does B.

Let A = ((an)n≥1, (An)n≥1) and B = ((bm)m≥1, (Bm)m≥1) be two equiv-
alent infinite chains which have finite intersection. For each positive integer
m we consider the set

Mm = {n ∈ N∗ : Bm divides An}.
It is easy to see that Mm is not empty. Denote by n(m) the smallest

element of Mm. The proof of Theorem 4 is based on the following

Lemma 5. Let A = ((an)n≥1, (An)n≥1) and B = ((bm)m≥1, (Bm)m≥1)
be two equivalent chains having finite intersection. Then the sequence(

bm
an(m)

)

m≥1

is bounded.

Proof of Theorem 4. Assuming Lemma 5, for any m we write

bm
|Bm|

=
bm
an(m)

·
an(m)

|An(m)|
·
|An(m)|
|Bm|

.(2.7)

On the right hand side of (2.7), the first quotient is bounded as m→∞
by Lemma 5. The last quotient is ≤ 1 since An(m)/Bm is an integer by
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the definition of n(m). Finally, the middle quotient converges to zero as
m → ∞ from the assumption that A has the property (♦) together with
the fact that n(m) → ∞ as m → ∞. Hence limm→∞ bm/|Bm| = 0 and
Theorem 4 is proved.

Proof of Lemma 5. Let A and B be as in the statement of the lemma,

and let c > 0 be such that A
c
≤ B and B

c
≤ A. For any m ≥ 1 we consider

the pair
( an(m)
An(m)

)
from A. Since A

c
≤ B, there is a pair

( bm1
Bm1

)
in B such that

bm1 ≤ can(m)(2.8)

and
Bm1 divides An(m).(2.9)

From B
c
≤ A it follows that there is a pair

( an1
An1

)
in A for which

an1 ≤ cbm1(2.10)

and
An1 divides Bm1 .(2.11)

By applying again the relation A
c
≤ B we get a pair

( bm2
Bm2

)
in B such

that
bm2 ≤ can1(2.12)

and
Bm2 divides An1 .(2.13)

We stop this “descent” here and, as we shall see in what follows, this is
the key point in the proof of Lemma 5. From (2.9) and (2.11) it follows that
An1 divides An(m), hence n1 ≤ n(m).

We claim that for m large enough the inequality is strict: n1 < n(m).
Indeed, if n1 = n(m) then one has An1 = Bm1 = An(m). But the chains
A and B have finite intersection, so there are positive integers m0 and n0
such that the sets {An0 , An0+1, . . .} and {Bm0 , Bm0+1, . . .} are disjoint. By
the definition of n(m) we see that n(m)→∞ as m→∞. Then by (2.8) it
follows also that m1 →∞ as m→∞. Thus for m large enough the numbers
An(m) and Bm1 are distinct, which proves the claim.

Next, we claim that m2 < m. Indeed, if m2 ≥ m then Bm divides Bm2 ,
and from (2.13) it will follow that Bm divides An1 . But n1 < n(m) and n(m)
is the smallest integer n for which Bm divides An. Therefore Bm does not
divide An1 and so m2 < m as claimed. As a consequence one has

bm < bm2 .(2.14)

On combining the inequalities (2.8), (2.10), (2.12) and (2.14) we obtain

bm < bm2 ≤ can1 ≤ c2bm1 ≤ c3an(m).
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In conclusion, for m large enough one has bm/an(m) < c3, which completes
the proof of the lemma.

3. Reduction to K. In this section we show how statements concerning
the chains DK(T ) and NK(T ) for a general element T ∈ Ω can be reduced
to the case when T ∈ K. For this we need the following comparison lemma.
First we introduce one more piece of terminology. Let δ > 0 and let

A =
(
t1 t2 . . .
D1 D2 . . .

)

be a finite or infinite chain. Let r be the largest integer for which tr ≥ δ.
Then the matrix (

t1 . . . tr
D1 . . . Dr

)

will be called the δ-part of the chain A.

Lemma 6. Let δ > 0 and let T , U be elements of Ω with |T − U | < δ.
Then the δ-parts of DK(T ) and DK(U) coincide, and so do the δ-parts of
NK(T ) and NK(U).

Proof. Let t ∈ [δ,∞). Then the closed balls B[T, t] and B[U, t] coincide.
It follows that the functions t 7→ D(K,B[T, t]∩K) and t 7→ D(K,B[U, t]∩K)
coincide on the interval [δ,∞). In terms of the chains DK(T ) and DK(U)
this translates exactly into their δ-parts being the same. A similar argument
works for NK(T ) and NK(U). More precisely, let ε ≥ δ and decompose
the entire space Ω into a union of disjoint closed balls of radius ε. Then
N(K,T, ε) equals the number of such disjoint balls which have a non-empty
intersection with CK(T ), and similarly for N(K,U, ε). Now any closed ball
B of radius ε which intersects CK(T ) will also intersect CK(U). Indeed, if
σ(T ) ∈ B for some σ ∈ GK , then since

|σ(T )− σ(U)| = |T − U | < ε

it follows that σ(U) ∈ B. Thus a closed ball of radius ε intersects CK(T ) if
and only if it intersects CK(U), hence N(K,U, ε) = N(K,T, ε). The maps
ε 7→ N(K,T, ε) and ε 7→ N(K,U, ε) being the same on the interval [δ,∞),
the δ-parts of NK(T ) and NK(U) will coincide, and the lemma is proved.

Using this lemma we now reduce our statements concerning general ele-
ments T ∈ Ω to the corresponding statements for elements α ∈ K. First of
all let us see that for each T ∈ Ω \K, DK(T ) and NK(T ) are indeed infinite
chains. For any δ > 0 we choose an α ∈ K such that |α − T | < δ. Then
by Lemma 6 we know that the δ-parts of DK(α) and DK(T ) coincide, and
similarly for NK(α) and NK(T ). Since DK(α) and NK(α) are finite chains
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it follows that the δ-parts(
t1 . . . tr
D1 . . . Dr

)
and

(
ε1 . . . εr′
N1 . . . Nr′

)

of DK(T ) and NK(T ) respectively have the required properties t1 > . . . >
tr > 0, ε1 > . . . > εr′ > 0, 1 = D1 < . . . < Dr, 1 = N1 < . . . < Nr′ and
also Dj divides Dj+1, 1 ≤ j < r, and Ni divides Ni+1, 1 ≤ i < r′. Since
this holds for any δ > 0, we see that DK(T ) and NK(T ) are infinite chains.
Actually there is one more thing we need to show, namely that limn→∞ tn =
limn→∞ εn = 0. Assume one of these fails, say limn→∞ tn = η > 0. Then we
take an α ∈ K for which |α−T | < η and from the above comparison lemma
we get a contradiction since the η-part of DK(α) has finite length while the
η-part of DK(T ) has infinite length under the assumption limn→∞ tn = η.
Thus limn→∞ tn = 0 and similarly limn→∞ εn = 0. In conclusion DK(T ) and
NK(T ) are infinite chains.

Theorem 2 is a consequence of the following more precise result:

Theorem 7. Let K be a locally compact field. For any T ∈ Ω one has

DK(T )
1
≤ NK(T ) and NK(T )

cp
≤ DK(T ), where cp is the Sen–Ax constant.

The case T ∈ Ω \K in Theorem 7 follows easily from the corresponding

statement for elements α ∈ K. For instance, in order to prove that DK(T )
1
≤

NK(T ), fix a pair
( tn
Dn

)
from DK(T ) (notations are as in (1.5) and (1.7)).

We need to show that there is a pair
( εm
Nm

)
in NK(T ) such that

εm ≤ tn(3.1)

and
Nm divides Dn.(3.2)

Let r be the smallest integer for which Nr > Dn and εr < tn. Choose
α ∈ K such that |α − T | < εr. From Lemma 6 we know that the εr-part
of DK(T ) coincides with that of DK(α) and the εr-part of NK(T ) coincides
with that of NK(α). Note that the pair

( tn
Dn

)
belongs to the εr-part of

DK(T ), so it will also belong to DK(α). Assuming that DK(α)
1
≤ NK(α),

there will be a pair
( εs(α)
Ns(α)

)
in NK(α) such that

εs(α) ≤ tn(3.3)

and
Ns(α) divides Dn.(3.4)

Since
( εr
Nr

)
belongs to the εr-part ofNK(T ), it will also belong toNK(α).

One has Ns(α) ≤ Dn < Nr, so the pairs
( εs(α)
Ns(α)

)
and

( εr
Nr

)
appear in

this order in NK(α). Thus the former belongs to the εr-part of NK(α).
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Therefore it also belongs to NK(T ), that is, εs(α) = εm and Ns(α) = Nm

for some m, and (3.1) and (3.2) follow from (3.3) and (3.4). The relation

NK(T )
cp
≤ DK(T ) can be obtained in a similar way.

4. Proof of Theorems 1 and 7. We first prove Theorem 1. Let B be
a ball in K and set

D = min{degK β : β ∈ B}.
We need to show that

{degK β : β ∈ B} = {D, 2D, 3D, . . .}.(4.1)

Choose α ∈ B with degK α = D. In order to prove the inclusion “⊇”
in (4.1), let m be a positive integer. Choose an element θ ∈ K such that
degK(α) θ = m. Thus [K(α, θ) : K] = mD. For any positive integer n set
βn = α+ πnθ, where π is a uniformizing element of K. One has βn ∈ B for
n large enough. For large n one also has

|βn − α| < min{|σ(α)− α| : σ ∈ GK , σ(α) 6= α}.
From Krasner’s Lemma (see [3, Ch. 2, Section 6, Theorem 8]) it follows

that K(α) ⊆ K(βn). Then θ = (βn − α)/πn ∈ K(βn) so K(βn) = K(α, θ)
and one has degK βn = [K(α, θ) : K] = mD. This gives the inclusion “⊇”
in (4.1). For the other inclusion we use the so-called fundamental principle
from [6, p. 109]:

Let α, β ∈ K be such that

|β − α| < |γ − α|(4.2)

for any γ ∈ K with degK γ < degK α. Then the residue field of K(α) is
contained in the residue field of K(β) and the ramification index of K(α)/K
divides the ramification index of K(β)/K. As a consequence degK α divides
degK β.

With our choice of α, any γ ∈ K with degK γ < degK α will lie outside
the ball B. Therefore (4.2) holds for any β ∈ B. It follows that degK α
divides degK β for any β ∈ B, which completes the proof of Theorem 1.

Next we turn to Theorem 7, the remaining case: α ∈ K. First we show

that DK(α)
1
≤ NK(α). Notations are as in (1.3) and (1.8). Let

( tn
Dn

)
be a

pair in DK(α). We need to find
( εm
Nm

)
in NK(α) such that

εm ≤ tn(4.3)

and
Nm divides Dn.(4.4)

We choose m to be the smallest integer for which (4.3) holds. It remains
to show that (4.4) also holds. From the definition of tn, tn−1, εm and εm−1 we
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know that on the open interval (tn, tn−1) the function t 7→ D(K,B[α, t]) is
constantlyDn, while on (εm, εm−1) the function ε 7→ N(K,α, ε) is constantly
Nm. The intervals (tn, tn−1) and (εm, εm−1) are not disjoint by our choice
of m. Fix a point % in their intersection. Then D(K,B[α, %]) = Dn and
N(K,α, %) = Nm. Choose an element β ∈ B[α, %] of smallest degree over
K, thus degK β = Dn. Recall that CK(α) is covered by N(K,α, %) = Nm

disjoint closed balls of radius %, denote them by B1 = B[α, %], B2, . . . , BNm .
We claim that CK(β) is covered by the balls B1, . . . , BNm and each of

them contains the same number of elements from CK(β). The first statement
follows from the fact that each σ(β) ∈ CK(β), σ ∈ GK , satisfies |σ(β) −
σ(α)| = |β−α| ≤ %, so if Bj is the ball which contains σ(α) then it will also
contain σ(β). As for the second statement, let i, j ∈ {1, . . . , Nm} and choose
σ, τ ∈ GK such that σ(α) ∈ Bi and τ(α) ∈ Bj . Then the automorphisms
τσ−1 and στ−1 will send τ(α) and σ(α) to each other, and since they are
isometries they will also send the entire balls Bi and Bj to each other.
Therefore they will send the sets Bi ∩CK(β) and Bj ∩CK(β) to each other,
so #(Bi ∩CK(β)) = #(Bj ∩CK(β)), as claimed. It follows that Nm divides

#CK(β) = degK β = Dn, proving (4.4). In conclusion DK(α)
1
≤ NK(α).

Next we show that NK(α)
cp
≤ DK(α). Let

( εm
Nm

)
be a pair in NK(α). We

look for
( tn
Dn

)
in DK(α) such that

tn ≤ cpεm(4.5)

and
Dn divides Nm.(4.6)

Fix % ∈ (εm, εm−1). Then N(K,α, %) = Nm. Denote as before by B1 =
B[α, %], B2, . . . , BNm the disjoint closed balls of radius % which cover CK(α).
We know that each automorphism σ ∈ GK produces a permutation of these
balls. Let H = {σ ∈ GK : σ(B1) = B1}. Then H is a closed subgroup of
finite index in GK . In fact, [GK : H] = Nm. Indeed, if one chooses for any
j ∈ {1, . . . , Nm} an automorphism σj ∈ GK such that σj(B1) = Bj , then
for each τ ∈ GK there are j ∈ {1, . . . , Nm} and σ ∈ H uniquely determined
such that τ = σjσ, which proves the claim. By Galois theory, H corresponds
to a subfield K ⊆ L ⊂ K such that H = GL = Gal(K/L). Moreover,

[L : K] = [GK : GL] = Nm.(4.7)

Note that since CL(α) = {σ(α) : σ ∈ GL = H} ⊂ B1 = B[α, %], one has

diamCL(α) ≤ %.(4.8)

By Sen [7] and Ax [4] it follows that

d(α,L) ≤ cp%,(4.9)
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where as usual cp is the Sen–Ax constant. Therefore for any ε > 0 there is
an element β ∈ L such that

|β − α| ≤ (cp + ε)%.(4.10)

We now choose the unique pair
( tn
Dn

)
from DK(α) for which

tn−1 > |β − α| ≥ tn,(4.11)

where for n = 1 we set t0 =∞. From (4.10) and (4.11) we get

tn ≤ (cp + ε)%.(4.12)

Recall that for |β − α| < t < tn−1 the function t 7→ D(K,B[α, t]) is
constantly Dn. For any such t one has β ∈ B[α, t], and from Theorem 1
we know that degK β is a multiple of D(K,B[α, t]) = Dn. Since β ∈ L it
follows that [L : K] is also a multiple of Dn, and from (4.7) one obtains (4.6).
So far we proved that for any % ∈ (εm, εm−1) and any ε > 0 there is an
n = n(%, ε) for which (4.12) and (4.6) hold. We now let ε → 0 and % → εm
through a sequence of values for which n(%, ε) is constant, and obtain a pair( tn
Dn

)
in DK(α) which satisfies (4.5) and (4.6). This completes the proof of

Theorem 7.

Remark. For some classes of elements α ∈ K one can choose β in the
above proof such that instead of (4.10) one has the sharper inequality

|β − α| ≤ %.(4.13)

For instance, if the characteristic of the residue field of K does not divide
degK α then one can choose

β =
TrK(α)/L(α)

[K(α) : L]
,

and then (4.13) will hold true. Similarly, if the residue field of K is finite
and K(α)/K is unramified then as in [5, Proposition 3.4], one can truncate
in a suitable way the expansion

α = a0 + a1π + . . .+ akπ
k + . . . ,

where π is a uniformizing element of K and the aj ’s are roots of unity in
K(α), in order to find an element β ∈ L which satisfies (4.13). In such cases

when (4.13) holds, the above proof gives NK(α)
1
≤ DK(α), and since we

also have DK(α)
1
≤ NK(α), the chains DK(α) and NK(α) will coincide by

Lemma 3.
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