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L-series and their 2-adic valuations at s = 1
attached to CM elliptic curves
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Derong Qiu and Xianke Zhang (Beijing)

1. Introduction and statement of main results. Consider the fam-
ily of elliptic curves:

(1.0) E : y2 = x3 −Dx
defined over a number field K. Assume, first, K = Q is the rational field and
D ∈ Z are rational integers (nevertheless, we will consider K = Q(

√
−1) in

the following). This family of elliptic curves E have been studied thoroughly
for a long time, having close relations with several problems of number
theory. For example, they correlate intimately with the congruent number
problem when D is a square in Z (see [Tun]). Curves E have complex multi-
plication by

√
−1, accordingly their complex L-series L(E/Q, s) (as curves

over Q) could be identified with the L-series L(ψ, s) of Hecke characters ψ
(i.e. Grössencharakter) of the field K = Q(

√
−1) attached to E. (Further-

more, when E are considered as curves over the quadratic fields K above,
the L-series satisfy the relation

L(E/K, s) = L(ψ, s)L(ψ, s),

where ψ is the dual of ψ.) The “conjecture of Birch and Swinnerton-Dyer”
(or “BSD conjecture” for brevity) for an elliptic curve E over Q asserts
that the L-series L(E/Q, s) has a zero at s = 1 of order m equal to the
rank r of the Mordell group E(Q), and gives a formula for the limit of
(s − 1)−rL(E/Q, s) at s = 1 involving arithmetic properties of E (see e.g.
[Sil1, p. 362]). In particular, for elliptic curves E in (1.0) with complex mul-
tiplication, the BSD conjecture predicts that L(E/K, 1) (after division by
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an appropriate period) is divisible by a certain power of 2 (see e.g. [Raz]
and [Tun]).

In 1997, C. L. Zhao considered the elliptic curves E = ED in (1.0) over
the Gaussian field Q(

√
−1) with the assumption that D = (D0)2 is a perfect

square in Z[
√
−1], studying the 2-adic valuation of L(ψD, 1), the value at

s = 1 of the L-series of Hecke characters ψD attached to ED. (Actually,
the value of the L-series should be first divided by an appropriate period
Ω; this normally will not be mentioned again in the following.) He gave
a rigorous lower bound for the 2-adic valuation as well as a criterion of
reaching this bound, and hence obtained nice results about congruent num-
bers and showed the BSD conjecture is true for some elliptic curves ED
over Q.

Here we study E = ED in the general case: D is not necessarily a square.
Consider the elliptic curves ED : y2 = x3 − Dx over the Gaussian field
Q(
√
−1) with D = π1 . . . πn and D = π2

1 . . . π
2
rπr+1 . . . πn, where π1, . . . , πn

are distinct Gaussian prime integers in Z[
√
−1]. (In particular, when r = n,

the second case turns out to be the case studied in [Zhao].) We will give a
formula for the special values at s = 1 of the Hecke L-series attached to E =
ED (expressed via the Weierstrass ℘-function), lower bounds for the 2-adic
valuation of the values, and a criterion of reaching the bounds. These results
develop the results for ED with D = (D0)2 square in the Gaussian field of
[Zhao]. Moreover, our results are consistent with the predictions of the BSD
conjecture. We will further study the elliptic curves E : y2 = x3−D having
complex multiplication by

√
−3 over the field Q(

√
−3) in a separate paper,

giving results similar to the above but for the 3-adic valuation.
Throughout the following, we put I =

√
−1, and let K = Q(

√
−1) be the

Gaussian number field, OK = Z[
√
−1] the Gaussian integers (i.e. the ring of

algebraic integers of K), ED : y2 = x3 −Dx an elliptic curve defined over
K with complex multiplication by OK . We let ψD be the Hecke character
of K attached to ED, and let L(ψD, s) denote the Hecke L-series of ψD, the
dual of ψD. (For the definition of such Hecke L-series attached to an elliptic
curve, see [Sil2].)

(A) Consider ED : y2 = x3 − Dx with D = π1 . . . πn, where πk ≡ 1
(mod 4) are distinct prime integers inOK (k=1, . . . , n). Set S={π1, . . . , πn}.
For any subset T of {1, . . . , n}, define

DT =
∏

k∈T
πk, D̂T = D/DT ,

and put D∅ = 1 when T = ∅. Let ψDT be the Hecke character (Grössen-
charakter) of the field K attached to the elliptic curve EDT : y2 = x3−DTx,
and let LS(ψDT , s) be the Hecke L-series of ψDT (the dual of ψDT ) with all
Euler factors at primes in S omitted. We have the following formula for the
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special value LS(ψDT , 1) of the above L-series at s = 1 expressed as a finite
sum of the values of the Weierstrass ℘-function ℘(z).

Theorem 1. Let ψDT be the Hecke character of the Gaussian field
Q(
√
−1) attached to the elliptic curve EDT : y2 = x3 − DTx, where DT

is any factor of D = π1 . . . πn ∈ Q(
√
−1) as above. Then we have the fol-

lowing formula for the value of L-series:

(1.1)
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

=
I

2

∑

c∈C

(
c

DT

)

4

1
℘(cω/D)− I +

1
4

∑

c∈C

(
c

DT

)

4
,

where θ = 2+2I, (−)4 is the quartic residue symbol , C is any complete set of
representatives of OK modulo D which are relatively prime to D, Lω = ωOK
is the period lattice of the elliptic curve E1 : y2 = x3 − x,

ω =
∞�

1

dx√
x3 − x

= 2.6220575 . . . ,

℘(z) is the Weierstrass ℘-function associated to the lattice Lω (i.e., ℘(z)
and its derivative ℘′(z) satisfy the equation ℘′(z)2 = 4℘(z)3 − 4℘(z)).

Remark 1.1. Formula (1.1) and its proof are developed from a famous
formula and proof of Birch and Swinnerton-Dyer for elliptic curves over the
rationals Q in [B-SD, Formula 3.14].

For any prime number p, we let Qp be the completion of Q at the p-adic
valuation, Q and Qp the algebraic closures of Q and Qp respectively; and let
vp be the normalized p-adic exponential valuation of Qp (i.e. vp(p) = 1). Fix
an isomorphic embedding Q ↪→ Qp. Then vp(α) is defined for any algebraic
number α in Q. The value vp(α) for α ∈ Q depends on the choice of the
embedding Q ↪→ Qp, but this does not affect our discussion in this paper.
We will discuss the case p = 2.

For any Gaussian integers α, β which are relatively prime, write (α/β)2
4

= (α/β)2 for short, and define [α/β]2 = (1 − (α/β)2)/2. Then [αγ/β]2 =
[α/β]2 + [γ/β]2 (regard [−]2 as an F2-valued function, where F2 is the finite
field with two elements). For D = π1 . . . πn as above, put

(1.2) S∗(D) =
I

2

∑

c∈C

1
℘(cω/D)− I

∑

T

(
c

DT

)

4
.

We will show that v2(S∗(D)) ≥ (n − 1)/2 (see Lemma 2.4). Accordingly
we define an F2-valued function εn as follows (n = n(D) is the number of
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distinct prime factors of D):

εn(D) =
{

1 if v2(S∗(D)) = (n− 1)/2,

0 if v2(S∗(D)) > (n− 1)/2.

Then for Gaussian prime integers π, πk congruent to 1 modulo 4 (1 ≤
k ∈ Z) (and their products), we could define the F2-valued functions s1 and
δn (n = 1, 2, . . .) inductively as follows:

s1(π) =
{

1 if v2(π − 1) = 2,
0 if v2(π − 1) > 2,

δ1(π) = s1(π) + ε1(π),

δn(D) = δn(π1, . . . , πn)

= εn(D) +
∑

∅6=T {1,...,n}

( ∏

k 6∈T

[
DT

πk

]

2

)
δt(DT ) (n ≥ 2),

where t = ]T is the cardinal of T .

Theorem 2. Let ψD be the Hecke character of Q(
√
−1) attached to

the elliptic curve ED : y2 = x3 − Dx, where D = π1 . . . πn with πk ≡ 1
(mod 4) distinct Gaussian prime integers (k = 1, . . . , n). Then for the 2-adic
valuation of the values of the L-series L(ψD, s) at s = 1 we have:

(i) v2(L(ψD, 1)/ω) ≥ (n− 1)/2;
(ii) Equality holds in (i) if and only if δn(D) = 1.

Theorem 3. Let D = ±p1 . . . pm ≡ 1 (mod 4) with pk 6≡ 5 (mod 8)
distinct positive rational prime numbers (k = 1, . . . ,m). If δn(D) = 1, then
the first part of the BSD conjecture is true for the elliptic curve ED : y2 =
x3 −Dx, that is,

(1.3) rank(ED(Q)) = Ords=1(L(ED/Q, s)) = 0,

where n = n(D) is the number of distinct Gaussian prime factors of D.

(B) Consider the elliptic curves ED : y2 = x3 −Dx with

D = π2
1 . . . π

2
rπr+1 . . . πn,

where πk ≡ 1 (mod 4) are distinct prime integers in Z[
√
−1] (k = 1, . . . , n).

Let ∆ = π1 . . . πn and S = {π1, . . . , πn}. For any subset T of {1, . . . , n},
define

DT =
∏

r≥k∈T
π2
k

∏

r<j∈T
πj .

Let LS(ψDT , s) denote the Hecke L-series of ψDT (omitting all Euler factors
corresponding to primes in S), where ψDT is the Hecke character of K =
Q(
√
−1) attached to EDT : y2 = x3 −DTx.
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Theorem 4. For any factor DT of D = π2
1 . . . π

2
rπr+1 . . . πn ∈ Q(

√
−1)

as above, we have

(1.4)
∆

ω

(
θ

DT

)

4
LS(ψDT , 1) =

I

2

∑

c∈C

(
c

DT

)

4

1
℘(cω/∆)− I+

1
4

∑

c∈C

(
c

DT

)

4
,

where C is any complete set of representatives of OK modulo ∆ relatively
prime to ∆, θ = 2 + 2I, Lω = ωOK , ω and ℘(z) are as in Theorem 1.

Theorem 5. Let D = π2
1 . . . π

2
rπr+1 . . . πn, where n, r are positive in-

tegers (1 ≤ r ≤ n) (if r = n then D = π2
1 . . . π

2
n) and πk ≡ 1 (mod 4)

are distinct prime Gaussian integers (k = 1, . . . , n). Then for the 2-adic
valuation of the values of the L-series we have

(1.5) v2(L(ψD, 1)/ω) ≥ n

2
− 1,

where ψD is the Hecke character of Q(
√
−1) attached to the elliptic curve

ED : y2 = x3 −Dx.

2. Proofs of the theorems. We need the following results.

Proposition A. Let E be an elliptic curve defined over an imaginary
quadratic field K with complex multiplication by OK (the ring of integers
of K), L = ΩOK be its period lattice, Ω ∈ C× a complex number , and φ
be the Hecke character of K attached to E. Assume g is an integral ideal
of K, Eg is the group of g-divisible points on E. Let B be a set of integral
ideals of K relatively prime to g such that

{σ[ | [ ∈ B} = Gal(K(Eg)/K), σ[ 6= σ[′ if [ 6= [′,

where σ[ =
(K(Eg)/K

[

)
is the Artin symbol. Assume % ∈ ΩK× is a complex

number such that %Ω−1OK = g−1h for some integral ideal h of K which is
relatively prime to g. Then

φk(h)
N(h)k−s

· %k

|%|2s · Lg(φ
k
, s) =

∑

[∈B

Hk(φ([)%, 0, s, L)

(Re(s) > 1 + k/2), where k is a positive integer and N denotes the norm
map from K to Q,

Lg(φ
k
, s) =

∏

℘-g
(1− φk(℘)N(℘)−s)−1 (Re(s) > 1 + k/2),

Hk(z, 0, s, L) =
∑′ (z + α)k

|z + α|2s (Re(s) > 1 + k/2),

here
∑′ is taken over α ∈ L other than −z if z ∈ L (see [Go-Sch]).
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Lemma B. Let the elliptic curve E, field K, Hecke character φ, and g
be as in Proposition A. If the conductor fφ of φ divides g, then the ray class
field of K modulo g is K(Eg), the extension of K obtained by adding the
coordinates of all g-division points of E to K (see [Go-Sch]).

Now we consider Theorem 1 and let K, ED, DT and LS(ψDT , s) be as
there. Then by definition (see [B-SD], [Ire-Ro]) we have

Lemma 2.1.

LS(ψDT , s)

=





L(ψDT , s) if
∏

πk∈S
πk = DT ,

L(ψDT , s)
∏

πk|D̂T

(
1−

(
DT

πk

)

4
· πk/(πkπk)s

)
otherwise.

Proof of Theorem 1. Assume L = ΩOK is the period lattice of EDT : y2 =
x3−DTx, where Ω = αω, α ∈ C×. (Obviously Ω = ω/ 4

√
DT .) From [Bir-Ste]

we know that the conductor of ψDT is (θDT ). Now, in Proposition A, let
k = 1, % = Ω/(θD), g = (θD), h = OK . We have

(2.1)
%

|%|2sLg(ψDT , s) =
∑

[∈B

H1(ψDT ([)%, 0, s, L) (Re(s) > 3/2).

Since the conductor of ψDT is θDT , and (θDT )|(θD) = g, by Lemma B
the ray class field of K modulo (θD) is K((EDT )(θD)), the extension of K
obtained by adding the coordinates of θD-division points of EDT to K. In
particular we have the following isomorphism via the Artin map:

(OK/(θD))×/µ4
∼= Gal(K((EDT )(θD))/K),

where µ4 is the group of quartic roots of unity, and µ4
∼= (OK/θ)×. So we

may take the set

(2.2) B = {(cθ +D) | c ∈ C},
where C is as in Theorem 1, a set of representatives of (OK/(D))×; thus

(2.3)
%

|%|2sLg(ψDT , s) =
∑

c∈C
H1(ψDT (cθ +D)%, 0, s, L) (Re(s) > 3/2).

Note that the analytic continuation of H1(z, 0, 1, L) can be given by the
Eisenstein E∗-function (see [Zhao] or [We]):

H1(z, 0, 1, L) = E∗0,1(z, L) = E∗1 (z, L).

So by (2.3) we have
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(2.4)
θD

Ω
L(θD)(ψDT , 1) =

∑

c∈C
E∗1

(
ψDT (cθ +D)

Ω

θD
,ΩOK

)
.

Since D ≡ 1 (mod 4), we get cθ+D ≡ 1 (mod θ) for any c ∈ C. Thus by the
definition of ψDT and quartic reciprocity law,

ψDT (cθ +D) =
(

DT

cθ +D

)

4
(cθ +D) =

(
cθ +D

DT

)

4
(cθ +D)

=
(
cθ

DT

)

4
(cθ +D).

Then by (2.4) and the fact that L(θD)(ψDT , 1) = LS(ψDT , 1), we have

(2.5)
θD

αω
LS(ψDT , 1) =

∑

c∈C
E∗1

((
cω

D
+
ω

θ

)
α

(
cθ

DT

)

4
, αωOK

)
.

Put λ = α
(
cθ
DT

)
4. Since E∗1 (λz, λL) = λ−1E∗1 (z, L), we have

E∗1

((
cω

D
+
ω

θ

)
α

(
cθ

DT

)

4
, α

(
cθ

DT

)

4
ωOK

)

=
1
α

(
cθ

DT

)

4
E∗1

(
cω

D
+
ω

θ
, ωOK

)
.

So by (2.5),

(2.6)
θD

ω
LS(ψDT , 1) =

(
θ

DT

)

4

∑

c∈C

(
c

DT

)

4
E∗1

(
cω

D
+
ω

θ
, ωOK

)
.

For the period lattice Lω = ωOK mentioned above, denote the corresponding
Weierstrass ℘-function by ℘(z, Lω) and the corresponding Weierstrass zeta-
function by ζ(z, Lω). Then ℘′(z)2 = 4℘(z)3−4℘(z). So by results in [Go-Sch]
we have

(2.7) E∗1

(
cω

D
+
ω

θ
, ωOK

)

= ζ

(
cω

D
,Lω

)
+ ζ

(
ω

θ
, Lω

)
+

1
2
· ℘
′(cω/D)− (2− 2I)
℘(cω/D)− I − π

ω

(
c

D
+

1
θ

)
.

We choose C in such a way that c and −c both are in C. Obviously
( −c
DT

)
4 =(

c
DT

)
4. Since ζ(z, Lω) and ℘′(z, Lω) are odd functions, and ℘(z, Lω) is even,

by (2.6 ) we have
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D

ω

(
θ

DT

)

4
LS(ψDT , 1)

=
1
θ

{∑

c∈C

(
c

DT

)

4
ζ

(
cω

D
,Lω

)
− π

ω

∑

c∈C

(
c

DT

)

4

c

D

+
1
2

∑

c∈C

(
c

DT

)

4

℘′(cω/D)
℘(cω/D)− I − (1− I)

∑

c∈C

(
c

DT

)

4

1
℘(cω/D)− I

}

+
1
θ

∑

c∈C

(
c

DT

)

4

(
ζ

(
ω

θ
, Lω

)
− π

ωθ

)

= − 1− I
θ

∑

c∈C

(
c

DT

)

4

1
℘(cω/D)− I +

1
θ

∑

c∈C

(
c

DT

)

4

(
ζ

(
ω

θ
, Lω

)
− π

ωθ

)
.

That is,

(2.8)
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

=
I

2

∑

c∈C

(
c

DT

)

4

1
℘(cω/D)− I +

1
θ

∑

c∈C

(
c

DT

)

4

(
ζ

(
ω

θ
, Lω

)
− π

ωθ

)
.

By [Zhao] we know that

ζ

(
ω

θ
, Lω

)
− π

ωθ
=
θ

4
,

so

D

ω

(
θ

DT

)

4
LS(ψDT , 1) =

I

2

∑

c∈C

(
c

DT

)

4

1
℘(cω/D)− I +

1
4

∑

c∈C

(
c

DT

)

4
.

This proves Theorem 1.

Lemma 2.2. We have
∑

c∈C

(
c

DT

)

4
=
{
]C if T = ∅,
0 if T 6= ∅.

Proof. Easy by the definition of quartic residue symbol.

Lemma 2.3. Let D = π1 . . . πn where πk ≡ 1 (mod 4) are distinct Gaus-
sian prime (k = 1, . . . , n). Let c be any Gaussian integer relatively prime
to D. Then

(1)
∑
T

(
c
DT

)
4 = µ(1 + I)t or 0, where µ ∈ {±1, ±I}, t is an integer

with n ≤ t ≤ 2n.
(2)

∑
T

(
c
DT

)
4 = 0 if and only if

(
c
πk

)
4 = −1 (for some k ∈ {1, . . . , n}).
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(3) Suppose that
(
c
πk

)
4 6= −1 for any k ∈ {1, . . . , n}. Then

∑

T

(
c

DT

)

4
= µ(1 + I)n+s, where µ is as in (1) above,

s = ]

{
πk : πk |D and

(
c

πk

)

4
= 1, k = 1, . . . , n

}
.

In particular,
∑

T

(
c

DT

)

4
= 2n if and only if

(
c

π1

)

4
= . . . =

(
c

πn

)

4
= 1;

∑

T

(
c

DT

)

4
= µ(1 + I)n if and only if

(
c

πk

)

4
∈ {I,−I}, k = 1, . . . , n,

where the sum
∑
T is taken over all subsets T of {1, . . . , n}.

Proof of Lemma 2.3. In fact we have
∑

T

(
c

DT

)

4
=
(

1 +
(
c

π1

)

4

)
. . .

(
1 +

(
c

πn

)

4

)
,

from which the results could be deduced.

Lemma 2.4. v2(S∗(D)) ≥ (n− 1)/2.

Proof. By results of [Zhao] or [B-SD], we know that

v2

(
℘

(
cω

D

)
− I
)

=
3
4

for any Gaussian integer c relatively prime to D. By Lemma 2.3 we have

v2

(∑

T

(
c

DT

)

4

)
= v2(µ(1 + I)t) =

t

2
≥ n

2
.

(Here we regard v2(0) as∞.) Thus by properties of valuation and our choice
of C with the property c,−c ∈ C, we have

v2(S∗(D)) ≥ −3
4

+
n

2
.

Since πk ≡ 1 (mod 4) (k = 1, . . . , n), it follows that

N(DT ) ≡ N(D) ≡ 1 (mod 8),
(

I

DT

)

4
= I(N(DT )−1)/4 = ±1.

Also

](OK/(D))× = ]C =
n∏

k=1

(N(πk)− 1) ≡ 0 (mod 8),
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so we can choose C such that ±c,±Ic ∈ C (when c ∈ C). Put

V = {c ∈ C : c ≡ 1 (mod θ)}, V ′ = V ∪ IV.
Then C = V ′ ∪ (−V ′). Since IOK = OK , we have ILω = I(ωOK) = ωOK =
Lω. Thus by the definition of Weierstrass ℘-function,

℘(Iz, ILω) =
1

(Iz)2 +
∑

α∈ILω

(
1

(Iz − α)2 −
1
α2

)

=
1

(Iz)2 +
∑

α′∈Lω

(
1

(Iz − Iα′)2 −
1

(Iα′)2

)
= −℘(z, Lω).

In particular,

℘

(
Icω

D
,Lω

)
= −℘

(
cω

D
,Lω

)
,

S∗(D) =
I

2

∑

c∈C

1
℘(cω/D)− I

∑

T

(
c

DT

)

4

= I
∑

c∈V ′

1
℘(cω/D)− I

∑

T

(
c

DT

)

4

= I
∑

c∈V

[
1

℘(cω/D)− I
∑

T

(
c

DT

)

4
+

1
℘(Icω/D)− I

∑

T

(
Ic

DT

)

4

]

= I
∑

c∈V

[∑

T

(
1

℘(cω/D)− I −
(

I

DT

)

4

1
℘(cω/D) + I

)(
c

DT

)

4

]

= I
∑

c∈V

2B
(℘(cω/D))2 + 1

∑

T

(
c

DT

)

4
,

where B = I or ℘(cω/D).
Note that v2(℘(cω/D)− I) = 3/4, so v2(℘(cω/D) + I) = 3/4. Hence

v2

((
℘

(
cω

D

))2

+ 1
)

= v2

(
℘

(
cω

D

)
− I
)

+v2

(
℘

(
cω

D

)
+ I

)
=

3
4

+
3
4

=
3
2
,

v2

(
2B

(℘(cω/D))2 + 1

)
= 1− 3

2
= −1

2

(and obviously we have v2(B) = 0). Therefore

v2(S∗(D)) ≥ −1
2

+ v2

(∑

T

(
c

DT

)

4

)
≥ −1

2
+
n

2
=
n− 1

2
.

This proves Lemma 2.4.
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Proof of Theorem 2. First let us prove

v2(L(ψD, 1)/ω) ≥ (n− 1)/2.

Taking sums of both sides of formula (1.1) over subsets T of {1, . . . , n},
we have
∑

T

D

ω

(
θ

DT

)

4
LS(ψDT , 1)

=
I

2

∑

T

∑

c∈C

(
c

DT

)

4

1
℘(cω/D)− I +

1
4

∑

T

∑

c∈C

(
c

DT

)

4
.

So by Lemma 2.2 and (1.2), we obtain

∑

T

D

ω

(
θ

DT

)

4
LS(ψDT , 1) = S∗(D) +

]C
4
,(2.9)

v2

(
]C
4

)
= v2

(∏n
k=1(πkπk − 1)

4

)
≥ 3n− 2 ≥ n,

and by Lemma 2.4 we have

v2

(∑

T

D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
≥ n− 1

2
.

By Lemma 2.1 we know that LS(ψDT , 1) = L(ψD, 1) when T = {1, . . . , n};
and when T = ∅ we have

LS(ψDT , 1) = LS(ψ1, 1) = L(ψ1, 1)
n∏

k=1

(
1− πk

πkπk

)
= L(ψ1, 1)

n∏

k=1

(
1− 1

πk

)
.

By [B-SD] or [Zhao] we know that L(ψ1, 1) = ω/4, so

LS(ψ1, 1) =
ω

4

n∏

k=1

(
1− 1

πk

)
,

v2(LS(ψ1, 1)/ω) = v2

(
1
4

n∏

k=1

(
1− 1

πk

))
≥ 2n− 2 (since v2(πk − 1) ≥ 2).

Now we use induction on n to prove our assertion v2(L(ψD, 1)/ω)≥(n−1)/2.
If n = 1, then D = π1, LS(ψ1, 1) = (ω/4)·(π1 − 1)/π1. Since π1 ≡ 1 (mod 4),
we get v2(LS(ψ1, 1)/ω) ≥ 0. By the above analysis we have

v2

(
π1

ω

(
θ

1

)

4
LS(ψ1, 1) +

π1

ω

(
θ

π1

)

4
LS(ψπ1

, 1)
)
≥ 1− 1

2
= 0.

Therefore
v2(L(ψπ1

, 1)/ω) = v2(LS(ψπ1
, 1)/ω) ≥ 0.
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Now assume our assertion is true for 1, . . . , n−1, and consider D = π1 . . . πn.
For any subset T of {1, . . . , n}, set t = t(T ) = ]T . By Lemma 2.1,

D

ω

(
θ

DT

)

4
LS(ψDT , 1) =

D

ω

(
θ

DT

)

4
L(ψDT , 1)

∏

πk|D̂T

(
1−

(
DT

πk

)

4

1
πk

)
.

Since (DT /πk)4 = ±1,±I, we get

1−
(
DT

πk

)

4

1
πk

=
πk − µ
πk

, µ ∈ {±1,±I}.

Note that πk ≡ 1 (mod 4), so v2(πk − µ) ≥ 1/2; moreover equality holds if
and only if (DT /πk)2

4 = −1. Thus when T is non-trivial (i.e. 1 ≤ t < n), by
our inductive assumption,

v2

(
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
= v2(L(ψDT , 1)/ω)+

∑

πk|D̂T

v2

(
1−
(
DT

πk

)

4

1
πk

)

≥ t− 1
2

+
1
2
· ]{πk : πk | D̂T } =

t− 1
2

+
n− t

2
=
n− 1

2
.

Also when T = ∅ we have

LS(ψDT , 1) = LS(ψ1, 1) = L(ψ1, 1)
n∏

k=1

(
1− 1

πk

)
=
ω

4

n∏

k=1

(
1− 1

πk

)
,

therefore

v2(LS(ψ1, 1)/ω) ≥ 2n− 2 ≥ (n− 1)/2,

v2(L(ψD, 1)/ω) = v2

(
D

ω

(
θ

D

)

4
L(ψD, 1)

)

= v2

(∑

T

D

ω

(
θ

DT

)

4
LS(ψDT , 1)

−
∑

∅6=T {1,...,n}

D

ω

(
θ

DT

)

4
LS(ψDT , 1)− D

ω
LS(ψ1, 1)

)

≥ (n− 1)/2.

Thus we have proved our assertion for any positive integer n.
Now we consider the condition for equality to hold, using also induction

on n. If n = 1, then D = π1, and by (2.9) we obtain

π1

ω

(
θ

1

)

4
Lπ1(ψ1, 1) +

π1

ω

(
θ

π1

)

4
Lπ1(ψπ1

, 1) = S∗(π1) +
π1π1 − 1

4
,
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that is,

1
4

(π1 − 1) +
π1

ω

(
θ

π1

)

4
L(ψπ1

, 1) = S∗(π1) +
π1π1 − 1

4
.

Since

v2

(
π1π1 − 1

4

)
= v2(π1π1 − 1)− 2 ≥ 1, v2(S∗(π1)) ≥ 1− 1

2
= 0

(Lemma 2.4), the equality

v2(L(ψπ1
, 1)/ω) = v2

(
π1

ω

(
θ

π1

)

4
Lπ1(ψπ1

, 1)
)

= v2

(
S∗(π1) +

π1π1 − 1
4

− 1
4

(π1 − 1)
)

= 0

holds if and only if one of the following conditions is true:

(1) v2(π1 − 1) = 2 when v2(S∗(π1)) > 0;
(2) v2(π1 − 1) > 2 when v2(S∗(π1)) = 0.

Thus

v2(L(ψπ1
, 1)/ω) = 0 if and only if δ1(π1) = s1(π1) + ε1(π1) = 1.

Assume our result is true for 1, . . . , n − 1, and let D = π1 . . . πn. When
T = ∅, we have

D

ω

(
θ

DT

)

4
LS(ψDT , 1) =

D

ω

(
θ

DT

)

4
LD(ψ1, 1) =

D

ω
L(ψ1, 1)

n∏

k=1

(
1− 1

πk

)
,

v2

(
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
= v2(L(ψ1, 1)/ω) +

n∑

k=1

v2(πk − 1)

= v2(1/4)+
n∑

k=1

v2(πk−1)≥2n−2≥(n−1)/2.

When ∅ 6= T  {1, . . . , n}, we have

v2

(
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
= v2(LS(ψDT , 1)/ω)

= v2

(
L(ψDT , 1)

ω

∏

πk|D̂T

(
1−

(
DT

πk

)

4

1
πk

))

= v2(L(ψDT , 1)/ω) +
∑

πk|D̂T

v2

(
1−

(
DT

πk

)

4

1
πk

)
.
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Since (DT /πk)4 = ±1, ±I, we have

1−
(
DT

πk

)

4

1
πk

=
πk − µ
πk

=
πk − 1 + (1− µ)

πk
, µ ∈ {±1,±I}.

Therefore

v2

(
1−

(
DT

πk

)

4

1
πk

)
≥ 1

2
,

and equality holds if and only if (DT /πk)4 = ±I, i.e. (DT /πk)2
4 = −1, that

is, [DT /πk]2 = 1. Thus

v2

(
1−

(
DT

πk

)

4

1
πk

)
=

1
2

if and only if
[
DT

πk

]

2
= 1.

By the proof of the first part of the theorem we know that

v2(L(ψDT , 1)/ω) ≥ (t(T )− 1)/2, t(T ) = ]T,

and by our inductive assumption, equality holds if and only if δt(DT ) = 1,
t = t(T ). Thus

v2

(
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
≥ t(T )− 1

2
+
n− t(T )

2
=
n− 1

2
,

and equality holds if and only if [DT/πk]2 = 1 (for any πk | D̂T ) and δt(DT )
= 1. That is to say,

v2

(
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
=
n− 1

2

if and only if ( ∏

πk|D̂T

[
DT

πk

]

2

)
δt(DT ) = 1.

For the elliptic curve EDT : y2 = x3 − DTx and Hecke characters ψDT ,
by [Ru1,2] we know that L(ψDT , 1)/Ω ∈ K = Q(I), and also we have
Ω = ω/ 4

√
DT , so

L(ψDT , 1)/ω = ( 4
√
DT )−1 · L(ψDT , 1)/

ω
4
√
DT

= ( 4
√
DT )−1 · L(ψDT , 1)/Ω ∈ K( 4

√
DT ),

i.e. L(ψDT , 1)/ω ∈ K( 4
√
DT ). Thus by Lemma 2.1 we get

D

ω

(
θ

DT

)

4
LS(ψDT , 1)

= D

(
θ

DT

)

4

∏

πk|D̂T

(
1−

(
DT

πk

)

4

1
πk

)
· L(ψDT , 1)/ω ∈ K( 4

√
DT ),



L-series attached to elliptic curves 93

and if

v2

(
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
=
n− 1

2
,

then
D

ω

(
θ

DT

)

4
LS(ψDT , 1) = (1 + I)n−1αT

4
√
D3
T ,

where αT ∈ K, and v2(αT ) = 0 (since v2( 4
√
D3
T ) = 3

4v2(DT ) = 0). For any
subsets T and T ′ of {1, . . . , n}, if v2(αT ) = v2(α

T ′ ) = 0, then it can be easily
verified that

v2(αT
4
√
D3
T + α

T ′
4
√
D3
T ′) > 0.

Thus, consider the terms in the sum

(2.10)
∑

∅6=T {1,...,n}

D

ω

(
θ

DT

)

4
LS(ψDT , 1).

For any two terms with 2-adic valuations equal to (n − 1)/2, the 2-adic
valuation of their sum is greater than (n− 1)/2. Also when n > 1 we have

v2

(
D

ω

(
θ

D∅

)

4
LS(ψD∅ , 1)

)
≥ 2n− 2 ≥ n > n− 1

2
.

Hence v2(L(ψD, 1)/ω) = (n − 1)/2 if and only if one of the following
statements is true:

(1) when v2(S∗(D)) > (n− 1)/2, in the above sum (2.10), the number
of terms with 2-adic valuation (n− 1)/2 is odd;

(2) when v2(S∗(D)) = (n − 1)/2, in the above sum (2.10), the number
of terms with 2-adic valuation (n− 1)/2 is even.

Statement (1) above means: if εn(D) = 0, then

]

{
∅ 6= T  {1, . . . , n} : v2

(
D

ω

(
θ

DT

)

4
LS(ψDT , 1)

)
=
n− 1

2

}

= ]

{
∅ 6= T  {1, . . . , n} :

( ∏

πk|D̂T

[
DT

πk

]

2

)
δt(DT ) = 1

}

≡
∑

∅6=T {1,...,n}

( ∏

πk|D̂T

[
DT

πk

]

2

)
δt(DT ) ≡ 1 (mod 2),

δn(D) = εn(D) +
∑

∅6=T {1,...,n}

( ∏

πk|D̂T

[
DT

πk

]

2

)
δt(DT ) ≡ 1 (mod 2).
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And (2) means: if εn(D) = 1 then
∑

∅6=T {1,...,n}

( ∏

πk|D̂T

[
DT

πk

]

2

)
δt(DT ) ≡ 0 (mod 2),

so

δn(D) = εn(D) +
∑

∅6=T {1,...,n}

( ∏

πk|D̂T

[
DT

πk

]

2

)
δt(DT )

≡ 1 + 0 ≡ 1 (mod 2).

Hence v2(L(ψD, 1)/ω) = (n− 1)/2 if and only if δn(D) = 1. This proves the
theorem.

Proof of Theorem 3. This theorem follows from Theorem 2 and the main
result of Coates–Wiles in [Co-Wi].

For the elliptic curve ED : y2 = x3 −Dx with D = π2
1 . . . π

2
rπr+1 . . . πn,

where πk ≡ 1 (mod 4) are distinct Gaussian prime integers (k = 1, . . . , n),
we could prove Theorems 4 and 5 similarly to Theorems 1 and 2.
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