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Corrigendum to Theorem 5 of the paper
“Asymptotic density of A ⊂ N and density

of the ratio set R(A)”

(Acta Arith. 87 (1998), 67–78)

by

Oto Strauch (Bratislava) and János T. Tóth (Ostrava)

In the proof of Theorem 5 in [2], step 3 is incorrect. We want to thank
S. V. Konyagin who has pointed it out. The wrong Theorem 5 asserts that
for every increasing sequence of positive integers xn, n = 1, 2, . . . , with a
positive lower asymptotic density, if there exists an interval (u, v) containing
no limit points of the ratio sequence xm/xn, m,n=1, 2, . . . , where u, v are
limit points, then there are infinitely many such intervals. In the new form
of Theorem 5 we replace intervals (u, v) containing no limit points of xm/xn
with intervals having some zero asymptotic density of xm/xn and we refor-
mulate it in terms of distribution functions of xm/xn. We prove that if there
exists an interval (u, v), containing no limit points of xm/xn, then every
distribution function of xm/xn has infinitely many intervals with constant
values, assuming positive lower asymptotic density of xn. For an illustra-
tion, we give two examples. In Example 1, xm/xn has only one such interval
(u, v), and in Example 2 it has infinitely many, and in both cases every
distribution function of xm/xn has infinitely many intervals with constant
values. Finally, we discuss via Examples 1 and 2 a possibility of adding a
proposition contained in the incorrect step 3 as an assumption of Theorem 5.

To do this we need the following concept used in [3] (see [1] for a general
account).

A function g : [0, 1]→ [0, 1] will be called a distribution function (abbre-
viated d.f.) if g(0) = 0, g(1) = 1, and g is nondecreasing. We will identify
any two distribution functions coinciding a.e. on [0, 1]. A point β ∈ [0, 1]
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is called a point of increase (or a point of the spectrum) of the d.f. g(x) if
either g(x) > g(β) for every x > β or g(x) < g(β) for every x < β, x ∈ [0, 1].
Now, for xn we define the sequence of blocks

Xn =
(
x1

xn
,
x2

xn
, . . . ,

xn
xn

)

and consider a step d.f.

F (Xn, x) =
#{i ≤ n : xi/xn < x}

n

for x ∈ [0, 1) and F (Xn, 1) = 1. A d.f. g is a d.f. of the block sequence Xn

if there exists a sequence of positive integers n1 < n2 < . . . such that

lim
k→∞

F (Xnk , x) = g(x)

a.e. on [0, 1]. The set of all d.f. of the sequence of blocks Xn is denoted by
G(Xn). Finally, denote the counting function by A(t) = #{n ∈ N : xn < t}
and define the lower asymptotic density d and upper asymptotic density d
of xn by

d = lim inf
t→∞

A(t)
t

= lim inf
n→∞

n

xn
, d = lim sup

t→∞

A(t)
t

= lim sup
n→∞

n

xn
.

A corrected form of Theorem 5 of [2] is as follows:

Theorem. Assume that d > 0. If there exists an interval (u, v) ⊂ [0, 1]
such that every g ∈ G(Xn) has a constant value on (u, v) (maybe different),
then every g ∈ G(Xn) has infinitely many intervals with constant values
such that g increases at their endpoints.

Proof. Since
xi < xxm ⇔ xi <

(
x
xm
xn

)
xn,

we have

(1) F (Xm, x) =
n

m
F

(
Xn, x

xm
xn

)

for every m ≤ n and x ∈ [0, 1). Using the Helly selection principle, we can se-
lect a subsequence (mk, nk) of the sequence (m,n) such that F (Xnk)→ g(x)
and F (Xmk)→ g̃(x) as k →∞; furthermore xmk/xnk → β and nk/mk → α,
but α may be infinity. Assuming β > 0 and g(β − 0) > 0, we have α < ∞
and

(2) g̃(x) = αg(xβ) a.e. on [0, 1].

Thus, if g̃(x) has a constant value on (u, v), then g(x) must be constant on
the interval (uβ, vβ). Furthermore, if d > 0, then for every g ∈ G(Xn) we
have

(3) (d/d)x ≤ g(x) ≤ (d/d)x
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for every x∈ [0, 1]. Thus, there exists a sequence βk∈(0, 1) such that βk↘0
and g(x) increases at βk, g(βk) > 0, k = 1, 2, . . . For such βk and g(x),
applying the Helly principle, we can find sequences αk and g̃k(x) ∈ G(Xn)
such that

g̃k(x) = αkg(xβk)

a.e. on [0, 1]. Every g̃k(x) has a constant value on the interval (u, v), hence,
g(x) must be constant on the intervals (uβk, vβk) for k = 1, 2, . . .

For completeness we provide

Proof of (2). First, we prove

(4) lim
k→∞

F

(
Xnk , x

xmk
xnk

)
= g(xβ).

Setting, for abbreviation, βk = xmk/xnk and substituting u = xβk we find

0 ≤
1�
0

(F (Xnk , xβk)− g(xβk))2 dx

=
1
βk

βk�
0

(F (Xnk , u)− g(u))2 du ≤ 1
βk

1�
0

(F (Xnk , u)− g(u))2 du→ 0,

which leads to F (Xnk , xβk) − g(xβk) → 0 as k → ∞ (here, necessarily,
β > 0). Furthermore,

1�
0

(F (Xnk , xβk)− g(xβ))2 dx

=
1�
0

(F (Xnk , xβk)− g(xβk) + g(xβk)− g(xβ))2 dx

≤ 2
( 1�

0

(F (Xnk , xβk)− g(xβk))2 dx+
1�
0

(g(xβk)− g(xβ))2 dx
)
.

Since g(x) is continuous a.e. on [0, 1], g(xβk) − g(xβ) → 0 a.e. and ap-
plying the Lebesgue dominant convergence theorem, we have � 1

0(g(xβk) −
g(xβ))2 dx → 0, which gives (4) and implies (2). Further, α < ∞ follows
from (1) and g(β − 0) > 0.

Proof of (3). Since

#{i ≤ n : xi/xn < x} = #{i = 1, 2, . . . : xi < xxn},
we have

F (Xn, x)n
xxn

=
A(xxn)
xxn

for every x ∈ [0, 1].
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Whenever g ∈ G(Xn), there exists nk such that F (Xnk , x)→ g(x) a.e. and
nk/xnk → d1. Then for some d2(x) with limk→∞A(xxnk)/(xxnk) = d2(x)
we get

g(x)
x

d1 = d2(x)

a.e. on [0, 1]. Using the fact that d ≤ d1 ≤ d and d ≤ d2 ≤ d, we have
(g(x)/x)d ≤ d and (g(x)/x)d ≥ d a.e. If d > 0, these inequalities are valid
for every x ∈ (0, 1].

Further properties of G(Xn) can be found in [3], e.g. if d > 0, then each
g ∈ G(Xn) is everywhere continuous on [0, 1].

The basic idea of the following type of sequences xn is also due to Konya-
gin.

Example 1. Let k0 < k1 < k2 < . . . be an increasing sequence of
positive integers, n0 and m0 be two integers and γ, δ and a be real numbers
satisfying

(i) ks − ks−1 →∞ as s→∞,
(ii) 0 < γ < δ, a > 1, n0 ≤ m0 and 1/an0 ≤ γ/δ.

(In what follows, we will abbreviate the interval (γλ, δλ) as (γ, δ)λ.) Let xn
be an increasing sequence of all integer points lying in the intervals

(γ, δ)aksm0n0+jn0 , 0 ≤ j < (ks+1 − ks)m0, s = 0, 2, 4, . . . ,

(γ, δ)aksm0n0+jm0 , 0 ≤ j < (ks+1 − ks)n0, s = 1, 3, 5, . . . ,

i.e. we have a sequence of intervals of the form (γ, δ)(an0)i and (γ, δ)(am0)j ,
where these forms alternate on common (γ, δ)(an0m0)ks .

Complement of limit points. Let X be the complement in [0, 1] of the
limit points of xm/xn. Define

I(n0) =
(

δ

γan0
,
γ

δ

)
, I(m0) =

(
δ

γam0
,
γ

δ

)
,

B(n0, j) = I(n0) ∪ I(n0)
an0

∪ . . . ∪ I(n0)
(an0)j−1

∪ 1
(an0)j

(
I(m0) ∪ I(m0)

am0
∪ I(m0)

(am0)2 ∪
I(m0)
(am0)3 ∪ . . .

)
,

B(m0, j) = I(m0) ∪ I(m0)
am0

∪ . . . ∪ I(m0)
(am0)j−1

∪ 1
(am0)j

(
I(n0) ∪ I(n0)

an0
∪ I(n0)

(an0)2 ∪
I(n0)
(an0)3 ∪ . . .

)
.
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Then

(5) X =
( ∞⋂

j=0

B(n0, j)
)
∩
( ∞⋂

j=0

B(m0, j)
)
.

Thus, in all cases X ⊃ I(n0) and assuming additionally

(iii) 1 < n0 < m0, gcd(n0,m0) = 1,

(iv)
1
an0

<

(
γ

δ

)2

,

(v)
(
γ

δ

)2

≤ an0

am0
,
(
γ

δ

)2

≤ am0

a2n0
,

(vi)
(
γ

δ

)2

≤ (an0)[m0k/n0]+1

(am0)k+1 ,
(
γ

δ

)2

≤ (am0)k

(an0)[m0k/n0]+1
, k=1, . . . , n0− 2,

we have

(6) X = I(n0) 6= ∅.
The assumptions (i)–(vi) hold for ks = s2, γ = 1, δ = 2, a = 2, n0 = 3

and m0 = 4. Here X = (1/22, 1/2).

Proof of (5) and (6). We briefly mention the following steps.

1. For terms xn ∈ (γ, δ)aksm0n0+jn0 , n→∞, we have two possibilities:

(a) s even →∞, j fixed;
(b) s even →∞, j →∞.

Similarly, for xn ∈ (γ, δ)aksm0n0+jm0 we have

(c) s odd →∞, j fixed;
(d) s odd →∞, j →∞.

By direct computation we find that B(n0, j) is the complement of the
limit points of xm/xn having xn of type (a), B(m0, j) of type (c), B(m0, 0)
of type (b) and B(n0, 0) of type (d).

2. Define

A(n0) = I(n0) ∪ I(n0)
(an0)1 ∪ . . . ∪

I(n0)
(an0)m0−2 ∪

I(n0)
(an0)m0−1 ,

A(m0) = I(m0) ∪ I(m0)
(am0)1 ∪ . . . ∪

I(m0)
(am0)n0−2 ∪

I(m0)
(am0)n0−1 .

Since A(n0) and A(m0) lie in I = (δ/(γam0n0), γ/δ) we have

B(n0, 0) ∩B(m0, 0) = (A(n0) ∩A(m0)) ∪ A(n0) ∩A(m0)
am0n0

∪ A(n0) ∩A(m0)
a2m0n0

∪ A(n0) ∩A(m0)
a3m0n0

∪ . . .
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3. Assumptions (iii) and (vi) imply

A(n0) ∩ A(m0) = I(n0) ∪ I(n0)
(an0)m0−1 .

4. Applying (v) we have

am0
A(n0)
asm0n0

∩
(
A(n0) ∩ A(m0)

asm0n0
∪ A(n0) ∩ A(m0)

a(s−1)m0n0

)

=
I(n0)

(an0)m0−1asm0n0
∪ I(n0)
a(s−1)m0n0

,

which gives

B(n0, 0) ∩B(m0, 0) ∩B(m0, n0 − 1) = I(n0).

Distribution functions. Here we assume only (i) and (ii). Define

I(n0, t) =
1

tγ + (1− t)δ

(
δ

an0
, γ

)
, I(m0, t) =

1
tγ + (1− t)δ

(
δ

am0
, γ

)
,

I(t) =
1

tγ + (1− t)δ (γ, δ).

The set G(Xn) of all d.f. of Xn has the structure

G(Xn) = {gn0,j,t(x) : j = 0, 1, . . . , t ∈ [0, 1]}
∪ {gm0,j,t(x) : j = 0, 1, . . . , t ∈ [0, 1]},

where the d.f. gn0,j,t(x) has constant values on the intervals

I(n0, t),
I(n0, t)
an0

, . . . ,
I(n0, t)
(an0)j−1 ,

I(m0, t)
(an0)j

,
I(m0, t)

(an0)j(am0)
,

I(m0, t)
(an0)j(am0)2 , . . . ,

while on the complement intervals in [0, 1]

(7)
(

γ

tγ + (1− t)δ , 1
)
,
I(t)
an0

,
I(t)

(an0)2 , . . . ,
I(t)

(an0)j
,

I(t)
(an0)j(am0)

,
I(t)

(an0)j(am0)2 , . . .

it has a constant derivative

(8) g′n0,j,t(x) = 1/d,

where d ≤ d ≤ d and

d =
δ − γ

tγ + (1− t)δ

(
1− t+

1
an0 − 1

− 1
(an0)j

(
1

an0 − 1
− 1
am0 − 1

))
.

Here

d =
δ − γ
γ
· 1
am0 − 1

, d =
δ − γ
δ
· an0

an0 − 1
.
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These assertions characterize the d.f. gn0,j,t(x). Similarly we define d.f.
gm0,j,t(x), exchanging n0 with m0 in the intervals and derivatives defined
above.

Proof of (8). 1. If F (Xn, x)→ g(x) for some n→∞, then we can select
a subsequence of n such that n/xn → d and, for some t ∈ [0, 1],

xn = (tγ + (1− t)δ)aksm0n0+jn0 + o(aksm0n0+jn0), s even→∞,
xn = (tγ + (1− t)δ)aksm0n0+jm0 + o(aksm0n0+jm0), s odd→∞,

and vice versa for any t ∈ [0, 1] and any xn of these forms we have n/xn →
d > 0, which implies F (Xn, x)→ g(x) for some d.f. g(x), since we have

∆F (Xn, x)
∆x

=
1/n

(i+ 1)/xn − i/xn
=
xn
n

on intervals (7). For such xn, the complement of (7) contains no xm/xn.
2. We directly compute the limit d for cases (a)–(d) specified in step 1

of the above proof.

Example 2. In Example 1 we put ks = s for s = 0, 1, 2, . . . , i.e. xn is a
sequence of all integer points lying in the intervals

(γ, δ)(an0)0, (γ, δ)(an0)1, . . . , (γ, δ)(an0)m0−1,

(γ, δ)(am0)n0 , (γ, δ)(am0)n0+1, . . . , (γ, δ)(am0)2n0−1,

(γ, δ)(an0)2m0 , (γ, δ)(an0)2m0+1, . . . , (γ, δ)(an0)3m0−1,

(γ, δ)(am0)3n0 , (γ, δ)(am0)3n0+1, . . .

Complement of limit points. Define

B(n0, j) = I(n0) ∪ I(n0)
an0

∪ . . . ∪ I(n0)
(an0)j−1

∪ 1
(an0)j

(
A(m0) ∪ A(n0)

am0n0
∪ A(m0)
a2m0n0

∪ A(n0)
a3m0n0

∪ . . .
)
,

B(m0, j) = I(m0) ∪ I(m0)
am0

∪ . . . ∪ I(m0)
(am0)j−1

∪ 1
(am0)j

(
A(n0) ∪ A(m0)

am0n0
∪ A(n0)
a2m0n0

∪ A(m0)
a3m0n0

∪ . . .
)
.

Then

(9) X =
(m0−1⋂

j=0

B(n0, j)
)
∩
( n0−1⋂

j=0

B(m0, j)
)
.
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For n0 = m0 this gives (cf. [2, Ex. 1])

X =
∞⋃

i=0

I(n0)
(an0)i

.

Assuming (i)–(vi) we have

X = I(n0) ∪ I(n0)
a2m0n0

∪ I(n0)
a4m0n0

∪ I(n0)
a6m0n0

∪ . . .(10)

∪ an0

(
I(n0)
a2m0n0

∪ I(n0)
a4m0n0

∪ I(n0)
a6m0n0

∪ . . .
)
.

Proof of (9) and (10). Similarly to proof of (5) and (6) in Example 1,
but the step 4 can only be used for odd s, since here B(m0, n0− 1) contains
only am0A(n0)/a(2i+1)m0n0 .

Distribution functions. As in Example 1,

I(n0, t) =
1

tγ + (1− t)δ

(
δ

an0
, γ

)
, I(m0, t) =

1
tγ + (1− t)δ

(
δ

am0
, γ

)
,

I(t) =
1

tγ + (1− t)δ (γ, δ).

The set G(Xn) of all d.f. of Xn has the structure

G(Xn) = {gn0,j,t(x) : j = 0, 1, . . . ,m0 − 1, t ∈ [0, 1]}
∪ {gm0,j,t(x) : j = 0, 1, . . . , n0 − 1, t ∈ [0, 1]},

where the d.f. gn0,j,t(x) has constant values on the intervals

I(n0, t),
I(n0, t)
an0

, . . . ,
I(n0, t)
(an0)j−1 ,

I(m0, t)
(an0)j

,
I(m0, t)

(an0)jam0
, . . . ,

I(m0, t)
(an0)j(am0)n0−1 ,

I(n0, t)
(an0)j(am0n0)

,

I(n0, t)
(an0)j(am0n0)an0

, . . . ,
I(n0, t)

(an0)j(am0n0)(an0)m0−1 ,
I(m0, t)

(an0)j(a2m0n0)
, . . . ,

while on the complement intervals in [0, 1]
(

γ

tγ + (1− t)δ , 1
)
,
I(t)
an0

,
I(t)

(an0)2 , . . . ,
I(t)

(an0)j
,

I(t)
(an0)j(am0)

,
I(t)

(an0)j(am0)2 , . . . ,
I(t)

(an0)jam0n0
,

I(t)
(an0)jam0n0(an0)

,
I(t)

(an0)jam0n0(an0)2 , . . . ,
I(t)

(an0)ja2m0n0
, . . .

it has a constant derivative

(11) g′n0,j,t(x) = 1/d,
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where d ≤ d ≤ d and

d =
δ − γ

tγ + (1− t)δ

×
(

1− t+
1

an0 − 1
− 1

(an0)j
· am0n0

am0n0 + 1

(
1

an0 − 1
− 1
am0 − 1

))
.

Here

d =
δ − γ
γ

(
1

an0 − 1
− am0n0

am0n0 + 1

(
1

an0 − 1
− 1
am0 − 1

))
,

d =
δ − γ
δ

(
1 +

1
am0 − 1

+
am0n0

am0n0 + 1

(
1

an0 − 1
− 1
am0 − 1

))
.

These assertions characterize d.f. gn0,j,t(x). Similarly we define d.f.
gm0,j,t(x), exchanging n0 with m0 in the intervals and derivatives defined
above.

Proof of (11). As the proof of (8) in Example 1.

Concluding remarks. Theorem 5 in [2] can also be amended by adding
the assertion of the incorrect step 3 to the assumptions of this theorem. This
gives the following second correct form: Assume that there exists a sequence
of positive integers g(n) such that limn→∞ xg(n)/xn = λ and 0 < λ < 1
and let d > 0. If there exists an interval (u, v) containing no limit points
of xm/xn, then there are infinitely many such intervals, e.g. (u, v)λj , j =
0, 1, 2, . . . All possible limits λ form a cyclic group.

By this theorem, for xn in Example 1, there exists no such λ. We can see
this directly, since such λ must be a common term of the following sequences:

1
an0

,
1

(an0)2 , . . . ,
1

(an0)j
,

1
(an0)j(am0)

,
1

(an0)j(am0)2 ,
1

(an0)j(am0)3 , . . . ,

j = 0, 1, 2, . . .

1
am0

,
1

(am0)2 , . . . ,
1

(am0)j
,

1
(am0)j(an0)

,
1

(am0)j(an0)2 ,
1

(am0)j(an0)3 , . . . ,

j = 0, 1, 2, . . .

For j = 0 we see that λ must have a form 1/akm0n0 , but for j = 1 there
exists no i such that 1/akm0n0 = 1/an0(am0)i. Here we use only (i)–(iv).

In Example 2 we can construct λ directly: For

xn = [(tγ + (1− t)δ)a2sm0n0+jn0 ], s = 0, 1, . . . , j = 0, 1, . . . ,m0 − 1,

we take xg(n) = [(tγ + (1 − t)δ)a(2s−2)m0n0+jn0 ] and similarly for 2s + 1.
Thus λ = 1/a2m0n0 .
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