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attached to CM elliptic curves
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DERONG QIU and XIANKE ZHANG (Beijing)

1. Introduction and statement of main results. Consider the fam-
ily of elliptic curves:

(1.0) E: y*=2°-Dzx

defined over a number field K. Assume, first, K = Q is the rational field and
D € Z are rational integers (nevertheless, we will consider K = Q(v/—1) in
the following). This family of elliptic curves F have been studied thoroughly
for a long time, having close relations with several problems of number
theory. For example, they correlate intimately with the congruent number
problem when D is a square in Z (see [Tun]). Curves E have complex multi-
plication by v/—1, accordingly their complex L-series L(E/Q, s) (as curves
over Q) could be identified with the L-series L(1), s) of Hecke characters 1)
(i.e. Grossencharakter) of the field K = Q(y/—1) attached to E. (Further-
more, when F are considered as curves over the quadratic fields K above,
the L-series satisfy the relation

L(E/K,s) = L(¢, s)L(¥, 5),

where 1 is the dual of ¢.) The “conjecture of Birch and Swinnerton-Dyer”
(or “BSD conjecture” for brevity) for an elliptic curve E over Q asserts
that the L-series L(E/Q,s) has a zero at s = 1 of order m equal to the
rank r of the Mordell group F(Q), and gives a formula for the limit of
(s —1)""L(E/Q,s) at s = 1 involving arithmetic properties of E (see e.g.
[Sill, p. 362]). In particular, for elliptic curves F in (1.0) with complex mul-
tiplication, the BSD conjecture predicts that L(E/K,1) (after division by
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an appropriate period) is divisible by a certain power of 2 (see e.g. [Raz]
and [Tun]).

In 1997, C. L. Zhao considered the elliptic curves E = Ep in (1.0) over
the Gaussian field Q(v/—1) with the assumption that D = (Dg)? is a perfect
square in Z[v/—1], studying the 2-adic valuation of L(¢p,1), the value at
s = 1 of the L-series of Hecke characters ¢p attached to Ep. (Actually,
the value of the L-series should be first divided by an appropriate period
{2; this normally will not be mentioned again in the following.) He gave
a rigorous lower bound for the 2-adic valuation as well as a criterion of
reaching this bound, and hence obtained nice results about congruent num-
bers and showed the BSD conjecture is true for some elliptic curves Fp
over Q.

Here we study £ = Ep in the general case: D is not necessarily a square.
Consider the elliptic curves Ep : y?> = 22 — Dx over the Gaussian field
QW-1)withD=m...m, and D =7?...7w2%.41...7p, where w1, ..., T,
are distinct Gaussian prime integers in Z[v/—1]. (In particular, when r = n,
the second case turns out to be the case studied in [Zhao|.) We will give a
formula for the special values at s = 1 of the Hecke L-series attached to £ =
Ep (expressed via the Weierstrass p-function), lower bounds for the 2-adic
valuation of the values, and a criterion of reaching the bounds. These results
develop the results for Ep with D = (Dg)? square in the Gaussian field of
[Zhao]. Moreover, our results are consistent with the predictions of the BSD
conjecture. We will further study the elliptic curves F : y? = 23— D having
complex multiplication by v/—3 over the field Q(v/—3) in a separate paper,
giving results similar to the above but for the 3-adic valuation.

Throughout the following, we put I = v/—1, and let K = Q(v/—1) be the
Gaussian number field, Ok = Z[/—1] the Gaussian integers (i.e. the ring of
algebraic integers of K), Ep : 4> = 23 — Dx an elliptic curve defined over
K with complex multiplication by Ox. We let ¢p be the Hecke character
of K attached to Ep, and let L(3)p, s) denote the Hecke L-series of v, the
dual of ¥p. (For the definition of such Hecke L-series attached to an elliptic
curve, see [Sil2].)

(A) Consider Ep : y?> = 2® — Dx with D = 7y...7m,, where 1, = 1
(mod 4) are distinct prime integersin Ok (k=1,...,n). Set S={m1,...,m,}.
For any subset T of {1,...,n}, define

Dr=][m Dr=D/Dr,
keT
and put Dy = 1 when T = (. Let ¢p, be the Hecke character (Grossen-

charakter) of the field K attached to the elliptic curve Ep.. : y?> = 2° — Drux,

and let Lg(¢p_,s) be the Hecke L-series of ¢, (the dual of ¢p,.) with all
Euler factors at primes in S omitted. We have the following formula for the
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special value Lg (@DT, 1) of the above L-series at s = 1 expressed as a finite
sum of the values of the Weierstrass p-function p(z).

THEOREM 1. Let v¢p, be the Hecke character of the Gaussian field
Q(v/—1) attached to the elliptic curve Ep, : y* = x> — Drx, where Dr
is any factor of D = m...7, € Q(v/—1) as above. Then we have the fol-
lowing formula for the value of L-series:

(1.1) §<DTT>4LS@DT’ 1)

-2 <1§T>4@<cm/D 593 (m)

ceC CEC

where = 2421, (—)4 is the quartic residue symbol, C is any complete set of
representatives of Ox modulo D which are relatively prime to D, L, = wOg
is the period lattice of the elliptic curve Ey : y?> = a® — x,

[eo]

wzsL
1Vt -z

©(z) is the Weierstrass p-function associated to the lattice Ly, (i.e., p(2)
and its derivative ' (z) satisfy the equation o' (2)? = 4p(2)3 — 4p(2)).

= 2.6220575. . .,

REMARK 1.1. Formula (1.1) and its proof are developed from a famous
formula and proof of Birch and Swinnerton-Dyer for elliptic curves over the
rationals Q in [B-SD, Formula 3.14].

For any prime number p, we let Q, be the completion of Q at the p-adic
valuation, Q and Q, the algebraic closures of Q and Q, respectively; and let
vp be the normalized p-adic exponential valuation of Q, (i.e. v,(p) = 1). Fix
an isomorphic embedding Q < Q,. Then v, () is defined for any algebraic
number « in Q. The value v,(a) for a € Q depends on the choice of the
embedding Q@ — @Q,, but this does not affect our discussion in this paper.
We will discuss the case p = 2.

For any Gaussian integers «, 3 which are relatively prime, write («/3)%

= (a/f3)2 for short, and define [a/f]2 = (1 — (a/)2)/2. Then [ay/fF]2 =
[a/B]2 + [v/B]2 (regard [—]2 as an Fa-valued function, where Fy is the finite
field with two elements). For D = 7y ... m, as above, put

“py=iy__L g (<
(1.2) S (D) 9 CGZC p(cw/D) —I; <DT>4‘

We will show that ve(S*(D)) > (n — 1)/2 (see Lemma 2.4). Accordingly
we define an Fa-valued function e,, as follows (n = n(D) is the number of
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distinct prime factors of D):
1 if va(S*(D))=(n—-1)/2,
en(D) = .
0 ifve(S*(D)) > (n—1)/2.
Then for Gaussian prime integers 7, 7 congruent to 1 modulo 4 (1 <
k € Z) (and their products), we could define the Fy-valued functions s; and
0n (n=1,2,...) inductively as follows:
1 ifuy(mr—1)=2,
s1(m) = {0 if vp(m — 1) > 2,
(51(71') = 81(71') +€1(7T),
0n(D) =6p(m1,.. . 70)

—eD+ Y }(H{f—jk)&(m) (n>2),

0#TGA{1,..., n
where t = T is the cardinal of 7.

THEOREM 2. Let 1p be the Hecke character of Q(v/—1) attached to
2

the elliptic curve Ep : y?> = 23 — Dz, where D = 71 ... 7, with ©, = 1
(mod 4) distinct Gaussian prime integers (k =1,...,n). Then for the 2-adic
valuation of the values of the L-series L(1p, s) at s = 1 we have:

(i) v2(L(¥p, 1)/w) = (n —1)/2;

(ii) Equality holds in (i) if and only if 0,(D) = 1.

THEOREM 3. Let D = +py...p, = 1 (mod4) with pr # 5 (mod )
distinct positive rational prime numbers (k=1,...,m). If §,(D) = 1, then
the first part of the BSD conjecture is true for the elliptic curve Ep : y? =
23 — Dz, that is,

(1.3) rank(Ep(Q)) = Ords=1(L(Ep/Q, s)) =0,
where n = n(D) is the number of distinct Gaussian prime factors of D.
(B) Consider the elliptic curves Ep : y* = 2® — Dz with
D= ﬂ%...’ﬂ'?ﬂ}_,_l...ﬂn,

where 7, = 1 (mod4) are distinct prime integers in Z[v/—1] (k=1,...,n).
Let A =m...m, and S = {my,...,m,}. For any subset T of {1,...,n},

define
DT: H 7T;% H T -

r>keT  r<jeT

Let Ls(¢p,.,s) denote the Hecke L-series of ¢, . (omitting all Euler factors
corresponding to primes in S), where ¥ p, is the Hecke character of K =
Q(v/—1) attached to Ep,. : y?> = 2 — Drz.
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THEOREM 4. For any factor Dy of D = 7% ... 72w 41 ... 7, € Q(v/—1)
as above, we have

(1.4) é@Ls(ﬂ)DT’ )=£Z <DCT>4W+%Z€: (DLT>4,

ceC

where C is any complete set of representatives of Ox modulo A relatively
prime to A, 0 =2+ 21, L, = wOk, w and p(z) are as in Theorem 1.

THEOREM 5. Let D = W% . ..7r37rr+1 ...Tn, where n,r are positive in-
tegers (1 < r < n) (ifr = n then D = 72...7m2) and 7, = 1 (mod4)
are distinct prime Gaussian integers (k = 1,...,n). Then for the 2-adic

valuation of the values of the L-series we have
— n
(1.5) v2(L(¥p,1)/w) = 5 — 1,

where Yp is the Hecke character of Q(v/—1) attached to the elliptic curve
Ep :y? =23 — Dx.

2. Proofs of the theorems. We need the following results.

PROPOSITION A. Let E be an elliptic curve defined over an imaginary
quadratic field K with complex multiplication by Ok (the ring of integers
of K), L = 20k be its period lattice, 2 € C* a complex number, and ¢
be the Hecke character of K attached to E. Assume g is an integral ideal
of K, Ey is the group of g-divisible points on E. Let B be a set of integral
ideals of K relatively prime to g such that

{0y | € BY = Gal(K(Eg)/K), o, £y if bV,

where o, = (W) is the Artin symbol. Assume o € 2K is a complex
number such that 027 O = g~ 'h for some integral ideal b of K which is
relatively prime to g. Then

o)
s s Hk Q70757L)
NGy o e = 2

(Re(s) > 1+ k/2), where k is a positive integer and N denotes the norm
map from K to Q,

Lo(@",s) = [[1 -3 (©)N(p) )" (Re(s) > 1+ k/2),

o

Hi(2,0,5,0) =Y |Z+O‘ (Re(s) > 1+ k/2),

z+ al?s

here 3" is taken over a € L other than —z if z € L (see [Go-Sch]).



84 D. R. Qiu and X. K. Zhang

LEMMA B. Let the elliptic curve E, field K, Hecke character ¢, and g
be as in Proposition A. If the conductor fy of ¢ divides g, then the ray class
field of K modulo g is K(Ey), the extension of K obtained by adding the
coordinates of all g-division points of E to K (see [Go-Sch]).

Now we consider Theorem 1 and let K, Ep, Dy and Ls(¢p,,s) be as
there. Then by definition (see [B-SD], [Ire-Ro]) we have

LEMMA 2.1.
LS(EDTWS)
L(%DT,S) if H T = DT,
TRES
B L(@DWS) H ( - (i—:) ‘fk/(ﬂkﬁk)s> otherwise.
4

ﬂ'k‘ﬁT
Proof of Theorem 1. Assume L = 20k is the period lattice of Ep,.: y? =
23— Dpz, where 2 = aw, a € C*. (Obviously 2 = w/+/Dr.) From [Bir-Ste]
we know that the conductor of ¢p,. is (6Dr). Now, in Proposition A, let
k=1,0=10/(0D),g=(0D), h = Ox. We have

(2.1) %LQ@DT, )= Hi(p,()0,0,5,L)  (Re(s) > 3/2).

beB

Since the conductor of ¢¥p, is 6Dr, and (0D7)|(0D) = g, by Lemma B
the ray class field of K modulo (6D) is K((Ep,)@p)), the extension of K
obtained by adding the coordinates of §D-division points of Ep, to K. In
particular we have the following isomorphism via the Artin map:

(Ox /(D))" /pa = Gal(K((Epy)(op))/ K),

where py is the group of quartic roots of unity, and s = (Og/6)*. So we
may take the set

(2.2) B={(c0+D)|ceC},

where C is as in Theorem 1, a set of representatives of (O /(D))*; thus
0 —

23) mleor ) = Y Hi(¢p,(c#+D)o,0,s,L) (Re(s) > 3/2).

ceC

Note that the analytic continuation of H;(z,0,1,L) can be given by the
Eisenstein E*-function (see [Zhao] or [We]):

Hy(z,0,1,L) = E6,1(27L) = FE{(z,L).
So by (2.3) we have
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0D — N
(2.4) —Lwp)(¥p,,1) Z EY (¢DT (b + D)— 0D QOK)

9
ceC

Since D =1 (mod4), we get ¢d + D =1 (mod #) for any ¢ € C. Thus by the
definition of ¥p,. and quartic reciprocity law,

Wpo (e + D) = (CQD:D>4(C(9+D) _ (C(’JTDL(CM D)

Ry

Then by (2.4) and the fact that Lp)(¢¥p,,1) = Ls(¥p,,1), we have

(2.5) @LS (¥p, 1) =Y _E} (( ) (;—TTL, awOK>.

ceC

Put A = oL ) Since E} (A2, A\L) = A" E}(z, L), we have

Wf [cw W ct ct
5 (% + 6>“<D—T>4’Q(D—T)4”OK>

1/ cO cw W
=—|—) Ef| =+ = )
a<DT>4 ! (D " 9’WOK>

So by (2.5),
0D 0 c fow o w
(2.6) —LSWJDT; ) = (D_T>4 ; (D_T>4E1 (5 + §7WOK>-

For the period lattice L,, = wOg mentioned above, denote the corresponding
Weierstrass p-function by p(z, L,,) and the corresponding Weierstrass zeta-
function by ¢(z, L,,). Then p'(2)? = 4p(2)3—4p(z). So by results in [Go-Sch]
we have

Cw w
2. Ef| =+-=

cw w 1 p'(w/D)—(2-2I) m(c 1
(% L. - = R
C(D7 >+C<9 >+ p(cw/D) — I o\D "9
We choose C in such a way that ¢ and —c both are in C. Obviously (5—;) A=

(DLT)4. Since ((z, L,) and ¢'(z, L,,) are odd functions, and p(z, L,,) is even,
by (2.6 ) we have
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’

2(55) Lo,

{2 () s(5m) 22 (5.5
() 0 (5) ]
72 (m) () - 5)
= - 1%@@ (D%Lp(cw/i))—f *gé (D%L(C(%’L“) - %)

That is
28 2(5) Lo,

() s ) () 3)

By [Zhao] we know that

SO

2 () FsEorn - :2 (5) =i i (o),

This proves Theorem 1.

LEMMA 2.2. We have
Z(i) :{ﬁc if T =0,
g Dr/, 0 if T#0.

Proof. Easy by the definition of quartic residue symbol.

LEMMA 2.3. Let D =y ...m, where mp, =1 (mod4) are distinct Gaus-
sian prime (k = 1,...,n). Let ¢ be any Gaussian integer relatively prime
to D. Then

(1) > (1+1)" or 0, where pu € {£1, £I}, t is an integer
with n

)

(2

5, -
2

sH5°

7 (
<

<t
dor (DL) —Ozfandonlyzf( ) = —1 (for some k € {1,...,n}).
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(3) Suppose that (é)4 # —1 for any k € {1,...,n}. Then

Z <i) =p(1+ )" where p is as in (1) above,
T Dr /4

s:ﬁ{ﬁk:ﬂ'k|D and <£> =1, k:zl,...,n}.
Tk )4

In particular,

Z <L> =2" if and only if <£> =...= <i> =1

T Dr 4 T/ 4 Tn/ 4
Z(i) =u(l14+ )" if and only if <£> e{l,-I}, k=1,...,n,
—\Dr/, T

4
where the sum ) . is taken over all subsets T of {1,...,n}.

Proof of Lemma 2.3. In fact we have

2(5),- (= ()) -0+ ())
T 4 4 n/4
from which the results could be deduced.
LEMMA 2.4. v3(S*(D)) > (n—1)/2.
Proof. By results of [Zhao] or [B-SD], we know that
((3)-) 2

for any Gaussian integer ¢ relatively prime to D. By Lemma 2.3 we have

vg(; (D%)) = w1+ 1)) = £ >

(Here we regard v2(0) as co.) Thus by properties of valuation and our choice
of C with the property ¢, —c € C, we have

o3

3 n
(D)) > —= + —.
w(s'(D) 2 -5+
Since 7 =1 (mod4) (k=1,...,n), it follows that
N(DT) = N(D) =1 (HlOdS)7 <i> — JIN(D7)=-1)/4 _ 41
Dr),

Also

n

4(Ox /(D)) =€ = [ [(N(m) = 1) =0 (mod 8),

k=1
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so we can choose C such that +¢,+1c € C (when ¢ € C). Put
V={eC:c=1(modb)}, V' =VUIV.

Then C = V' U (=V"). Since IOk = Ok, we have IL,, = [(wOg) = wOg =
L,,. Thus by the definition of Weierstrass p-function,

et 5 (et )
- (fi>2+a; (= —1fa'>2 ) =~ 1)

In particular,

5*(17)_;;@(@/;)—1; iT>4
:I; p(cw/in 1;<%>4
) I; [go(cw/i?) —1 ZT: (%)4+ go(Icw/lD) 12 (é;)j

where B = I or p(cw/D).
Note that vy (p(cw/D) —I) = 3/4, so va(p(cw/D) + I) = 3/4. Hence

H(((5)) 1) =n(6(5) ) enl(o(5) 1) -3+ -3

(o) =15 =

(and obviously we have vo(B) = 0). Therefore

va(S*(D)) > —%MQ(; (D%)) > —%+g= ”;1.

This proves Lemma 2.4.
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Proof of Theorem 2. First let us prove

v2(L(Yp, 1) /w) > (n—1)/2.

Taking sums of both sides of formula (1.1) over subsets T of {1,...,n},
we have

;g@LS(EDT’l)
322 () s i 22 (5,

So by Lemma 2.2 and (1.2), we obtain

(2.9 > 2(5) ps6@o, =500+ &
W(%) - Ug(Hkl(WZﬁk - D) >3n—2>n,

and by Lemma 2.4 we have

+(25(57) peonn) 255

By Lemma 2.1 we know that Ls(¢p,,1) = L(¢¥p,1) when T = {1,...,n};
and when T' = () we have

Loy 1) = L) = 15O (125 ) = 0 T (1)

k=1

y [B-SD] or [Zhao] we know that L(3;,1) = w/4, so

> >2n—2 (since vo(mp — 1) > 2).

Now we use induction on n to prove our assertion vy (L(Wp,1)/w)>(n—1)/2.
Ifn =1,then D = 7y, Ls(¢)1,1) = (w/4)-(m1 — 1)/m1. Since 1y = 1 (mod 4),
we get va(Lg(1,1)/w) > 0. By the above analysis we have

1 0 — 1 0 — 1-1
—(-=) L 1 —(— ) L 1] >—=0.
Uz<w (1>4 s(W11) + — (m)4 s(¥n s )) z—
Therefore

v2(L(thr, 1) w) = v2(Ls(¥r,, 1) fw) >
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Now assume our assertion is true for 1,...,n—1, and consider D = 7y ... 7,.
For any subset T of {1,...,n}, set t =¢(T) = §T. By Lemma 2.1,

28 oor =) et 1L (o (2 2)

Wk\f)T

Since (D7 /7m)s = £1,£1, we get

1- (&> L _ml e (a5

Tk ) 4Tk Tk

Note that 7 = 1 (mod4), so va(mr — p) > 1/2; moreover equality holds if
and only if (D /m)% = —1. Thus when T is non-trivial (i.e. 1 <t < n), by
our inductive assumption,

v2(§(DTT)4LS@DT,1>) — L@ 0fer+ 3 w(1-(22) 1)

ﬂk‘ﬁT

t—1 1 ~ t—1 n-—t n—1
>4 .7 | Dr} = - .
2 — +2 #{m : 7 | D1} 5 + 5 5

Also when T = () we have

s, 1) = Ls@ 0 = @) [T (1- ) = T (1- 2),

therefore

vo(Ls(¥y,1)/w) >2n—2> (n—1)/2,

0£TGC{1,...,n}
> (n—1)/2
Thus we have proved our assertion for any positive integer n.

Now we consider the condition for equality to hold, using also induction
onn. If n =1, then D = 7, and by (2.9) we obtain

Wlﬁl -1

(1) En@i0)+ 2 () L) = 5" + P
4 4
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that is,
1 T 0 — T — 1
“m-D+2 (=) L 1)=5" —
pm- b+ (771)4 Wro 1) = 57(m) + ==
Since
=1 1-1
(T) = (T 1) =221, up(S7(m)) 2 5 =0

(Lemma 2.4), the equality

(L 1/0) = 0o (1) Lo 1)
1
i

holds if and only if one of the following conditions is true:

(1) va(my — 1) = 2 when vo(S*(m1)) > 0;
(2) ’U2<7T1 — 1) > 2 when ’UQ(S*(ﬂ'l)) =0.

Thus
vo(L(1 s 1)/w) =0 ifand only if 61(m) = s1(m) +e1(m) = 1.

Assume our result is true for 1,...,n — 1, and let D = m1...7m,. When
T =0, we have
D/ 6 D/ 6 — D_— - 1
L =—(— ) L 1)=—L 1 1——
2 (5r) @ = 2 (7) po@in = S1En T (- 1)
D[ 6 — — =
vo = (5] Ls@p,1) ) = v2(L(¥y,1)/w) + > valm — 1)
w DT 4 1

= U2(1/4)+iv2(7rk—1)2271—22(11—1)/2.
k=1

When 0 # T ¢ {1,...,n}, we have

vg(gmwm, ) = ea(Ls(p, /)

(U (- () )

| D

= va(L(@p,, 1) jw)+ > v2<1— (%)4%)

7|'Ic|ﬁT
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Since (Dr/7)a = £1, £1, we have
1_<DT>i Te—p T —14+(1—p)

= = . pe{£l,£I}.
Tk

4Tk Tk Tk

(- (5).m) =
vll-(=—) =)=,
Tk 47Tk 2

and equality holds if and only if (Dy/m)s = +1, i.e. (D7 /7)%3 = —1, that
is, [Dr /7|2 = 1. Thus

V2 <1 — <&> i) = L if and only if [&} =1.
Tk ) 4Tk 2 Tk |o

By the proof of the first part of the theorem we know that

<'¢DT7 )/w) ( ) - 1)/27 t(T) = ﬁTu
and by our inductive assumption, equality holds if and only if 0;(Dr) = 1,
t =t(T). Thus

" (g(DTT)AlLS@DT’ 1)) > t(T)2— 1 N n —Qt(T) _n g 17

Therefore

and equality holds if and only if [Dy/mg]s = 1 (for any 7, | D) and 6;(D7)
= 1. That is to say,

02<9@LS(¢DT, )) _ n;l

(I [5])sen =1

7Tk|ﬁT

if and only if

For the elliptic curve Ep..: y_2 = 2% — Dz and Hecke characters vp.,.,
by [Rul,2] we know that L(¢p ,1)/f2 € K = Q(I), and also we have

2 =w//Dr, so
L(¥p,, 1)/w = (/D))" - Lt p,, 1)/67?7’
= (VDr)' - L(¥p,, 1)/2 € K(y/Dr),
i.e. L(Yp,,1)/w € K(v/Dr). Thus by Lemma 2.1 we get
g(DiT>4LS(JDT71)

_ D(DTTLH <1 . (%)ﬁ)  L(@p,.1)/w € K(3/Dr),
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and if
D/ 6 n—1
U2< (DT) LS(@Z’DT, )>: 5
then
D 0 — _ n—1 4 3
2 (5r) L5, 1) = (1 1" o YDF,

where o, € K, and v2(a,.) = 0 (since v2({/D3) = 2v5(Dr) = 0). For any

subsets T"and 7" of {1,...,n}, if vao(a,) = v2(c,,) = 0, then it can be easily
verified that

va(a, VD3 + o, /D3) > 0.

Thus, consider the terms in the sum

(2.10) > 2<DTT>4L3(@DT7 1).

0£TC L}

For any two terms with 2-adic valuations equal to (n — 1)/2, the 2-adic
valuation of their sum is greater than (n — 1)/2. Also when n > 1 we have

D/ 6 — 1
—|= 1 L H)>2n-22> —
v2<w (D@)4 S<me? >) ! ! > 2

Hence vo(L(vp,1)/w) = (n —1)/2 if and only if one of the following
statements is true:

(1) when v2(S*(D)) > (n—1)/2, in the above sum (2.10), the number
of terms with 2-adic valuation (n — 1)/2 is odd;

(2) when v2(S*(D)) = (n — 1)/2, in the above sum (2.10), the number
of terms with 2-adic valuation (n — 1)/2 is even.

Statement (1) above means: if €,,(D) = 0, then

ﬁ{w#Tg{1"“’”}‘”2<§(D—T)4Ls(%w1) :ngl}
:ﬁ{msﬁTg{l,...,n}:( 11 [W_Zh)‘St(DT):l}

Wk\f)T

> < 11 [l;:] >5t(DT)_1 (mod 2),

0#TC{L,....,n} "y |Dr

ou(D) =cn(D)+ Y 11 [&]J&(DT)El(mon).

s
Q)#Tg{lv'"vn} ﬂ'klﬁT k




94 D. R. Qiu and X. K. Zhang

And (2) means: if ¢,(D) = 1 then

) (H ﬁ—jk)&(m)z()(modz),

0£TG{1,...n} >y | Do

wo)=am+ > (1] [ﬁ—:L)aADT)

0ATG{1,....n}
=14+0=1 (mod?2).

Hence v (L(Yp,1)/w) = (n — 1)/2 if and only if 6, (D) = 1. This proves the
theorem.

SO

Trk‘ﬁT

Proof of Theorem 3. This theorem follows from Theorem 2 and the main
result of Coates—Wiles in [Co-Wi.

For the elliptic curve Ep : 4?2 = 2 — Dx with D = 7} ... w2701 ... T,
where 1 = 1 (mod4) are distinct Gaussian prime integers (k = 1,...,n),
we could prove Theorems 4 and 5 similarly to Theorems 1 and 2.
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