Corrigendum to Theorem 5 of the paper
 "Asymptotic density of $A \subset \mathbb{N}$ and density of the ratio set $R(A)$ "

(Acta Arith. 87 (1998), 67-78)
by

Oto Strauch (Bratislava) and János T. Tóth (Ostrava)

In the proof of Theorem 5 in [2], step 3 is incorrect. We want to thank S. V. Konyagin who has pointed it out. The wrong Theorem 5 asserts that for every increasing sequence of positive integers $x_{n}, n=1,2, \ldots$, with a positive lower asymptotic density, if there exists an interval (u, v) containing no limit points of the ratio sequence $x_{m} / x_{n}, m, n=1,2, \ldots$, where u, v are limit points, then there are infinitely many such intervals. In the new form of Theorem 5 we replace intervals (u, v) containing no limit points of x_{m} / x_{n} with intervals having some zero asymptotic density of x_{m} / x_{n} and we reformulate it in terms of distribution functions of x_{m} / x_{n}. We prove that if there exists an interval (u, v), containing no limit points of x_{m} / x_{n}, then every distribution function of x_{m} / x_{n} has infinitely many intervals with constant values, assuming positive lower asymptotic density of x_{n}. For an illustration, we give two examples. In Example 1, x_{m} / x_{n} has only one such interval (u, v), and in Example 2 it has infinitely many, and in both cases every distribution function of x_{m} / x_{n} has infinitely many intervals with constant values. Finally, we discuss via Examples 1 and 2 a possibility of adding a proposition contained in the incorrect step 3 as an assumption of Theorem 5.

To do this we need the following concept used in [3] (see [1] for a general account).

A function $g:[0,1] \rightarrow[0,1]$ will be called a distribution function (abbreviated d.f.) if $g(0)=0, g(1)=1$, and g is nondecreasing. We will identify any two distribution functions coinciding a.e. on $[0,1]$. A point $\beta \in[0,1]$

[^0]is called a point of increase (or a point of the spectrum) of the d.f. $g(x)$ if either $g(x)>g(\beta)$ for every $x>\beta$ or $g(x)<g(\beta)$ for every $x<\beta, x \in[0,1]$. Now, for x_{n} we define the sequence of blocks
$$
X_{n}=\left(\frac{x_{1}}{x_{n}}, \frac{x_{2}}{x_{n}}, \ldots, \frac{x_{n}}{x_{n}}\right)
$$
and consider a step d.f.
$$
F\left(X_{n}, x\right)=\frac{\#\left\{i \leq n: x_{i} / x_{n}<x\right\}}{n}
$$
for $x \in[0,1)$ and $F\left(X_{n}, 1\right)=1$. A d.f. g is a d.f. of the block sequence X_{n} if there exists a sequence of positive integers $n_{1}<n_{2}<\ldots$ such that
$$
\lim _{k \rightarrow \infty} F\left(X_{n_{k}}, x\right)=g(x)
$$
a.e. on $[0,1]$. The set of all d.f. of the sequence of blocks X_{n} is denoted by $G\left(X_{n}\right)$. Finally, denote the counting function by $A(t)=\#\left\{n \in \mathbb{N}: x_{n}<t\right\}$ and define the lower asymptotic density \underline{d} and upper asymptotic density \bar{d} of x_{n} by
$$
\underline{d}=\liminf _{t \rightarrow \infty} \frac{A(t)}{t}=\liminf _{n \rightarrow \infty} \frac{n}{x_{n}}, \quad \bar{d}=\limsup _{t \rightarrow \infty} \frac{A(t)}{t}=\limsup _{n \rightarrow \infty} \frac{n}{x_{n}}
$$

A corrected form of Theorem 5 of [2] is as follows:
Theorem. Assume that $\underline{d}>0$. If there exists an interval $(u, v) \subset[0,1]$ such that every $g \in G\left(X_{n}\right)$ has a constant value on (u, v) (maybe different), then every $g \in G\left(X_{n}\right)$ has infinitely many intervals with constant values such that g increases at their endpoints.

Proof. Since

$$
x_{i}<x x_{m} \Leftrightarrow x_{i}<\left(x \frac{x_{m}}{x_{n}}\right) x_{n}
$$

we have

$$
\begin{equation*}
F\left(X_{m}, x\right)=\frac{n}{m} F\left(X_{n}, x \frac{x_{m}}{x_{n}}\right) \tag{1}
\end{equation*}
$$

for every $m \leq n$ and $x \in[0,1)$. Using the Helly selection principle, we can select a subsequence $\left(m_{k}, n_{k}\right)$ of the sequence (m, n) such that $F\left(X_{n_{k}}\right) \rightarrow g(x)$ and $F\left(X_{m_{k}}\right) \rightarrow \widetilde{g}(x)$ as $k \rightarrow \infty$; furthermore $x_{m_{k}} / x_{n_{k}} \rightarrow \beta$ and $n_{k} / m_{k} \rightarrow \alpha$, but α may be infinity. Assuming $\beta>0$ and $g(\beta-0)>0$, we have $\alpha<\infty$ and

$$
\begin{equation*}
\widetilde{g}(x)=\alpha g(x \beta) \quad \text { a.e. on }[0,1] . \tag{2}
\end{equation*}
$$

Thus, if $\widetilde{g}(x)$ has a constant value on (u, v), then $g(x)$ must be constant on the interval $(u \beta, v \beta)$. Furthermore, if $\underline{d}>0$, then for every $g \in G\left(X_{n}\right)$ we have

$$
\begin{equation*}
(\underline{d} / \bar{d}) x \leq g(x) \leq(\bar{d} / \underline{d}) x \tag{3}
\end{equation*}
$$

for every $x \in[0,1]$. Thus, there exists a sequence $\beta_{k} \in(0,1)$ such that $\beta_{k} \searrow 0$ and $g(x)$ increases at $\beta_{k}, g\left(\beta_{k}\right)>0, k=1,2, \ldots$ For such β_{k} and $g(x)$, applying the Helly principle, we can find sequences α_{k} and $\widetilde{g}_{k}(x) \in G\left(X_{n}\right)$ such that

$$
\widetilde{g}_{k}(x)=\alpha_{k} g\left(x \beta_{k}\right)
$$

a.e. on $[0,1]$. Every $\widetilde{g}_{k}(x)$ has a constant value on the interval (u, v), hence, $g(x)$ must be constant on the intervals $\left(u \beta_{k}, v \beta_{k}\right)$ for $k=1,2, \ldots$

For completeness we provide
Proof of (2). First, we prove

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F\left(X_{n_{k}}, x \frac{x_{m_{k}}}{x_{n_{k}}}\right)=g(x \beta) \tag{4}
\end{equation*}
$$

Setting, for abbreviation, $\beta_{k}=x_{m_{k}} / x_{n_{k}}$ and substituting $u=x \beta_{k}$ we find

$$
\begin{aligned}
0 & \leq \int_{0}^{1}\left(F\left(X_{n_{k}}, x \beta_{k}\right)-g\left(x \beta_{k}\right)\right)^{2} d x \\
& =\frac{1}{\beta_{k}} \int_{0}^{\beta_{k}}\left(F\left(X_{n_{k}}, u\right)-g(u)\right)^{2} d u \leq \frac{1}{\beta_{k}} \int_{0}^{1}\left(F\left(X_{n_{k}}, u\right)-g(u)\right)^{2} d u \rightarrow 0
\end{aligned}
$$

which leads to $F\left(X_{n_{k}}, x \beta_{k}\right)-g\left(x \beta_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ (here, necessarily, $\beta>0)$. Furthermore,

$$
\begin{aligned}
& \int_{0}^{1}\left(F\left(X_{n_{k}}, x \beta_{k}\right)-g(x \beta)\right)^{2} d x \\
& \quad=\int_{0}^{1}\left(F\left(X_{n_{k}}, x \beta_{k}\right)-g\left(x \beta_{k}\right)+g\left(x \beta_{k}\right)-g(x \beta)\right)^{2} d x \\
& \quad \leq 2\left(\int_{0}^{1}\left(F\left(X_{n_{k}}, x \beta_{k}\right)-g\left(x \beta_{k}\right)\right)^{2} d x+\int_{0}^{1}\left(g\left(x \beta_{k}\right)-g(x \beta)\right)^{2} d x\right) .
\end{aligned}
$$

Since $g(x)$ is continuous a.e. on $[0,1], g\left(x \beta_{k}\right)-g(x \beta) \rightarrow 0$ a.e. and applying the Lebesgue dominant convergence theorem, we have $\int_{0}^{1}\left(g\left(x \beta_{k}\right)-\right.$ $g(x \beta))^{2} d x \rightarrow 0$, which gives (4) and implies (2). Further, $\alpha<\infty$ follows from (1) and $g(\beta-0)>0$.

Proof of (3). Since

$$
\#\left\{i \leq n: x_{i} / x_{n}<x\right\}=\#\left\{i=1,2, \ldots: x_{i}<x x_{n}\right\}
$$

we have

$$
\frac{F\left(X_{n}, x\right) n}{x x_{n}}=\frac{A\left(x x_{n}\right)}{x x_{n}} \quad \text { for every } x \in[0,1]
$$

Whenever $g \in G\left(X_{n}\right)$, there exists n_{k} such that $F\left(X_{n_{k}}, x\right) \rightarrow g(x)$ a.e. and $n_{k} / x_{n_{k}} \rightarrow d_{1}$. Then for some $d_{2}(x)$ with $\lim _{k \rightarrow \infty} A\left(x x_{n_{k}}\right) /\left(x x_{n_{k}}\right)=d_{2}(x)$ we get

$$
\frac{g(x)}{x} d_{1}=d_{2}(x)
$$

a.e. on $[0,1]$. Using the fact that $\underline{d} \leq d_{1} \leq \bar{d}$ and $\underline{d} \leq d_{2} \leq \bar{d}$, we have $(g(x) / x) \underline{d} \leq \bar{d}$ and $(g(x) / x) \bar{d} \geq \underline{d}$ a.e. If $\underline{d}>0$, these inequalities are valid for every $x \in(0,1]$.

Further properties of $G\left(X_{n}\right)$ can be found in [3], e.g. if $\underline{d}>0$, then each $g \in G\left(X_{n}\right)$ is everywhere continuous on $[0,1]$.

The basic idea of the following type of sequences x_{n} is also due to Konyagin.

EXAMPLE 1. Let $k_{0}<k_{1}<k_{2}<\ldots$ be an increasing sequence of positive integers, n_{0} and m_{0} be two integers and γ, δ and a be real numbers satisfying
(i) $k_{s}-k_{s-1} \rightarrow \infty$ as $s \rightarrow \infty$,
(ii) $0<\gamma<\delta, a>1, n_{0} \leq m_{0}$ and $1 / a^{n_{0}} \leq \gamma / \delta$.
(In what follows, we will abbreviate the interval $(\gamma \lambda, \delta \lambda)$ as $(\gamma, \delta) \lambda$.) Let x_{n} be an increasing sequence of all integer points lying in the intervals

$$
\begin{array}{ll}
(\gamma, \delta) a^{k_{s} m_{0} n_{0}+j n_{0}}, & 0 \leq j<\left(k_{s+1}-k_{s}\right) m_{0}, s=0,2,4, \ldots \\
(\gamma, \delta) a^{k_{s} m_{0} n_{0}+j m_{0}}, & 0 \leq j<\left(k_{s+1}-k_{s}\right) n_{0}, s=1,3,5, \ldots
\end{array}
$$

i.e. we have a sequence of intervals of the form $(\gamma, \delta)\left(a^{n_{0}}\right)^{i}$ and $(\gamma, \delta)\left(a^{m_{0}}\right)^{j}$, where these forms alternate on common $(\gamma, \delta)\left(a^{n_{0} m_{0}}\right)^{k_{s}}$.

Complement of limit points. Let X be the complement in $[0,1]$ of the limit points of x_{m} / x_{n}. Define

$$
\begin{aligned}
& I\left(n_{0}\right)=\left(\frac{\delta}{\gamma a^{n_{0}}}, \frac{\gamma}{\delta}\right), \quad I\left(m_{0}\right)=\left(\frac{\delta}{\gamma a^{m_{0}}}, \frac{\gamma}{\delta}\right) \\
& B\left(n_{0}, j\right)= I\left(n_{0}\right) \cup \frac{I\left(n_{0}\right)}{a^{n_{0}}} \cup \ldots \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{j-1}} \\
& \cup \frac{1}{\left(a^{n_{0}}\right)^{j}}\left(I\left(m_{0}\right) \cup \frac{I\left(m_{0}\right)}{a^{m_{0}}} \cup \frac{I\left(m_{0}\right)}{\left(a^{m_{0}}\right)^{2}} \cup \frac{I\left(m_{0}\right)}{\left(a^{m_{0}}\right)^{3}} \cup \ldots\right), \\
& B\left(m_{0}, j\right)= I\left(m_{0}\right) \cup \frac{I\left(m_{0}\right)}{a^{m_{0}}} \cup \ldots \cup \frac{I\left(m_{0}\right)}{\left(a^{m_{0}}\right)^{j-1}} \\
& \cup \frac{1}{\left(a^{m_{0}}\right)^{j}}\left(I\left(n_{0}\right) \cup \frac{I\left(n_{0}\right)}{a^{n_{0}}} \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{2}} \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{3}} \cup \ldots\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
X=\left(\bigcap_{j=0}^{\infty} B\left(n_{0}, j\right)\right) \cap\left(\bigcap_{j=0}^{\infty} B\left(m_{0}, j\right)\right) \tag{5}
\end{equation*}
$$

Thus, in all cases $X \supset I\left(n_{0}\right)$ and assuming additionally
(iii) $1<n_{0}<m_{0}, \operatorname{gcd}\left(n_{0}, m_{0}\right)=1$,
(iv) $\frac{1}{a^{n_{0}}}<\left(\frac{\gamma}{\delta}\right)^{2}$,
(v) $\left(\frac{\gamma}{\delta}\right)^{2} \leq \frac{a^{n_{0}}}{a^{m_{0}}},\left(\frac{\gamma}{\delta}\right)^{2} \leq \frac{a^{m_{0}}}{a^{2 n_{0}}}$,
(vi) $\left(\frac{\gamma}{\delta}\right)^{2} \leq \frac{\left(a^{n_{0}}\right)^{\left[m_{0} k / n_{0}\right]+1}}{\left(a^{m_{0}}\right)^{k+1}},\left(\frac{\gamma}{\delta}\right)^{2} \leq \frac{\left(a^{m_{0}}\right)^{k}}{\left(a^{n_{0}}\right)^{\left[m_{0} k / n_{0}\right]+1}}, k=1, \ldots, n_{0}-2$,
we have

$$
\begin{equation*}
X=I\left(n_{0}\right) \neq \emptyset \tag{6}
\end{equation*}
$$

The assumptions (i)-(vi) hold for $k_{s}=s^{2}, \gamma=1, \delta=2, a=2, n_{0}=3$ and $m_{0}=4$. Here $X=\left(1 / 2^{2}, 1 / 2\right)$.

Proof of (5) and (6). We briefly mention the following steps.

1. For terms $x_{n} \in(\gamma, \delta) a^{k_{s} m_{0} n_{0}+j n_{0}}, n \rightarrow \infty$, we have two possibilities:
(a) s even $\rightarrow \infty, j$ fixed;
(b) s even $\rightarrow \infty, j \rightarrow \infty$.

Similarly, for $x_{n} \in(\gamma, \delta) a^{k_{s} m_{0} n_{0}+j m_{0}}$ we have
(c) s odd $\rightarrow \infty, j$ fixed;
(d) s odd $\rightarrow \infty, j \rightarrow \infty$.

By direct computation we find that $B\left(n_{0}, j\right)$ is the complement of the limit points of x_{m} / x_{n} having x_{n} of type (a), $B\left(m_{0}, j\right)$ of type (c), $B\left(m_{0}, 0\right)$ of type (b) and $B\left(n_{0}, 0\right)$ of type (d).
2. Define

$$
\begin{aligned}
& A\left(n_{0}\right)=I\left(n_{0}\right) \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{1}} \cup \ldots \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{m_{0}-2}} \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{m_{0}-1}}, \\
& A\left(m_{0}\right)=I\left(m_{0}\right) \cup \frac{I\left(m_{0}\right)}{\left(a^{m_{0}}\right)^{1}} \cup \ldots \cup \frac{I\left(m_{0}\right)}{\left(a^{m_{0}}\right)^{n_{0}-2}} \cup \frac{I\left(m_{0}\right)}{\left(a^{m_{0}}\right)^{n_{0}-1}}
\end{aligned}
$$

Since $A\left(n_{0}\right)$ and $A\left(m_{0}\right)$ lie in $I=\left(\delta /\left(\gamma a^{m_{0} n_{0}}\right), \gamma / \delta\right)$ we have

$$
\begin{aligned}
B\left(n_{0}, 0\right) \cap B\left(m_{0}, 0\right)= & \left(A\left(n_{0}\right) \cap A\left(m_{0}\right)\right) \cup \frac{A\left(n_{0}\right) \cap A\left(m_{0}\right)}{a^{m_{0} n_{0}}} \\
& \cup \frac{A\left(n_{0}\right) \cap A\left(m_{0}\right)}{a^{2 m_{0} n_{0}}} \cup \frac{A\left(n_{0}\right) \cap A\left(m_{0}\right)}{a^{3 m_{0} n_{0}}} \cup \ldots
\end{aligned}
$$

3. Assumptions (iii) and (vi) imply

$$
A\left(n_{0}\right) \cap A\left(m_{0}\right)=I\left(n_{0}\right) \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{m_{0}-1}} .
$$

4. Applying (v) we have

$$
\begin{aligned}
a^{m_{0}} \frac{A\left(n_{0}\right)}{a^{s m_{0} n_{0}} \cap\left(\frac{A\left(n_{0}\right) \cap A\left(m_{0}\right)}{a^{s m_{0} n_{0}}} \cup\right.} \begin{aligned}
& \left.\frac{A\left(n_{0}\right) \cap A\left(m_{0}\right)}{a^{(s-1) m_{0} n_{0}}}\right) \\
& =\frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{m_{0}-1} a^{s m_{0} n_{0}}} \cup \frac{I\left(n_{0}\right)}{a^{(s-1) m_{0} n_{0}}}
\end{aligned},
\end{aligned}
$$

which gives

$$
B\left(n_{0}, 0\right) \cap B\left(m_{0}, 0\right) \cap B\left(m_{0}, n_{0}-1\right)=I\left(n_{0}\right)
$$

Distribution functions. Here we assume only (i) and (ii). Define

$$
\begin{gathered}
I\left(n_{0}, t\right)=\frac{1}{t \gamma+(1-t) \delta}\left(\frac{\delta}{a^{n_{0}}}, \gamma\right), \quad I\left(m_{0}, t\right)=\frac{1}{t \gamma+(1-t) \delta}\left(\frac{\delta}{a^{m_{0}}}, \gamma\right) \\
I(t)=\frac{1}{t \gamma+(1-t) \delta}(\gamma, \delta)
\end{gathered}
$$

The set $G\left(X_{n}\right)$ of all d.f. of X_{n} has the structure

$$
\begin{aligned}
G\left(X_{n}\right)= & \left\{g_{n_{0}, j, t}(x): j=0,1, \ldots, t \in[0,1]\right\} \\
& \cup\left\{g_{m_{0}, j, t}(x): j=0,1, \ldots, t \in[0,1]\right\}
\end{aligned}
$$

where the d.f. $g_{n_{0}, j, t}(x)$ has constant values on the intervals

$$
I\left(n_{0}, t\right), \frac{I\left(n_{0}, t\right)}{a^{n_{0}}}, \ldots, \frac{I\left(n_{0}, t\right)}{\left(a^{n_{0}}\right)^{j-1}}, \frac{I\left(m_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}}, \frac{I\left(m_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)}, \frac{I\left(m_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)^{2}}, \ldots
$$

while on the complement intervals in $[0,1]$

$$
\begin{align*}
\left(\frac{\gamma}{t \gamma+(1-t) \delta}, 1\right), \frac{I(t)}{a^{n_{0}}}, \frac{I(t)}{\left(a^{n_{0}}\right)^{2}}, \ldots, & \frac{I(t)}{\left(a^{n_{0}}\right)^{j}}, \tag{7}\\
& \frac{I(t)}{\left(a^{n_{0}}\right)^{j}\left(a_{m_{0}}\right)}, \frac{I(t)}{\left(a^{n_{0}}\right)^{j}\left(a_{m_{0}}\right)^{2}}, \ldots
\end{align*}
$$

it has a constant derivative

$$
\begin{equation*}
g_{n_{0}, j, t}^{\prime}(x)=1 / d \tag{8}
\end{equation*}
$$

where $\underline{d} \leq d \leq \bar{d}$ and

$$
d=\frac{\delta-\gamma}{t \gamma+(1-t) \delta}\left(1-t+\frac{1}{a^{n_{0}}-1}-\frac{1}{\left(a^{n_{0}}\right)^{j}}\left(\frac{1}{a^{n_{0}}-1}-\frac{1}{a^{m_{0}}-1}\right)\right)
$$

Here

$$
\underline{d}=\frac{\delta-\gamma}{\gamma} \cdot \frac{1}{a^{m_{0}}-1}, \quad \bar{d}=\frac{\delta-\gamma}{\delta} \cdot \frac{a^{n_{0}}}{a^{n_{0}}-1}
$$

These assertions characterize the d.f. $g_{n_{0}, j, t}(x)$. Similarly we define d.f. $g_{m_{0}, j, t}(x)$, exchanging n_{0} with m_{0} in the intervals and derivatives defined above.

Proof of (8). 1. If $F\left(X_{n}, x\right) \rightarrow g(x)$ for some $n \rightarrow \infty$, then we can select a subsequence of n such that $n / x_{n} \rightarrow d$ and, for some $t \in[0,1]$,

$$
\begin{array}{ll}
x_{n}=(t \gamma+(1-t) \delta) a^{k_{s} m_{0} n_{0}+j n_{0}}+o\left(a^{k_{s} m_{0} n_{0}+j n_{0}}\right), & s \text { even } \rightarrow \infty, \\
x_{n}=(t \gamma+(1-t) \delta) a^{k_{s} m_{0} n_{0}+j m_{0}}+o\left(a^{k_{s} m_{0} n_{0}+j m_{0}}\right), & s \text { odd } \rightarrow \infty,
\end{array}
$$

and vice versa for any $t \in[0,1]$ and any x_{n} of these forms we have $n / x_{n} \rightarrow$ $d>0$, which implies $F\left(X_{n}, x\right) \rightarrow g(x)$ for some d.f. $g(x)$, since we have

$$
\frac{\Delta F\left(X_{n}, x\right)}{\Delta x}=\frac{1 / n}{(i+1) / x_{n}-i / x_{n}}=\frac{x_{n}}{n}
$$

on intervals (7). For such x_{n}, the complement of (7) contains no x_{m} / x_{n}.
2. We directly compute the limit d for cases (a)-(d) specified in step 1 of the above proof.

Example 2. In Example 1 we put $k_{s}=s$ for $s=0,1,2, \ldots$, i.e. x_{n} is a sequence of all integer points lying in the intervals

$$
\begin{aligned}
& (\gamma, \delta)\left(a^{n_{0}}\right)^{0},(\gamma, \delta)\left(a^{n_{0}}\right)^{1}, \ldots,(\gamma, \delta)\left(a^{n_{0}}\right)^{m_{0}-1}, \\
& (\gamma, \delta)\left(a^{m_{0}}\right)^{n_{0}},(\gamma, \delta)\left(a^{m_{0}}\right)^{n_{0}+1}, \ldots,(\gamma, \delta)\left(a^{m_{0}}\right)^{2 n_{0}-1}, \\
& (\gamma, \delta)\left(a^{n_{0}}\right)^{2 m_{0}},(\gamma, \delta)\left(a^{n_{0}}\right)^{2 m_{0}+1}, \ldots,(\gamma, \delta)\left(a^{n_{0}}\right)^{3 m_{0}-1}, \\
& (\gamma, \delta)\left(a^{m_{0}}\right)^{3 n_{0}},(\gamma, \delta)\left(a^{m_{0}}\right)^{3 n_{0}+1}, \ldots
\end{aligned}
$$

Complement of limit points. Define

$$
\begin{aligned}
B\left(n_{0}, j\right)= & I\left(n_{0}\right) \cup \frac{I\left(n_{0}\right)}{a^{n_{0}}} \cup \ldots \cup \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{j-1}} \\
& \cup \frac{1}{\left(a^{n_{0}}\right)^{j}}\left(A\left(m_{0}\right) \cup \frac{A\left(n_{0}\right)}{a^{m_{0} n_{0}}} \cup \frac{A\left(m_{0}\right)}{a^{2 m_{0} n_{0}}} \cup \frac{A\left(n_{0}\right)}{a^{3 m_{0} n_{0}}} \cup \ldots\right), \\
B\left(m_{0}, j\right)= & I\left(m_{0}\right) \cup \frac{I\left(m_{0}\right)}{a^{m_{0}}} \cup \ldots \cup \frac{I\left(m_{0}\right)}{\left(a^{m_{0}}\right)^{j-1}} \\
& \cup \frac{1}{\left(a^{m_{0}}\right)^{j}}\left(A\left(n_{0}\right) \cup \frac{A\left(m_{0}\right)}{a^{m_{0} n_{0}}} \cup \frac{A\left(n_{0}\right)}{a^{2 m_{0} n_{0}}} \cup \frac{A\left(m_{0}\right)}{a^{3 m_{0} n_{0}}} \cup \ldots\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
X=\left(\bigcap_{j=0}^{m_{0}-1} B\left(n_{0}, j\right)\right) \cap\left(\bigcap_{j=0}^{n_{0}-1} B\left(m_{0}, j\right)\right) \tag{9}
\end{equation*}
$$

For $n_{0}=m_{0}$ this gives (cf. [2, Ex. 1])

$$
X=\bigcup_{i=0}^{\infty} \frac{I\left(n_{0}\right)}{\left(a^{n_{0}}\right)^{i}}
$$

Assuming (i)-(vi) we have

$$
\begin{align*}
X= & I\left(n_{0}\right) \cup \frac{I\left(n_{0}\right)}{a^{2 m_{0} n_{0}}} \cup \frac{I\left(n_{0}\right)}{a^{4 m_{0} n_{0}}} \cup \frac{I\left(n_{0}\right)}{a^{6 m_{0} n_{0}}} \cup \ldots \tag{10}\\
& \cup a^{n_{0}}\left(\frac{I\left(n_{0}\right)}{a^{2 m_{0} n_{0}}} \cup \frac{I\left(n_{0}\right)}{a^{4 m_{0} n_{0}}} \cup \frac{I\left(n_{0}\right)}{a^{6 m_{0} n_{0}}} \cup \ldots\right) .
\end{align*}
$$

Proof of (9) and (10). Similarly to proof of (5) and (6) in Example 1, but the step 4 can only be used for odd s, since here $B\left(m_{0}, n_{0}-1\right)$ contains only $a^{m_{0}} A\left(n_{0}\right) / a^{(2 i+1) m_{0} n_{0}}$.

Distribution functions. As in Example 1,

$$
\begin{gathered}
I\left(n_{0}, t\right)=\frac{1}{t \gamma+(1-t) \delta}\left(\frac{\delta}{a^{n_{0}}}, \gamma\right), \quad I\left(m_{0}, t\right)=\frac{1}{t \gamma+(1-t) \delta}\left(\frac{\delta}{a^{m_{0}}}, \gamma\right) \\
I(t)=\frac{1}{t \gamma+(1-t) \delta}(\gamma, \delta)
\end{gathered}
$$

The set $G\left(X_{n}\right)$ of all d.f. of X_{n} has the structure

$$
\begin{aligned}
G\left(X_{n}\right)= & \left\{g_{n_{0}, j, t}(x): j=0,1, \ldots, m_{0}-1, t \in[0,1]\right\} \\
& \cup\left\{g_{m_{0}, j, t}(x): j=0,1, \ldots, n_{0}-1, t \in[0,1]\right\}
\end{aligned}
$$

where the d.f. $g_{n_{0}, j, t}(x)$ has constant values on the intervals

$$
\begin{aligned}
& I\left(n_{0}, t\right), \frac{I\left(n_{0}, t\right)}{a^{n_{0}}}, \ldots, \frac{I\left(n_{0}, t\right)}{\left(a^{n_{0}}\right)^{j-1}}, \\
& \frac{I\left(m_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}}, \frac{I\left(m_{0}, t\right)}{\left(a^{n_{0}}\right)^{j} a^{m_{0}}}, \ldots, \frac{I\left(m_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)^{n_{0}-1}}, \frac{I\left(n_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0} n_{0}}\right)}, \\
& \frac{I\left(n_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0} n_{0}}\right) a^{n_{0}}}, \ldots, \frac{I\left(n_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0} n_{0}}\right)\left(a^{n_{0}}\right)^{m_{0}-1}}, \frac{I\left(m_{0}, t\right)}{\left(a^{n_{0}}\right)^{j}\left(a^{2 m_{0} n_{0}}\right)}, \ldots,
\end{aligned}
$$

while on the complement intervals in $[0,1]$

$$
\begin{aligned}
& \left(\frac{\gamma}{t \gamma+(1-t) \delta}, 1\right), \frac{I(t)}{a^{n_{0}}}, \frac{I(t)}{\left(a^{n_{0}}\right)^{2}}, \ldots, \frac{I(t)}{\left(a^{n_{0}}\right)^{j}}, \\
& \frac{I(t)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)}, \frac{I(t)}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)^{2}}, \ldots, \frac{I(t)}{\left(a^{n_{0}}\right)^{j} a^{m_{0} n_{0}}}, \\
& \frac{I(t)}{\left(a^{n_{0}}\right)^{j} a^{m_{0} n_{0}}\left(a^{n_{0}}\right)}, \frac{I(t)}{\left(a^{n_{0}}\right)^{j} a^{m_{0} n_{0}}\left(a^{n_{0}}\right)^{2}}, \ldots, \frac{I(t)}{\left(a^{n_{0}}\right)^{j} a^{2 m_{0} n_{0}}}, \ldots
\end{aligned}
$$

it has a constant derivative

$$
\begin{equation*}
g_{n_{0}, j, t}^{\prime}(x)=1 / d \tag{11}
\end{equation*}
$$

where $\underline{d} \leq d \leq \bar{d}$ and

$$
\begin{aligned}
d= & \frac{\delta-\gamma}{t \gamma+(1-t) \delta} \\
& \times\left(1-t+\frac{1}{a^{n_{0}}-1}-\frac{1}{\left(a^{n_{0}}\right)^{j}} \cdot \frac{a^{m_{0} n_{0}}}{a^{m_{0} n_{0}}+1}\left(\frac{1}{a^{n_{0}}-1}-\frac{1}{a^{m_{0}}-1}\right)\right) .
\end{aligned}
$$

Here

$$
\begin{aligned}
& \underline{d}=\frac{\delta-\gamma}{\gamma}\left(\frac{1}{a^{n_{0}}-1}-\frac{a^{m_{0} n_{0}}}{a^{m_{0} n_{0}}+1}\left(\frac{1}{a^{n_{0}}-1}-\frac{1}{a^{m_{0}}-1}\right)\right), \\
& \bar{d}=\frac{\delta-\gamma}{\delta}\left(1+\frac{1}{a^{m_{0}}-1}+\frac{a^{m_{0} n_{0}}}{a^{m_{0} n_{0}}+1}\left(\frac{1}{a^{n_{0}}-1}-\frac{1}{a^{m_{0}}-1}\right)\right) .
\end{aligned}
$$

These assertions characterize d.f. $g_{n_{0}, j, t}(x)$. Similarly we define d.f. $g_{m_{0}, j, t}(x)$, exchanging n_{0} with m_{0} in the intervals and derivatives defined above.

Proof of (11). As the proof of (8) in Example 1.
Concluding remarks. Theorem 5 in [2] can also be amended by adding the assertion of the incorrect step 3 to the assumptions of this theorem. This gives the following second correct form: Assume that there exists a sequence of positive integers $g(n)$ such that $\lim _{n \rightarrow \infty} x_{g(n)} / x_{n}=\lambda$ and $0<\lambda<1$ and let $\underline{d}>0$. If there exists an interval (u, v) containing no limit points of x_{m} / x_{n}, then there are infinitely many such intervals, e.g. $(u, v) \lambda^{j}, j=$ $0,1,2, \ldots$ All possible limits λ form a cyclic group.

By this theorem, for x_{n} in Example 1, there exists no such λ. We can see this directly, since such λ must be a common term of the following sequences:

$$
\begin{aligned}
& \frac{1}{a^{n_{0}}}, \frac{1}{\left(a^{n_{0}}\right)^{2}}, \ldots, \frac{1}{\left(a^{n_{0}}\right)^{j}}, \frac{1}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)}, \frac{1}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)^{2}}, \frac{1}{\left(a^{n_{0}}\right)^{j}\left(a^{m_{0}}\right)^{3}}, \ldots, \\
& j=0,1,2, \ldots \\
& \frac{1}{a^{m_{0}}}, \frac{1}{\left(a^{m_{0}}\right)^{2}}, \ldots, \frac{1}{\left(a^{m_{0}}\right)^{j}}, \frac{1}{\left(a^{m_{0}}\right)^{j}\left(a^{n_{0}}\right)}, \frac{1}{\left(a^{m_{0}}\right)^{j}\left(a^{n_{0}}\right)^{2}}, \frac{1}{\left(a^{m_{0}}\right)^{j}\left(a^{n_{0}}\right)^{3}}, \ldots, \\
& j=0,1,2, \ldots
\end{aligned}
$$

For $j=0$ we see that λ must have a form $1 / a^{k m_{0} n_{0}}$, but for $j=1$ there exists no i such that $1 / a^{k m_{0} n_{0}}=1 / a^{n_{0}}\left(a^{m_{0}}\right)^{i}$. Here we use only (i)-(iv).

In Example 2 we can construct λ directly: For

$$
x_{n}=\left[(t \gamma+(1-t) \delta) a^{2 s m_{0} n_{0}+j n_{0}}\right], \quad s=0,1, \ldots, j=0,1, \ldots, m_{0}-1
$$

we take $x_{g(n)}=\left[(t \gamma+(1-t) \delta) a^{(2 s-2) m_{0} n_{0}+j n_{0}}\right]$ and similarly for $2 s+1$. Thus $\lambda=1 / a^{2 m_{0} n_{0}}$.

References

[1] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
[2] O. Strauch and J. T. Tóth, Asymptotic density of $A \subset \mathbb{N}$ and density of the ratio set $R(A)$, Acta Arith. 87 (1998), 67-78.
[3] -, -, Distribution functions of ratio sequences, Publ. Math. Debrecen 58 (2001), 751-778.

Mathematical Institute
of the Slovak Academy of Sciences
Štefánikova 49
SK-814 73 Bratislava, Slovakia
E-mail: strauch@mat.savba.sk

Department of Mathematics
University of Ostrava
ul. 30. Dubna 22
CZ-701 03 Ostrava 1, Czech Republic
E-mail: toth@albert.osu.cz

[^0]: 2000 Mathematics Subject Classification: Primary 11K06, 11K31, 11B05.
 Key words and phrases: ratio sequences, distribution functions, asymptotic density.
 This research was partially supported by VEGA Grant 5123 and by GACR Grant 201/01/0471.

