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1. Introduction. The purpose of this paper is to present a hopefully
practical and uniform general method (1) for solving explicitly any specific
system of two Pell equations.

Clearly, any such system can be reduced to one of the form

X2−D1Y
2 = A1, Z2−D2Y

2 = A2 in positive integers X,Y,Z,(1)

where A1, A2 are non-zero integers, D1,D2 are non-square positive integers
and A1D2−A2D1 6= 0. Note that, if the last condition is not satisfied, then
A2/A1 = D2/D1 = q2 for some q ∈ Q and the solutions (X,Y,Z) of the
system of equations are given by (X,Y, qX), where (X,Y ) is a solution of
the first equation of the system.

A large number of papers are devoted to the study of simultaneous Pell
equations (2); they could be classified into three categories:

The first one includes papers in which results are proved of the type
“there are no solutions”, or “there are at most k solutions”, where k is a
number between, say, 1 and 4; such are the papers [4]–[8], [20], [21], [26],
[38]–[40]. The generality of such results is obtained at the cost of restricting
at least two parameters among A1,D1, A2,D2. Of course, if a system (1) falls
within the scope of such a paper and (3) one is so lucky that the number of
solutions he actually knows is equal to the maximum number of solutions
proved in the paper, the system is completely solved.

2000 Mathematics Subject Classification: 11D09, 11G05, 11Y50.
(1) Throughout this paper the term “algorithm”, in a broad sense though, could also

be used in place of the word “method”.
(2) Often, solving (1) is reduced to finding common terms of two distinct second

order recurrence sequences, a problem studied in a number of papers without any direct
reference to (1); in our bibliography it is natural to include such papers.

(3) This is the very optimistic case!

[119]
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In a second category we put papers dealing with the explicit solution of
some system(s), in which each parameter A1,D1, A2,D2 has either a specific
numerical value or a certain special form. In these papers, either Baker’s
theory is applied or, quite often, elegant elementary arguments; see [2], [3],
[9], [13]–[16], [18], [24], [25], [28], [37].

A third category includes papers in which effective but not explicit results
are proved; see [19], [22], [23].

From the content and the results of the above papers it is clear that
their objects are distinct from that of the present paper (4). To the best of
the author’s knowledge, only two works in the literature deal with a similar
object (5):

First, W. S. Anglin’s book [1], Section 4.6, where a method is proposed
for solving (1) when all parameters are absolutely less than 1000. In princi-
ple, that method, which is based on the Theory of Linear Forms in Complex
Logarithms, can work in general, even without the above restriction on the
size of the parameters. Its complexity, however, depends upon the number
of prime factors of A1 and A2, while the method proposed in the present
paper, based on the Theory of Linear Forms in Elliptic Logarithms, might
be free of this defect (6). Nice examples with a vivid discussion on the com-
parison of the Complex Logarithm versus the Elliptic Logarithm method are
found in [34].

Second, the paper [27] by R. G. E. Pinch, where the solution of (1) is
reduced to a finite number of problems of the form: “Given two distinct
second order recurrence sequences (Xk) and (Yl) assuming integer values
and an integer g, show that (0, 0) is the only pair (n,m) satisfying Xn =
Ym+g (∗)”. A first step of the method consists in obtaining an upper bound
B of n, using again the Theory of Linear Forms in Complex Logarithms.
Then an algorithm builds up, step by step, sets P and Q of primes with
certain properties. The main property of the set P is that its elements are
the prime factors of an integer N such that, if (∗) is satisfied, then n ≡ 0
(mod N). One expects to build P so large that N > B, which will force
n = 0. It is not known a priori how large the primes in the sets P,Q
have to be (7); on the other hand, there is no theoretical guarantee that, in
any specific case, the method will work with sets P,Q including primes of
“reasonable” size.

(4) Cf. the very beginning of our Introduction.
(5) We do not include among them paper [24] in which an elementary interesting

method is proposed which, however, could not be considered “general”.
(6) I owe this remark to the referee.
(7) In [35], where we had to solve the system U2−5V 2 = −4µ, U2−10Z2 = µ, µ = ±1,

we applied Pinch’s method; the sets P and Q turned out to include the 40 primes from 2
to 173 and the 145 primes from 3 to 997, respectively.
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In the present paper, we adopt a quite different approach, using El-
liptic Curves and Linear Forms of Elliptic Logarithms. The method that
we propose depends upon the theoretically non-effective computation of a
Mordell–Weil basis for a certain elliptic curve. This, in practice, causes no
real problems, given the current state of the art on the actual computation
of Mordell–Weil bases and the large positive experience from the extended
application of the elliptic curves techniques to the explicit solution of dio-
phantine equations. A more serious problem from the application of the
method can possibly arise when the rank of the related elliptic curve is
high, say, larger than 7 or 8. In such a case (8), the final and theoretically
easiest step, which we describe after relation (21), may turn out a difficult
computational task.

Finally, we wish to stress the following fact: As the reader will realize,
for the application of our method we assume the knowledge of a non-trivial
rational solution (X0, Y0, Z0). What if we can neither detect such a solution
nor prove its non-existence by, say, congruence considerations? Note that
there are very efficient methods for deciding whether each equation in (1),
considered separately, has a rational solution; see, for example, [11] and the
references therein. Thus, if we know that both equations have rational solu-
tions, but we are unable to decide whether the system of the two equations
has a rational solution (9), we can work, at least in principle, as follows: We
effectively obtain a rational solution (X0, Y0), say, of the first equation, so
that (X0, Y0, Z0), Z0 =

√
A2 +D2Y 2

0 is a solution belonging to at most a
quadratic extension K of Q and the method of this paper remains exactly
the same with K in place of Q. In practice, however, this implies working
with elliptic curves over K and the state of the art of this subject, from the
computational point of view, is not satisfactory today. Thus, although the
method developed in the present paper still works in this case, we cannot, at
present, be very optimistic about the happy outcome of the computations
related to the relevant elliptic curve.

Acknowledgements. I am grateful to my colleague J. Antoniadis and
the referee, who drew my attention to [1], an important reference which I
had missed out in the first version of the paper. I also thank Nils Bruin for
his very challenging electronic comments.

2. The method. We assume that a rational solution (X0, Y0, Z0) is
known with Y0 > 0 and X0, Z0 ≥ 0, not both zero.

(8) Very unlikely to happen, we believe, if the parameters in (1) are not constructed
on purpose.

(9) It is worth asking whether such a case can occur in practice.
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2.1. The related elliptic curve and the birational transformation. Elim-
ination of A1, A2 from the two equations gives

A2X
2 − A1Z

2 + (A1D2 − A2D1)Y 2 = 0.(2)

We put

u =
Y0X −X0Y

Y0Z − Z0Y
,(3)

so that

Y =
Y0(X − uZ)
X0 − uZ0

,

and substitute in (2) to obtain a quadratic equation in X/Z. Obviously,
X/Z = X0/Z0 is one root of this quadratic equation, whence it follows that
the second root is

X

Z
=
−A2X0u

2 + 2A1Z0u− A1X0

A2Z0u2 − 2A2X0u+ A1Z0
.(4)

Then, by the expression of Y in terms of X,Z and u, above, we obtain

Y

Z
=

(−A2u
2 + A1)Y0

−A2Z0u2 + 2A2X0u− A1Z0
.(5)

We have 1−D2(Y/Z)2 = A2/Z
2, hence, by (5) and the relations

X2
0 −D1Y

2
0 = A1, Z2

0 −D2Y
2

0 = A2,(6)

it follows that
au4 + bu3 + cu2 + du+ e2 = v2,(7)

where

v = σ
−A2Z0u

2 + 2A2X0u− A1Z0

Z
, σ = sgn(A1),(8)

and

a = A2
2, b = −4A2X0Z0, c = 4A1Z

2
0 − 2A1A2 + 4A2X

2
0 ,

d = −4A1X0Z0, e = |A1|.
(9)

Later we will justify the choice of σ in (8). Using (3) in (8) and taking into
account (6) we express v as a rational function of X,Y,Z:

v = 2σY 2
0
A2X0X + (D2A1 −D1A2)Y0Y −A1Z0Z

(Y0Z − Z0Y )2 .(10)

Conversely, we need also express X,Y,Z as rational functions of u, v. By the
definition of v,

Z = σ
−A2Z0u

2 + 2A2X0u− A1Z0

v
(11)
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and this, combined with (5), (4) and (6) gives

Y = σ
(−A2u

2 + A1)Y0

v
, X = σ

A2X0u
2 − 2A1Z0u+A1X0

v
.(12)

We consider now (7). Following Section 2 of [36], we define the rational
functions

x(u, v) =
2ev + du+ 2e2

u2 +
c

3
,(13)

σ · y(u, v) =
8e3v + 8e4 + 4e2du+ (4e2c− d2)u2

2eu3(14)

+
d

2e
x(u, v)− cd

6e
+ be,

u(x, y) =
12e2x+ 8e2c− 3d2

2(6σye− 3dx+ cd− 6be2)
,(15)

v(x, y) =
3x− c

6e
u(x, y)2 − d

2e
u(x, y)− e,(16)

where, as before, σ = sgn(A1). The functions

(u, v) 7→ (x, y) = (x(u, v),y(u, v)),(17)

(x, y) 7→ (u, v) = (u(x, y),v(x, y))(18)

establish a birational transformation between (7) and

y2 = x3 + Ax+B,(19)

where

A = −1
3c

2 + bd− 4ae2, B = 2
27c

3 − 1
3bcd− 8

3ace
2 + b2e2 + ad2.

So far, our discussion sums up to the following:

Proposition 2.1. Let (X,Y,Z) be a solution of the initial system (1).
Using (3) and (10) we obtain (u, v) satisfying (7) and then, by (17), we
obtain (x, y) satisfying (19). This gives a birational transformation from (1)
to (19), say x = X (X,Y,Z), y = Y(X,Y,Z). Conversely , if (x, y) satisfies
(19), then, using (18), we obtain (u, v) satisfying (7) and then, by (11) and
(12), we obtain a solution (X,Y,Z) of (1).

2.2. Some technical results. The following result is useful for the prac-
tical application of our method.

Proposition 2.2. The right-hand side of (19) has three distinct ratio-
nal roots, namely

%1 = 4
3(D2X

2
0 − 2D1D2Y

2
0 +D1Z

2
0)Y 2

0 = 4
3(A1D2 +A2D1)Y 2

0 ,

%2 = 4
3(−2D2X

2
0 +D1D2Y

2
0 +D1Z

2
0)Y 2

0 = 4
3(A2D1 − 2A1D2)Y 2

0 ,

%3 = 4
3(D2X

2
0 +D1D2Y

2
0 − 2D1Z

2
0)Y 2

0 = 4
3(A1D2 − 2A2D1)Y 2

0 ,
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hence, the curve E defined by (19) is an elliptic curve. Denote by e1, e2, e3,
respectively , the largest , middle and least among the three roots above. Then
the following table gives the values of e1, e2, e3:

A1 A2 A2D1 − A1D2 e3 e2 e1

> 0 > 0 > 0 %3 %2 %1
> 0 > 0 < 0 %2 %3 %1
> 0 < 0 any sign %2 %1 %3
< 0 > 0 any sign %3 %1 %2
< 0 < 0 > 0 %1 %3 %2
< 0 < 0 < 0 %1 %2 %3

Moreover , define

x0 = lim
Y→+∞

X (
√
A1 +D1Y 2, Y,−

√
A2 +D2Y 2),

y0 = lim
Y→+∞

Y(
√
A1 +D1Y 2, Y,−

√
A2 +D2Y 2).

Then x0, y0 ∈ Q(
√
D1,
√
D2), x0 > e1, y0 > 0 and (x0, y0) is a point on E0,

the zero-component of the elliptic curve E.
Finally , for any positive solution (X,Y,Z) of (1), with Y sufficiently

large, the point (x, y)=(X (X,Y,−Z),Y(X,Y,−Z)) belongs to E0 and y>0;
how large Y must be, can be made explicit in any particular case (1).

Proof. With Maple V we easily calculated the three roots. These are
distinct, in view of our initial restrictions on the parameters of (1). Every
claim in the table can be checked without much difficulty, but this is prob-
ably a rather tedious task without the aid of a Computer Algebra package.
The same is true for the computation of x0 and y0, the values of which are

x0 =
4Y 2

0

3
(D2X

2
0 +D1D2Y

2
0 +D1Z

2
0 + 3

√
D1D2X0Y0

+ 3D1

√
D2 Y0Z0 + 3

√
D1D2X0Z0),

y0 =
8σ|A1|Y 3

0
√
D1 (Z0

√
D1 +X0

√
D2)(Z0 + Y0

√
D2)

X0 − Y0
√
D1

.

It is now clear that x0 is positive and larger than all three roots %1, %2, %3.
On the other hand, sgn(X0−Y0

√
D1) = sgn(A1) = σ, hence y0 > 0. Finally,

if (X,Y,Z) is a positive solution of (1), then X =
√
A1 +D1Y 2, Z =√

A2 +D2Y 2, hence, for sufficiently large Y , the number X (X,Y,−Z) is
sufficiently close to x0, which in turn is larger than e1; this, obviously, proves
that (x, y) ∈ E0 and y > 0 in view of the fact that, for sufficiently large Y ,
y is near y0.
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We also need the following

Lemma 2.3. The substitution (
√
A1 +D1Y 2, −

√
A2 +D2Y 2)← (X,Z)

in (10) results in a function v = v(Y ), which, for sufficiently large Y , as-
sumes positive values.

Proof. In (10), the factor that determines the sign of v is (after the
substitution mentioned in the lemma)

σ(A1Z0

√
A2 +D2Y 2 + (D2A1 −D1A2)Y0Y +A2X0

√
A1 +D1Y 2).

Dividing this by Y and letting Y → +∞, we find the limit

σ(X0 − Y0

√
D1)(Z0

√
D1 +X0

√
D2)(Z0 + Y0

√
D2),

which is positive, as we saw in the proof of Proposition 2.2. This, certainly,
implies that, for sufficiently large Y , the corresponding v is positive.

The following result is implicitly needed for our method.

Lemma 2.4. There exists a positive constant Ψ0, explicitly computable in
every particular instance of the system (1), such that the bijection

[Ψ0,+∞) 3 Y → X (
√
A1 +D1Y 2, Y,−

√
A2 +D2Y 2)

∈ [X (
√
A1 +D1Ψ2

0 , Ψ0,−
√
A2 +D2Ψ2

0 ), x0)

is strictly decreasing.

Proof. The proof is elementary, but quite tedious; once again we turned
to the aid of Maple V. The function X (

√
A1 +D1Y 2, Y,−

√
A2 +D2Y 2)

is the composition h2 ◦ h1 of the functions

h1 : Y 7→ u =
X0Y − Y0

√
A1 +D1Y 2

Y0

√
A2 +D2Y 2 + Z0Y

(cf. (3)),

h2 : u 7→ x(u,
√
au4 + bu3 + cu2 + du+ e2) (cf. (13) and (10)),

with a, b, c, d, e as defined in (9). A small explanation on the definition of h2:
The arguments of the function x in (13) are u = h1(Y ) and the v obtained
from (10) after the substitution (X,Z)← (

√
A1 +D1Y 2, −

√
A2 +D2Y 2).

By Lemma 2.3, this value of v is positive, for sufficiently large Y , hence,
by (7), it is expressed as

√
au4 + bu3 + cu2 + du+ e2 (10). A computation

shows that (primed letters denote derivatives)

lim
Y→+∞

h′1(Y ) =
Y0(X0 − Y0

√
D1)(Z0

√
D1 +X0

√
D2)√

D1D2(Z0 + Y0
√
D2)

.

Since sgn(X0−Y0
√
D1) = sgn(A1) = σ, this shows that, for sufficiently large

Y , the function h1 is strictly increasing if σ = +1 and strictly decreasing if

(10) We always use the symbol √ to denote the positive square root.
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σ = −1. We also note that

lim
Y→+∞

h1(Y ) =
X0 − Y0

√
D1

Z0 + Y0
√
D2

=: u0.

Next, we consider the function h2(u) for u sufficiently near to u0. We
write h2(u) = 2e

√
h3(u) + h4(u), where

h3(u) = a+
b

u
+

c

u2 +
d

u3 +
e2

u4 , h4(u) =
d

u
+

2e2

u2 +
c

3
.

We compute

h′3(u0) = −4Y0

A1
(X0 + Y0

√
D1D2 + Z0

√
D1)

× (X0 + Y0

√
D1)2(Z0 + Y0

√
D2)2,

h′4(u0) = −8Y 3
0

A3
1

(Z0

√
D1 +X0

√
D2)(X0 + Y0

√
D1)3

× (Z0 + Y0

√
D2)3

√
D1D2.

Thus, sgn(h′3(u0)) = sgn(h′4(u0)) = −σ, which shows that, near u0, h2(u) is
strictly decreasing if σ = +1 and strictly increasing if σ = −1. If we combine
with the analogous conclusion for h1(u), we see that, for sufficiently large
Y , the function h2 ◦ h1(Y ) is strictly decreasing, as claimed.

2.3. Elliptic integrals and linear forms in elliptic logarithms. Differen-
tiating (3) and taking into account that XdX = D1dY and ZdX = D2dY
we get

du = −Y0(−A2D1Y0Y + A2X0X + A1D2Y0Y − A1Z0Z)
XZ(Y0Z − Z0Y )2 dY.

Then, taking into account (10) and the relation

dx

y
= −σ du

v

(see e.g. relation (2) of [33] (11)), we conclude that

dx

y
=

1
2Y0
· dY
XZ

.(20)

From now on we will assume that (X,Y,Z) is a positive integer solution
of (1) with Y sufficiently large (cf. Proposition 2.2 and Lemmas 2.3 and
2.4) and we will consider P = (x(P ), y(P )) = (X (X,Y,−Z),Y(X,Y,−Z)),
which, by Proposition 2.2, belongs to E0(Q) and has y(P ) > 0. If necessary,
we may also write X(P ), Y (P ), Z(P ) instead of X,Y,−Z. Conversely, by

(11) In the notation of that paper, f(u, v) = au4 + bu3 + cu2 + du + e2 − v2 and a
(symbolic) computation shows that G(u, v) = −σ.
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Proposition 2.1, any point P ∈ E(Q) (12) corresponds to a rational solution
(X(P ), Y (P ), Z(P )) of (1).

Assume now that we know a basis P1, . . . , Pr for the torsion-free part of
the Mordell–Weil group E(Q) (13). Observe that, for any Pi, if Pi 6∈ E0(Q),
then Pi + (e2, 0) ∈ E0(Q). Therefore,

We can always choose the points of our basis so that P1, . . . , Pr belong
to E0(Q).

We put
P = m1P1 + . . .+mrPr + T,(21)

where T denotes a torsion point which, necessarily, belongs to E0(Q) and
the mi’s are unknown integers. If we manage to bound

M = max{|m1|, . . . , |mr|},
then we can effectively solve, at least in principle, our system (1). Indeed, for
any (m1, . . . ,mr) satisfying this bound and any torsion point T ∈ E0(Q), we
compute the point P = (x(P ), y(P )) and then, by the procedure described
in Proposition 2.1, we obtain a rational solution (X(P ), Y (P ), Z(P )), which
we accept if and only if all three X(P ), Y (P ), Z(P ) are integers.

A basic tool for our method is the usual isomorphism

φ : E0(R)→ [0, 1) = R/Z

(see e.g. Section 2 of [31]). Let also ω = 2
� +∞
e1

dx/
√
x3 + Ax+B, the fun-

damental real period. From (21) we see that

φ(P ) = m1φ(P1) + . . .+mrφ(Pr) +m0 + s/t,(22)

where m0 ∈ Z and s/t = φ(T ) with 0 < s < t relatively prime integers,
effectively bounded by a small number (see e.g. Section 4 of [31]). Moreover,
since the φ-values are positive and < 1, it follows that

|m0| ≤ rM.(23)

We now exhibit the close relation of φ(P ) with an elliptic integral
�
dx
y ,

where y =
√
x3 +Ax+B. We will need the point Q0 = (x0, y0) ∈

E0(
√
D1,
√
D2), with x0, y0 as defined in Proposition 2.2. We have

x0�

x(P )

dx

y
=

+∞�

x(P )

dx

y
−

+∞�

x0

dx

y
= ωφ(P )− ωφ(Q0),

by the definition of φ. This, combined with (22) shows that the integral on
the left-hand side of the above relation is equal to a linear form in elliptic

(12) Actually, we deal only with points P ∈ E0(Q).
(13) This is, of course, the non-effective part of the method of this paper.
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logarithms:
x0�

x(P )

dx

y
= L(P ) := −ωφ(Q0) +

(
m0 +

s

t

)
ω +m1ωφ(P1) + . . .+mrωφ(Pr).

A symbolic computation using Maple V shows that

2 ·Q0 =
(4

3(D2X
2
0 +D1D2Y

2
0 +D1Z

2
0)Y 2

0 , 8D1D2X0Y
4

0 Z0
)
.

Therefore, 2 · Q0 ∈ E0(Q), hence 2 · Q0 = k1P1 + . . . + krPr + T ′, where
k1, . . . , kr are explicitly known rational integers and T ′ ∈ E0(Q) is a torsion
point. Then

φ(Q0) =
k1

2
φ(P1) + . . .+

kr
2
φ(Pr) +

k0

2
+

s′

2t′
,

where k0 is an explicitly known integer and s′, t′ have analogous properties
to those of s, t (see immediately after (22)). This transforms the expression
of the linear form L(P ) into

x0�

x(P )

dx

y
= L(P ) =

p0

q0
ω +

p1

2
ωφ(P1) + . . .+

pr
2
ωφ(Pr),(24)

where p0, p1, . . . , pr are rational (unknown) integers and q0 is an explicitly
known “small” integer (14). Moreover, it is clear that (15),

N := max
0≤i≤r

|pi| ≤ αM + β,(25)

where the “small” positive constants α, β can be explicitly calculated in
every specific case.

2.4. Estimating the linear form in elliptic logarithms. The following
steps lead now to an upper bound for |L(P )| in terms of M .

• By (20) and Lemma 2.4 we conclude (16)

x0�

x(P )

dx

y
= − 1

2Y0

+∞�

Y (P )

dY√
(A1 +D1Y 2)(A2 +D2Y 2)

,(26)

therefore, for sufficiently large Y (17), (24) and (26) imply that

|L(P )| ≤ c1Y
−1,(27)

where c1 is an explicit positive constant.

(14) Actually, p0/q0 = m0 − k0/2 + s/t− s′/(2t′) and pi = mi − ki/2 for i = 1, . . . , r.
(15) We use also (23) at this point.
(16) We always have in mind that X =

√
A1 +D1Y 2 and Z = −

√
A2 +D2Y 2.

(17) This is easily made explicit.
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• x(P ) is an explicit rational function X (X,Y,Z), hence, for the height
h(x(P )), we can find an explicit upper bound in terms of X,Y,Z (18). Then,
since X =

√
A1 +D1Y 2, Z = −

√
A2 +D2Y 2, it follows that

h(x(P )) ≤ c2 + 2 log Y,(28)

where c2 is an explicit positive constant.
• We have an inequality of the form

ĥ(P )− 1
2h(x(P )) ≤ c3,(29)

where ĥ(·) denotes the canonical height, as defined, for example, in Silver-
man’s book [29], and c3 is an explicit positive constant; see e.g. [30].
•We refer to (21). It is a well known fact that ĥ(P ) is a positive-definite

quadratic form q(m1, . . . ,mr), hence

ĥ(P ) ≥ λM2,(30)

where λ is the least eigenvalue of the matrix of the quadratic form q, hence
an explicit positive constant.
• An obvious combination of (27)–(30) gives

|L(P )| ≤ c1 exp(0.5c2 + c3 − λM2).(31)

Next, an explicit lower bound for |L(P )| in terms of N is obtained by
a deep theorem due to S. David [12]. A version of this theorem adapted to
our needs is found in the Appendix of [36]. According to Theorem 5 of that
Appendix, either N is “very small”, or

|L(P )| ≥ exp(−c4(logN + c5)(log logN + c6)r+2),

where c4, c5, c6 are explicit positive constants. Taking into account (25), we
write the last relation as

|L(P )| ≥ exp(−c4(log(αM + β) + c5)(log log(αM + β) + c6)r+2).(32)

Since the lower bound in (32) is larger than the upper bound in (31) if M
is sufficiently large, it follows that M must be bounded by some explicit
upper bound. The upper bound for M which is obtained in this way is
huge. The rather large experimental experience accumulated so far shows
that this bound is of the size of 10(5r2+15r+28)/2; see Section 3 of [32]. This
bound is dramatically reduced with the use of the LLL Basis Reduction
Algorithm. The reduction process has been extensively discussed in many
relevant papers, so that there is no point to discuss it here once again; we
refer the reader to Section 5 of [31], Section 5 of [36] and Section 6 of [17] (19).

(18) The fact that X,Y,Z are integers is a crucial “detail” here.
(19) These are just three indicative references.
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3. Examples. In the examples of this section, all computations related
to elliptic curves have been done by Apecs of Ian Connell, a package based
on Maple V. In all cases, the Mordell–Weil bases were computed uncondi-
tionally (no conjectures were assumed) and care was taken to transform the
points of the basis to ones belonging to the zero-component of the curve, by
adding the point (e2, 0) if necessary (cf. just before (21)).

Also, the results of Subsection 2.2 require that Y be “sufficiently large”.
In every example, computations, very simple in practice, show that Y ≥ 10
is more than enough.

3.1. The system with D1 = 5, A1 = 19, D2 = 3, A2 = −11. A rational
solution: (X0, Y0, Z0) = (8, 3, 4). The corresponding Weierstrass model is

y2 = x3 − 4064688x+ 97538688.(33)

The roots of the right-hand side are

e3 = −2028, e2 = 24, e1 = 2004.

Relations (3) and (10) now become

u =
3X − 8Y
3Z − 4Y

, v = −72
22X − 84Y + 19Z

(3Z − 4Y )2 ,

hence, by (13) and (17),

x =
−12

(3X − 8Y )2 (7477Y 2 − 19152Y − 4008XY − 3420YZ

+ 1824ZX + 5016X + 4332Z + 11571),

from which we find

x0 = 4884 + 2160
√

3 + 2592
√

5 + 1152
√

5
√

3 ≈ 18882.7947568591741,

and by (14) and (17),

y =
16416

(3X − 8Y )3 (855Y 3 +7477Y 2−456XY 2−2140ZY 2−4008XY −9519Y

+ 1002XZY + 456ZY + 190XZ + 3344X − 1900Z + 17347).

Also, relations (11) and (12) give

X = −8
11u2 + 19u− 19

v
, Y = 3

11u2 + 19
v

, Z =
44u2 − 176u− 76

v
,

from which, by means of (15), (16) and (18), we obtain

X = 8
x3 + 828x2 + 90yx+ 15841008x− 20126660544 + 182520y

x3 − 14652x2 + 4064688x+ 19656858816− 622080y
,

Y = 3
x3 + 4932x2 + 128yx− 12427344x+ 20041387200− 3072y

x3 − 14652x2 + 4064688x+ 19656858816− 622080y
,
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Z = −4
x3 + 8892x2 + 216yx− 23737104x− 19181430720− 432864y

x3 − 14652x2 + 4064688x+ 19656858816− 622080y
.

A basis for the torsion-free part of E(Q), where E is the elliptic curve defined
by (33), is

P1 = (7548, 632016), P2 = (112884, 37920960)

(P1, P2 ∈ E0(Q)) and T = (2004, 0) is the only torsion point on E0(Q). With
the aid of the function Expr of Apecs we find that

2 ·Q0 = (4884, 311040) = P1 + P2.

We easily check that φ(2 ·Q0) = φ(P1) + φ(P2) and φ(T ) = 1/2. Therefore,
if P is a point on the elliptic curve which corresponds to an integer solution
of our system of Pell equations and we put

P = m1P1 +m2P2 + T, M = max{|m1|, |m2|},
then the corresponding linear form in elliptic logarithms is

L(P ) =
p0

2
ω +

p1

2
ωφ(P1) +

p2

2
ωφ(P2),

where pi = 2mi − 1 (i = 1, 2) and p0 = 2m0 + s for some integers m0 with
|m0| ≤ 2M and s ∈ {0, 1} (cf. (23)). Therefore, in the notation of (25),
α = 4, β = 1. Also, A1 + D1Y

2 = 19 + 5Y 2 > 5Y 2 and A2 + D2Y
2 =

−11 + 3Y 2 > 2.9725Y 2, provided that Y > 20. Therefore, in (27) we can
take c1 = 0.04324. In the expression of x as a rational function of X,Y,Z
we make the substitution X =

√
19 + 5Y 2, Z = −

√
−11 + 3Y 2; then it

is straightforward to check that the maximum of the absolute values of the
numerator and denominator is ≤ 376400Y 2, provided that Y > 20; therefore
in (28) we can take c2 = log 376400. In (29) we use Silverman’s result [30],
which gives c3 = 5.84226214. An easy program based on Maple V and
Apecs calculates the least eigenvalue of the positive-definite matrix related
to ĥ, giving thus λ = 0.5179388. Following the detailed steps described in
the Appendix of [36] we calculate

c4 = 4.046622 · 1074, c5 = 2.570121, c6 = 30.018387

and the comparison of the upper bound (31) with the lower bound (32) forces
M ≤ 3.41 · 1041. Following the reduction technique that uses the LLL basis
reduction algorithm (as implemented in Pari), we can immediately reduce
this huge upper bound down to 20 and then, by a second reduction step we
reduce the bound to 7. Finally, by a simple program that uses Maple and
Apecs we compute all combinations

(x, y) = m1P1 +m2P2 + εT, −7 ≤ mi ≤ 7 (i = 1, 2), ε = 0, 1

and for each we insert the values of x and y in the previously obtained for-
mulas, which express X,Y,Z as rational functions of x, y. The only positive
integer triads (X,Y,Z) obtained in this way are (8, 3, 4) and (12, 5, 8). Since
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the computation of certain ci’s has been done under the assumption Y > 20,
we also check which integer values in the range 1 ≤ Y ≤ 20 are such that√

19 + 5Y 2 and
√
−11 + 3Y 2 are both integers. No values of Y besides 3

and 5 satisfy this condition, from which we conclude that the only positive
integer solutions (X,Y,Z) to the system (1) in this specific case are those
two mentioned above.

3.2. The system with D1 = 7, A1 = 2, D2 = 32, A2 = −23. This exam-
ple is partially solved in [10], where it is proved that, if (X,Y,Z) is a solution,
then X+Y

√
7 < (3+

√
7)(8+3

√
7)17192

. Here we give the complete solution.
A rational solution: (X0, Y0, Z0) = (3, 1, 3). The corresponding Weierstrass
model is

y2 = x3 − 645136
3

x− 692527232
27

(34)

with right-hand side having roots

e3 = −1156
3

, e2 = −388
3
, e1 =

1544
3

.

Relations (3), (10) and (17) combined with (13) and (14), respectively, give

x =
8(−235− 207X + 675Y − 18Z + 579XY + 63YZ − 27ZX − 1448Y 2)

3(X − 3Y )2 ,

y =
−96

(X − 3Y )3 (−224Y 3 + 96XY 2 − 1448Y 2 + 504ZY 2 + 579XY − 54ZY

+ 386Y − 193XZY − 138X + 63Z − 253 + 14XZ),

from the first of which we find

x0 =
2300

3
+ 384

√
7 + 336

√
2 + 144

√
7
√

2 ≈ 2796.609591.

Relations (11) and (12) combined with (15), (16) and (18), respectively, give

X = 3
27x3 − 108x2 + 756yx+ 6552144x+ 291312y − 3080761664

27x3 − 62100x2 + 5806224x− 870912y + 5836492864
,

Y =
27x3 + 13716x2 − 11161008x+ 972yx+ 125712y + 2373881536

27x3 − 62100x2 + 5806224x− 870912y + 5836492864
,

Z = −3
27x3 + 48492x2 + 3456yx− 24422256x− 7899721664− 1778688y

27x3 − 62100x2 + 5806224x− 870912y + 5836492864
.

A basis for the torsion-free part of E(Q), where E is the elliptic curve
defined by (34), consists of the single point P1 = (8444/3, 147200), and
T = (1544/3, 0) is the only torsion point on E0(Q). With the aid of the func-
tion Expr of Apecs we find that 2 · Q0 = (2300/3, 16128) = −P1 + T and
we easily check that φ(Q0) = 1

4 − 1
2φ(P1) and φ(T ) = 1/2. If P is a point

on the elliptic curve, which corresponds to an integer solution of our system
of Pell equations and we put P = m1P1, M = |m1|, then the corresponding
linear form in elliptic logarithms is
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L(P ) =
p0

2
ω +

p1

2
ωφ(P1),

where p1 = 2m1 + 1 and p0 = 4m0 + 2s − 1 for some integers m0 with
|m0| ≤ M and s ∈ {0, 1} (cf. (23)). Therefore, in the notation of (25),
α = 4, β = 1.

Calculations completely analogous to those in Example 3.1 give c1 =
0.03344, c2 = 9.67, c3 = 5.1074513, λ = 0.69249, c4 = 6.251·1044, c5 = 2.752,
c6 = 34.56585 and the comparison of the upper bound (31) and the lower
bound (32) forces M ≤ 5.8 · 1025. The reduction process gives the bound
M ≤ 20. We compute all combinations

(x, y) = m1P1 + εT, −20 ≤ m1 ≤ 20, ε = 0, 1,

and for each we insert the values of x and y in the above expressions of
X,Y,Z as rational functions of x, y. The only positive integer triads (X,Y,Z)
obtained in this way are (3, 1, 3) and (717, 271, 1533). Since the computation
of certain ci’s have been done under the assumption Y > 20, we also check
whether there are solutions (X,Y,Z) with 1 < Y ≤ 20, but this reveals no
further solution. Therefore, the only positive integer solutions (X,Y,Z) to
the system (1) in this specific case are those two mentioned above.

3.3. Three examples taken from the literature. In this section we discuss,
in brief, the application of our method to the solution of three examples
taken from the literature.

The first is the well known example of A. Baker and H. Davenport [3].
Solutions are also given in [18] and [28]. In the notation of the present
paper, D1 = 3, A1 = −2, D2 = 8, A2 = −7 and (X0, Y0, Z0) = (1, 1, 1). The
parameters in the Weierstrass model (19) are A = −5776/3, B = 677248/27.
The rank of the curve is 1, P1 = (524/3, 2240) being a basic point. Then the
resolution of the system is completely analogous to that of Subsection 3.2
and proves that the only solutions in positive integers (X,Y,Z) are (1, 1, 1)
and (19, 11, 31).

A second example comes from the system z2−3y2 = −2, z2−6x2 = −5,
studied in [37]. The substitution (3y, z, 6x) = (X,Y,Z) gives a system (1)
with D1 = 3, A1 = 6, D2 = 6, A2 = 30 and (X0, Y0, Z0) = (3, 1, 6). The
parameters in the related Weierstrass elliptic curve (19) are A = −32832,
B = 774144. The rank of the curve is 1, P1 = (888, 25920) being a basic
point. As in the previous example, the resolution of the system is completely
analogous to that of Subsection 3.2 and proves that the only solutions in
positive integers (X,Y,Z) are (3, 1, 6) and (123, 71, 174), hence the only
positive integer solutions (x, y, z) are (1, 1, 1) and (29, 41, 71).

The third example is found in [25] and corresponds to D1 = 5, A1 =
−20, D2 = 2, A2 = 1 and (X0, Y0, Z0) = (0, 2, 3). The parameters in the
related elliptic curve (19) are A = −467200/3, B = −609280000/27 and the
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rank of the curve is zero. The only rational point on the zero-component
of the curve is the torsion point T = (1360/3, 0) and the correspondence
(x, y)→ (X,Y,Z) gives no further solution.
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