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The mean fourth power of real character sums
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1. Introduction. All real characters are given by the Kronecker symbol(
q
n

)
, which gives a real character of modulus |q|. We denote by S(X) the

set of all real non-principal characters of modulus at most X.
The mean value estimate

∑

χ∈S(X)

∣∣∣
∑

n≤Y
χ(n)

∣∣∣
2
� XY log8 X

for real character sums was first proved by M. Jutila [J1] in 1973. This esti-
mate is best possible up to the exponent of logX. Several authors, including
Jutila, have observed that the method of [J1] in fact yields the exponent two.
The best known estimate for this mean square is due to M. V. Armon [Ar],
where the exponent of logX is one.

In his paper [J2] Jutila made also the following conjecture concerning
higher powers of the character sums.

Conjecture. For all k = 1, 2, . . . and X ≥ 3, Y ≥ 1 the estimate

Sk(X,Y ) =
∑

χ∈S(X)

∣∣∣
∑

n≤Y
χ(n)

∣∣∣
2k
≤ c1(k)XY k(logX)c2(k)

holds with certain coefficients c1(k), c2(k) depending on k.

The purpose of this paper is to prove Jutila’s conjecture in the case k = 2
in a slightly weaker form.

Theorem. For X ≥ 3 and Y ≥ 1, we have

S2(X,Y ) =
∑

χ∈S(X)

∣∣∣
∑

n≤Y
χ(n)

∣∣∣
4
�ε XY

2Xε,

where the implied constant depends on ε.
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We shall first restrict the outer sum to primitive characters and the result
is easy to generalize to all real characters afterwards.

The proof is quite easy when Y is “small” or “large” compared with X.
We shall see that the critical size of Y is X1/2+ε � Y � X. It is also clear
that the n-sum can be restricted to n � N.

The idea is to use the reflection principle (see [I, p. 122]). By a suit-
able smooth weight function, we can reformulate the sum approximately in
an analytical form, and “reflect” it into a shorter sum, which is easier to
estimate. In fact we get sums whose lengths depend only on X. For these
shorter sums, and also in the case Y � X1/2+ε, we use an estimate due to
D. R. Heath-Brown for the mean square of real character sums (see Lemma 1
below).

Introducing the weight function, we make a certain error. The error
must be sufficiently small, and to see this we need some theory of uniform
distribution.

We let ε stand for an arbitrary small positive number and C for a suf-
ficiently large constant, not necessarily the same at each occurrence. The
symbol � is used to denote a square integer.

2. Preliminary lemmas. To estimate the mean value of real character
sums we shall use the following estimate due to Heath-Brown [HB, Corol-
lary 2].

Lemma 1. Let N,X be positive integers, and let a1, . . . , an be arbitrary
complex numbers. Let S∗(X) denote the set of all real primitive characters
of conductor at most X. Then

∑

χ∈S∗(X)

∣∣∣
∑

n≤N
anχ(n)

∣∣∣
2
�ε (XN)ε(X +N)

∑

n1n2=�
|an1an2 |,

where the implied constant depends on ε.

This result essentially implies Jutila’s estimate when an = 1 for all n
and N ≤ X, but it is more general. It can be used for estimating also the
fourth powers of character sums.

Let un be a sequence of real numbers and 0 < δ ≤ 1/2. We denote by
Z(N, δ) the number of those un whose distance from the nearest integer is at
most δ, that is, ‖un‖ ≤ δ, when 1 ≤ n ≤ N. If the sequence un is uniformly
distributed modulo one, then

lim
N→∞

1
N
Z(N, δ) = 2δ

for every 0 < δ ≤ 1/2. Define

D(N, δ) = Z(N, δ)− 2δN.



Mean fourth power of real character sums 251

The number D(N, δ) is related to the discrepancy of the sequence un. There-
fore the following estimate [Mo, p. 8] holds:

(1) |D(N, δ)| ≤ N

L+ 1
+ 2

L∑

l=1

(
1

L+ 1
+ min

(
2δ,

1
πl

))∣∣∣
N∑

n=1

e(lun)
∣∣∣,

where L is arbitrary positive integer.

Lemma 2. Let un =
√
N/(N1 + n), where N1 ≤ N, and 0 < δ ≤ 1/2.

Then

(2) Z(N1, δ)� δN1 if N1/2N
−3/2
1 ≤ 2δ.

And if

(3) 2δ < N1/2N
−3/2
1 ≤ 1/2,

then

(4) Z(N1, δ)�
√
N/N1 + logN,

and always

(5) Z(N1, δ)� δN1 +
N1

L
+
(
N

N1

)1/4

L1/2 +
N

5/4
1

N1/4
,

where L is any positive integer.

Proof. The difference of two successive terms un is � N1/2/N
3/2
1 . If this

is ≤ 2δ, we get (2) by a simple combinatorial calculation.
Let us then assume (3). Let D(N1, δ) be as above and choose L =

bN3/2
1 /(2N1/2)c in (1). Now we can apply the following well-known esti-

mate [Ti, Lemmas 4.3 and 4.8] to the exponential sum in (1):

∑

0<n≤N1

e(lun) =
2N1�

N1

e

(
l

√
N

x

)
dx+O(1)� N

3/2
1

lN1/2
,

to obtain the estimate

Z(N1, δ)� δN1 +
N1

L
+
δN

3/2
1

N1/2

L∑

l=1

1
l
� δN1 +

√
N

N1
+ logN,

which proves (4).
The last estimate follows when we use the estimate [Ti, Th. 5.9]

�
(
N

N1

)1/4

l1/2 +
N

5/4
1

N1/4l1/2

for the exponential sum in (1).
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Lemma 3. For N1/3 ≤ N0 ≤ N , we have

Σ2 =
∑

N−N0≤m,n≤N+N0

mn=�

1� N0 logN.

Proof. Write n = n1a
2 and m = n1b

2, where n1 is square-free. Then
√
N −N0

n1
≤ a, b ≤

√
N +N0

n1

and the length of the interval is � N0/
√
n1N. We distinguish some cases

depending on the size of the number n1.
If n1 ≤ N2

0 /N, then N0/
√
n1N � 1 and the length of the interval can

be used directly to estimate the number of the numbers a and b. In this case
there are at most

∑

n1≤N2
0/N

N0√
n1N

· N0√
n1N

� N2
0

N
logN � N0 logN

pairs of numbers m, n.
If the length of the interval where the numbers a and b lie is smaller than

one, that is, n1 > N2
0 /N, then we count only those numbers n1 which really

give some integers a and b, and at the same time a pair of numbers m, n.
Let N1 < n1 ≤ 2N1. The case N1 � N1/3 is clear, since there cannot be

more pairs m, n than there are numbers n1 and N1/3 ≤ N0. Therefore we
can assume that N1 ≥ (4N)1/3.

We apply Lemma 2 with δ = N0/
√
NN1. If N/(2N0) ≤ N1, then (2)

gives the estimate � N0
√
N1/N ≤ N0, and from (4) we get the estimate

�
√
N/N1 � N0 when N/(2N0) > N1.

Since the sum
∑
N2

0/N<n1≤N can be divided into parts of the form∑
A<n1≤2A which all are, as we have seen, at most O(N0), the lemma is

proved.

Lemma 4. For N3/5 ≤ N0 ≤ N, we have

Σ4 =
∑

N−N0≤m,n,r,s≤N+N0

mnrs=�

1� N2
0N

ε.

Proof. The idea of the proof is as above. We write nrs = k, and then

Σ4 ≤
∑

N−N0≤m≤N+N0

∑

(N−N0)4/m≤k≤(N+N0)4/m

mk=�

d3(k),

where d3 is a divisor function in the standard notation. If m = m1m
2
2 with

m1 square-free, then k must be of the shape m1x
2. There are� N0

√
N/m1

numbers x, and m2 lies in an interval of length �
√
N/m1 · N0/N �
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N0/
√
m1N. The cases m1 ≤ N2

0 /N and m1 � M1 ≥ N/(2N0) are similar
to the previous lemma and the case N 2

0 /N < M1 < N/(2N0) follows from
(5) by choosing L = bN2

0M
3/2
1 /N3/2c; note that L ≥ 1 by our assumption

on N0.

Lemma 5. Let χq be a primitive real character modulo q and let a =
1
2 (1− χq(−1)). The Dirichlet L-function satisfies the functional equation

L(s, χq) = ψ(s, χq)L(1− s, χq),
where

ψ(s, χq) = 2s
G(χq)
ia
√
πq

(
π

q

)s−1/2

Γ (1− s) sin
π

2
(s+ a),

and G(χq) is a Gaussian sum. Furthermore

(6) ψ(s, χq)� (q|s|)1/2−σ,

when σ ≤ 1/2.

Proof. It is well-known that the L-function has the above functional
equation. To verify the bound of the ψ-function, we only need some estimates
for the Γ -function, since |G(χq)/(ia

√
πq)| = 1.

By Stirling’s formula we get the following well known estimates:

(7) |Γ (s)| =
√

2π tσ−1/2e−(π/2)t(1 +O(1/t))

where σ is bounded and t→∞, and

Γ ′

Γ
(s) = log s− 1

2s
+O

(
1
|s|2

)
,

where |arg s| ≤ π − δ, |s| ≥ δ > 0.
We can now write, for σ ≥ 1/2,

log
∣∣∣∣
Γ (σ + it)
Γ (1/2 + it)

∣∣∣∣ = Re
σ�

1/2

Γ ′

Γ
(u+ it) du

= Re
σ�

1/2

(
log(u+ it)− 1

2(u+ it)
+O

(
1

u2 + t2

))
du

=
1
2

σ�

1/2

log(u2 + t2) du− 1
2

log
|σ + it|
|1/2 + it| +O(1)

<
1
2

log[(σ2 + t2)σ−1/2] +O(1).

The above estimates give

|Γ (σ + it)| =
∣∣∣∣Γ
(

1
2

+ it

)∣∣∣∣ ·
∣∣∣∣
Γ (σ + it)
Γ (1/2 + it)

∣∣∣∣� e−(π/2)t|s|σ−1/2,
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when σ ≥ 1/2. Since sin π
2 (s+ a)� e(π/2)t, we have ψ(s, χq)� (q|s|)1/2−σ

when σ ≤ 1/2.

3. Proof of the Theorem. We first prove the desired estimate if χ is
restricted to primitive characters, that is, χ ∈ S∗(X).

Using the classical Pólya–Vinogradov estimate, we see that the case Y �
X is clear. If we first square out the sum and then use Lemma 1, we see
that also the case Y � X1/2+ε is clear.

To estimate the sum when X1/2+ε � Y � X we use the reflection
principle. We start with the familiar formula

e−x = (2πi)−1
�

(c)

Γ (s)x−s ds, x, c > 0.

Making the substitutions x = Y h and s = w/h, where h > 1, we get

e−Y
h

= (2πi)−1
�

(c)

Γ

(
1 +

w

h

)
Y −ww−1 dw.

Now let Y = n/N. Multiplying both sides by χ(n) and summing over n, we
have ∞∑

n=1

χ(n)e−(n/N)h = (2πi)−1
�

(c)

Γ

(
1 +

s

h

)
Ns

s
L(s, χ) ds.

Consider the sum

(8)
∑

χ∈S∗(X)

∣∣∣
∑

N<n≤M
χ(n)

∣∣∣
4
,

where X1/2+ε � N � M � X and S∗(X) as in Lemma 1. It is clear that
the desired estimate for this sum implies the same estimate for the sum
S2(X,Y ) when X1/2+ε � Y � X. We start with the weighted sum

S =
∞∑

n=1

χ(n)(e−(n/M)h − e−(n/N)h)

= (2πi)−1
�

(c)

Γ

(
1 +

s

h

)
Ms −Ns

s
L(s, χ) ds.

Let us then move the integration line to σ = −ε, and use the functional
equation for the L-function. We can cut the integration line at |t| = T,
where T = Ch logX, with a small error, since the Γ -function makes the
integrand small when |t| > T. Now we divide the L-series, and hence the
integral, into two parts

∑
n≤K and

∑
n>K where K = CX1/2 log3 X. Then

we fix h = (CM logX)/X1/2, and move the integration line in the first
integral to σ = 1/2, and in the second integral to σ = −h/2. By the choice
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of the parameters h, K and T we see that all the integrals over the horizontal
segments are o(1). So we have

S = (2πi)−1
1/2+iT�

1/2−iT
Γ

(
1 +

s

h

)
Ms −Ns

s
ψ(s, χ)

∑

n≤K
χ(n)ns−1 ds

+ (2πi)−1
−h/2+iT�

−h/2−iT
Γ

(
1 +

s

h

)
Ms −Ns

s
ψ(s, χ)

∑

n>K

χ(n)ns−1 ds+ o(1).

The second integral above is also small. Indeed, since h/2 ≤ |s| � T =
Ch logX and estimates (6) and (7) are valid, this integral is

�
T�

−T
e−

π
2h |t|

(
MK

q|s|

)−h/2
q1/2|s|−1/2 dt�

(
C

logX

)h/2(
q

h

)1/2

= o(1),

where K and h are as above and h is at least logX. So

S = (2πi)−1
1/2+iT�

1/2−iT
Γ

(
1 +

s

h

)
Ms −Ns

s
ψ(s, χ)

∑

n≤K
χ(n)ns−1 ds+ o(1).

We write φ(s) = |Γ (1 + s/h)s−1| noting that � 1/2+iT
1/2−iT φ(s) |ds| � log T.

Using the Schwarz inequality twice we get

|S|4 �M2 log2 T

1/2+iT�

1/2−iT
φ(s) |ds|

1/2+iT�

1/2−iT
φ(s)

∣∣∣
∑

n≤K
χ(n)ns−1

∣∣∣
4
|ds|+ 1

�M2 log3 T

1/2+iT�

1/2−iT
φ(s)

∣∣∣
∑

n≤K
χ(n)ns−1

∣∣∣
4
|ds|+ 1

= M2 log3 T

1/2+iT�

1/2−iT
φ(s)

∣∣∣
∑

n≤K2

c(n)χ(n)ns−1
∣∣∣
2
|ds|+ 1,

where c(n) ≤ d(n).
For given s we can use the same estimation as in the case Y � X1/2+ε.

Now Heath-Brown’s estimate is applied with an = c(n)/n1/2+it, and

∑

nm=�
|anam| �

∑

n≤K2

d2(n2)
n

� Kε.

The mean value of the character sum is therefore �ε X
ε(X +K2).
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So the sum of |S|4 over primitive characters is

�ε M
2 log3 T

1/2+iT�

1/2−iT
φ(s)Xε(X +K2) |ds|

�ε M
2 log4 T Xε(X +K2)�ε XM

2Xε.

Next, consider the error caused by the smoothing. The difference of the
original sum and the smoothed sum is

∑

N<n≤M
χ(n)−

∞∑

n=1

χ(n)(e−(n/M)h − e−(n/N)h) =
∞∑

n=1

w(n)χ(n),

where w(n) is small unless |n − N | � N0 or |n − M | � N0, and N0 =
C N
h logN � X1/2.

Let us estimate the sum
∑

χ∈S∗(X)

∣∣∣
∑

|n−N |�N0

w(n)χ(n)
∣∣∣
4
,

where w(n) is as above. Squaring out the character sum and applying the
result of Heath-Brown we get

∑

χ∈S∗(X)

∣∣∣
∑

|n−N2|�NN0

anχ(n)
∣∣∣
2
�ε X

ε(X +N2)
∑

nm=�
|anam|,

where ∑

nm=�
|anam| �

∑

N−N0�n,m,r,s�N+N0
nmrs=�

1.

By Lemma 4 the last sum is � N2
0N

ε, when X1/2+ε � N ≤ X3/4, so in
this case the error is at most �ε XN

2Xε.

When X3/4 ≤ N � X, we can first estimate trivially the square of the
character sum and then apply Heath-Brown’s estimate to obtain

� N2
0

∑

χ∈S∗(X)

∣∣∣
∑

|n−N |�N0

w(n)χ(n)
∣∣∣
2
�ε X

1+ε(X +N)
∑

nm=�
|anam|,

where ∑

nm=�
|anam| �

∑

N−N0�n,m�N+N0
nm=�

1.

And Lemma 3 gives the estimate

�ε X
2+εN0N

ε �ε X
5/2+ε,

which is �ε XN
2Xε, when X3/4 ≤ N � X.



Mean fourth power of real character sums 257

The above results gives the desired estimate for primitive characters.
But it is easy to generalize the same estimate to all real characters (see for
example [Ar]). So the Theorem is proved.
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