The mean fourth power of real character sums

by
Henri Virtanen (Turku)

1. Introduction. All real characters are given by the Kronecker symbol $\left(\frac{q}{n}\right)$, which gives a real character of modulus $|q|$. We denote by $S(X)$ the set of all real non-principal characters of modulus at most X.

The mean value estimate

$$
\sum_{\chi \in S(X)}\left|\sum_{n \leq Y} \chi(n)\right|^{2} \ll X Y \log ^{8} X
$$

for real character sums was first proved by M. Jutila [J1] in 1973. This estimate is best possible up to the exponent of $\log X$. Several authors, including Jutila, have observed that the method of [J1] in fact yields the exponent two. The best known estimate for this mean square is due to M. V. Armon [Ar], where the exponent of $\log X$ is one.

In his paper [J2] Jutila made also the following conjecture concerning higher powers of the character sums.

Conjecture. For all $k=1,2, \ldots$ and $X \geq 3, Y \geq 1$ the estimate

$$
S_{k}(X, Y)=\sum_{\chi \in S(X)}\left|\sum_{n \leq Y} \chi(n)\right|^{2 k} \leq c_{1}(k) X Y^{k}(\log X)^{c_{2}(k)}
$$

holds with certain coefficients $c_{1}(k), c_{2}(k)$ depending on k.
The purpose of this paper is to prove Jutila's conjecture in the case $k=2$ in a slightly weaker form.

Theorem. For $X \geq 3$ and $Y \geq 1$, we have

$$
S_{2}(X, Y)=\sum_{\chi \in S(X)}\left|\sum_{n \leq Y} \chi(n)\right|^{4}<_{\varepsilon} X Y^{2} X^{\varepsilon}
$$

where the implied constant depends on ε.

[^0]We shall first restrict the outer sum to primitive characters and the result is easy to generalize to all real characters afterwards.

The proof is quite easy when Y is "small" or "large" compared with X. We shall see that the critical size of Y is $X^{1 / 2+\varepsilon} \ll Y \ll X$. It is also clear that the n-sum can be restricted to $n \asymp N$.

The idea is to use the reflection principle (see [I, p. 122]). By a suitable smooth weight function, we can reformulate the sum approximately in an analytical form, and "reflect" it into a shorter sum, which is easier to estimate. In fact we get sums whose lengths depend only on X. For these shorter sums, and also in the case $Y \ll X^{1 / 2+\varepsilon}$, we use an estimate due to D. R. Heath-Brown for the mean square of real character sums (see Lemma 1 below).

Introducing the weight function, we make a certain error. The error must be sufficiently small, and to see this we need some theory of uniform distribution.

We let ε stand for an arbitrary small positive number and C for a sufficiently large constant, not necessarily the same at each occurrence. The symbol \square is used to denote a square integer.
2. Preliminary lemmas. To estimate the mean value of real character sums we shall use the following estimate due to Heath-Brown [HB, Corollary 2].

Lemma 1. Let N, X be positive integers, and let a_{1}, \ldots, a_{n} be arbitrary complex numbers. Let $S^{*}(X)$ denote the set of all real primitive characters of conductor at most X. Then

$$
\sum_{\chi \in S^{*}(X)}\left|\sum_{n \leq N} a_{n} \chi(n)\right|^{2}<_{\varepsilon}(X N)^{\varepsilon}(X+N) \sum_{n_{1} n_{2}=\square}\left|a_{n_{1}} a_{n_{2}}\right|
$$

where the implied constant depends on ε.
This result essentially implies Jutila's estimate when $a_{n}=1$ for all n and $N \leq X$, but it is more general. It can be used for estimating also the fourth powers of character sums.

Let u_{n} be a sequence of real numbers and $0<\delta \leq 1 / 2$. We denote by $Z(N, \delta)$ the number of those u_{n} whose distance from the nearest integer is at most δ, that is, $\left\|u_{n}\right\| \leq \delta$, when $1 \leq n \leq N$. If the sequence u_{n} is uniformly distributed modulo one, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} Z(N, \delta)=2 \delta
$$

for every $0<\delta \leq 1 / 2$. Define

$$
D(N, \delta)=Z(N, \delta)-2 \delta N
$$

The number $D(N, \delta)$ is related to the discrepancy of the sequence u_{n}. Therefore the following estimate [Mo, p. 8] holds:

$$
\begin{equation*}
|D(N, \delta)| \leq \frac{N}{L+1}+2 \sum_{l=1}^{L}\left(\frac{1}{L+1}+\min \left(2 \delta, \frac{1}{\pi l}\right)\right)\left|\sum_{n=1}^{N} e\left(l u_{n}\right)\right| \tag{1}
\end{equation*}
$$

where L is arbitrary positive integer.
Lemma 2. Let $u_{n}=\sqrt{N /\left(N_{1}+n\right)}$, where $N_{1} \leq N$, and $0<\delta \leq 1 / 2$. Then

$$
\begin{equation*}
Z\left(N_{1}, \delta\right) \ll \delta N_{1} \quad \text { if } \quad N^{1 / 2} N_{1}^{-3 / 2} \leq 2 \delta \tag{2}
\end{equation*}
$$

And if

$$
\begin{equation*}
2 \delta<N^{1 / 2} N_{1}^{-3 / 2} \leq 1 / 2 \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
Z\left(N_{1}, \delta\right) \ll \sqrt{N / N_{1}}+\log N \tag{4}
\end{equation*}
$$

and always

$$
\begin{equation*}
Z\left(N_{1}, \delta\right) \ll \delta N_{1}+\frac{N_{1}}{L}+\left(\frac{N}{N_{1}}\right)^{1 / 4} L^{1 / 2}+\frac{N_{1}^{5 / 4}}{N^{1 / 4}} \tag{5}
\end{equation*}
$$

where L is any positive integer.
Proof. The difference of two successive terms u_{n} is $\asymp N^{1 / 2} / N_{1}^{3 / 2}$. If this is $\leq 2 \delta$, we get (2) by a simple combinatorial calculation.

Let us then assume (3). Let $D\left(N_{1}, \delta\right)$ be as above and choose $L=$ $\left\lfloor N_{1}^{3 / 2} /\left(2 N^{1 / 2}\right)\right\rfloor$ in (1). Now we can apply the following well-known estimate [Ti , Lemmas 4.3 and 4.8] to the exponential sum in (1):

$$
\sum_{0<n \leq N_{1}} e\left(l u_{n}\right)=\int_{N_{1}}^{2 N_{1}} e\left(l \sqrt{\frac{N}{x}}\right) d x+O(1) \ll \frac{N_{1}^{3 / 2}}{l N^{1 / 2}}
$$

to obtain the estimate

$$
Z\left(N_{1}, \delta\right) \ll \delta N_{1}+\frac{N_{1}}{L}+\frac{\delta N_{1}^{3 / 2}}{N^{1 / 2}} \sum_{l=1}^{L} \frac{1}{l} \ll \delta N_{1}+\sqrt{\frac{N}{N_{1}}}+\log N
$$

which proves (4).
The last estimate follows when we use the estimate [Ti , Th. 5.9]

$$
\ll\left(\frac{N}{N_{1}}\right)^{1 / 4} l^{1 / 2}+\frac{N_{1}^{5 / 4}}{N^{1 / 4} l^{1 / 2}}
$$

for the exponential sum in (1).

Lemma 3. For $N^{1 / 3} \leq N_{0} \leq N$, we have

$$
\Sigma_{2}=\sum_{\substack{N-N_{0} \leq m, n \leq N+N_{0} \\ m n=\square}} 1 \ll N_{0} \log N
$$

Proof. Write $n=n_{1} a^{2}$ and $m=n_{1} b^{2}$, where n_{1} is square-free. Then

$$
\sqrt{\frac{N-N_{0}}{n_{1}}} \leq a, b \leq \sqrt{\frac{N+N_{0}}{n_{1}}}
$$

and the length of the interval is $\ll N_{0} / \sqrt{n_{1} N}$. We distinguish some cases depending on the size of the number n_{1}.

If $n_{1} \leq N_{0}^{2} / N$, then $N_{0} / \sqrt{n_{1} N} \gg 1$ and the length of the interval can be used directly to estimate the number of the numbers a and b. In this case there are at most

$$
\sum_{n_{1} \leq N_{0}^{2} / N} \frac{N_{0}}{\sqrt{n_{1} N}} \cdot \frac{N_{0}}{\sqrt{n_{1} N}} \ll \frac{N_{0}^{2}}{N} \log N \ll N_{0} \log N
$$

pairs of numbers m, n.
If the length of the interval where the numbers a and b lie is smaller than one, that is, $n_{1}>N_{0}^{2} / N$, then we count only those numbers n_{1} which really give some integers a and b, and at the same time a pair of numbers m, n.

Let $N_{1}<n_{1} \leq 2 N_{1}$. The case $N_{1} \ll N^{1 / 3}$ is clear, since there cannot be more pairs m, n than there are numbers n_{1} and $N^{1 / 3} \leq N_{0}$. Therefore we can assume that $N_{1} \geq(4 N)^{1 / 3}$.

We apply Lemma 2 with $\delta=N_{0} / \sqrt{N N_{1}}$. If $N /\left(2 N_{0}\right) \leq N_{1}$, then (2) gives the estimate $\ll N_{0} \sqrt{N_{1} / N} \leq N_{0}$, and from (4) we get the estimate $\ll \sqrt{N / N_{1}} \ll N_{0}$ when $N /\left(2 N_{0}\right)>N_{1}$.

Since the sum $\sum_{N_{0}^{2} / N<n_{1} \leq N}$ can be divided into parts of the form $\sum_{A<n_{1} \leq 2 A}$ which all are, as we have seen, at most $O\left(N_{0}\right)$, the lemma is proved.

Lemma 4. For $N^{3 / 5} \leq N_{0} \leq N$, we have

$$
\Sigma_{4}=\sum_{\substack{N-N_{0} \leq m, n, r, s \leq N+N_{0} \\ m n r s=\square}} 1 \ll N_{0}^{2} N^{\varepsilon} .
$$

Proof. The idea of the proof is as above. We write $n r s=k$, and then

$$
\Sigma_{4} \leq \sum_{N-N_{0} \leq m \leq N+N_{0}} \sum_{\left(N-N_{0}\right)^{4} / m \leq k \leq\left(N+N_{0}\right)^{4} / m} \mathrm{~d}_{3}(k),
$$

where d_{3} is a divisor function in the standard notation. If $m=m_{1} m_{2}^{2}$ with m_{1} square-free, then k must be of the shape $m_{1} x^{2}$. There are $\ll N_{0} \sqrt{N / m_{1}}$ numbers x, and m_{2} lies in an interval of length $\ll \sqrt{N / m_{1}} \cdot N_{0} / N \ll$
$N_{0} / \sqrt{m_{1} N}$. The cases $m_{1} \leq N_{0}^{2} / N$ and $m_{1} \asymp M_{1} \geq N /\left(2 N_{0}\right)$ are similar to the previous lemma and the case $N_{0}^{2} / N<M_{1}<N /\left(2 N_{0}\right)$ follows from (5) by choosing $L=\left\lfloor N_{0}^{2} M_{1}^{3 / 2} / N^{3 / 2}\right\rfloor$; note that $L \geq 1$ by our assumption on N_{0}.

Lemma 5. Let χ_{q} be a primitive real character modulo q and let $a=$ $\frac{1}{2}\left(1-\chi_{q}(-1)\right)$. The Dirichlet L-function satisfies the functional equation

$$
L\left(s, \chi_{q}\right)=\psi\left(s, \chi_{q}\right) L\left(1-s, \chi_{q}\right)
$$

where

$$
\psi\left(s, \chi_{q}\right)=2^{s} \frac{G\left(\chi_{q}\right)}{i^{a} \sqrt{\pi q}}\left(\frac{\pi}{q}\right)^{s-1 / 2} \Gamma(1-s) \sin \frac{\pi}{2}(s+a)
$$

and $G\left(\chi_{q}\right)$ is a Gaussian sum. Furthermore

$$
\begin{equation*}
\psi\left(s, \chi_{q}\right) \ll(q|s|)^{1 / 2-\sigma} \tag{6}
\end{equation*}
$$

when $\sigma \leq 1 / 2$.
Proof. It is well-known that the L-function has the above functional equation. To verify the bound of the ψ-function, we only need some estimates for the Γ-function, since $\left|G\left(\chi_{q}\right) /\left(i^{a} \sqrt{\pi q}\right)\right|=1$.

By Stirling's formula we get the following well known estimates:

$$
\begin{equation*}
|\Gamma(s)|=\sqrt{2 \pi} t^{\sigma-1 / 2} e^{-(\pi / 2) t}(1+O(1 / t)) \tag{7}
\end{equation*}
$$

where σ is bounded and $t \rightarrow \infty$, and

$$
\frac{\Gamma^{\prime}}{\Gamma}(s)=\log s-\frac{1}{2 s}+O\left(\frac{1}{|s|^{2}}\right)
$$

where $|\arg s| \leq \pi-\delta,|s| \geq \delta>0$.
We can now write, for $\sigma \geq 1 / 2$,

$$
\begin{aligned}
\log \left|\frac{\Gamma(\sigma+i t)}{\Gamma(1 / 2+i t)}\right| & =\operatorname{Re} \int_{1 / 2}^{\sigma} \frac{\Gamma^{\prime}}{\Gamma}(u+i t) d u \\
& =\operatorname{Re} \int_{1 / 2}^{\sigma}\left(\log (u+i t)-\frac{1}{2(u+i t)}+O\left(\frac{1}{u^{2}+t^{2}}\right)\right) d u \\
& =\frac{1}{2} \int_{1 / 2}^{\sigma} \log \left(u^{2}+t^{2}\right) d u-\frac{1}{2} \log \frac{|\sigma+i t|}{|1 / 2+i t|}+O(1) \\
& <\frac{1}{2} \log \left[\left(\sigma^{2}+t^{2}\right)^{\sigma-1 / 2}\right]+O(1)
\end{aligned}
$$

The above estimates give

$$
|\Gamma(\sigma+i t)|=\left|\Gamma\left(\frac{1}{2}+i t\right)\right| \cdot\left|\frac{\Gamma(\sigma+i t)}{\Gamma(1 / 2+i t)}\right| \ll e^{-(\pi / 2) t}|s|^{\sigma-1 / 2}
$$

when $\sigma \geq 1 / 2$. Since $\sin \frac{\pi}{2}(s+a) \ll e^{(\pi / 2) t}$, we have $\psi\left(s, \chi_{q}\right) \ll(q|s|)^{1 / 2-\sigma}$ when $\sigma \leq 1 / 2$.
3. Proof of the Theorem. We first prove the desired estimate if χ is restricted to primitive characters, that is, $\chi \in S^{*}(X)$.

Using the classical Pólya-Vinogradov estimate, we see that the case $Y \gg$ X is clear. If we first square out the sum and then use Lemma 1, we see that also the case $Y \ll X^{1 / 2+\varepsilon}$ is clear.

To estimate the sum when $X^{1 / 2+\varepsilon} \ll Y \ll X$ we use the reflection principle. We start with the familiar formula

$$
e^{-x}=(2 \pi i)^{-1} \int \Gamma(s) x^{-s} d s, \quad x, c>0
$$

(c)

Making the substitutions $x=Y^{h}$ and $s=w / h$, where $h>1$, we get

$$
e^{-Y^{h}}=(2 \pi i)^{-1} \int_{(c)} \Gamma\left(1+\frac{w}{h}\right) Y^{-w} w^{-1} d w
$$

Now let $Y=n / N$. Multiplying both sides by $\chi(n)$ and summing over n, we have

$$
\sum_{n=1}^{\infty} \chi(n) e^{-(n / N)^{h}}=(2 \pi i)^{-1} \int_{(c)} \Gamma\left(1+\frac{s}{h}\right) \frac{N^{s}}{s} L(s, \chi) d s
$$

Consider the sum

$$
\begin{equation*}
\sum_{\chi \in S^{*}(X)}\left|\sum_{N<n \leq M} \chi(n)\right|^{4} \tag{8}
\end{equation*}
$$

where $X^{1 / 2+\varepsilon} \ll N \asymp M \ll X$ and $S^{*}(X)$ as in Lemma 1. It is clear that the desired estimate for this sum implies the same estimate for the sum $S_{2}(X, Y)$ when $X^{1 / 2+\varepsilon} \ll Y \ll X$. We start with the weighted sum

$$
\begin{aligned}
S & =\sum_{n=1}^{\infty} \chi(n)\left(e^{-(n / M)^{h}}-e^{-(n / N)^{h}}\right) \\
& =(2 \pi i)^{-1} \int_{(c)} \Gamma\left(1+\frac{s}{h}\right) \frac{M^{s}-N^{s}}{s} L(s, \chi) d s
\end{aligned}
$$

Let us then move the integration line to $\sigma=-\varepsilon$, and use the functional equation for the L-function. We can cut the integration line at $|t|=T$, where $T=C h \log X$, with a small error, since the Γ-function makes the integrand small when $|t|>T$. Now we divide the L-series, and hence the integral, into two parts $\sum_{n \leq K}$ and $\sum_{n>K}$ where $K=C X^{1 / 2} \log ^{3} X$. Then we fix $h=(C M \log X) / X^{1 / 2}$, and move the integration line in the first integral to $\sigma=1 / 2$, and in the second integral to $\sigma=-h / 2$. By the choice
of the parameters h, K and T we see that all the integrals over the horizontal segments are $o(1)$. So we have

$$
\begin{aligned}
S= & (2 \pi i)^{-1} \int_{1 / 2-i T}^{1 / 2+i T} \Gamma\left(1+\frac{s}{h}\right) \frac{M^{s}-N^{s}}{s} \psi(s, \chi) \sum_{n \leq K} \chi(n) n^{s-1} d s \\
& +(2 \pi i)^{-1} \int_{-h / 2-i T}^{-h / 2+i T} \Gamma\left(1+\frac{s}{h}\right) \frac{M^{s}-N^{s}}{s} \psi(s, \chi) \sum_{n>K} \chi(n) n^{s-1} d s+o(1)
\end{aligned}
$$

The second integral above is also small. Indeed, since $h / 2 \leq|s| \ll T=$ $C h \log X$ and estimates (6) and (7) are valid, this integral is

$$
\ll \int_{-T}^{T} e^{-\frac{\pi}{2 h}|t|}\left(\frac{M K}{q|s|}\right)^{-h / 2} q^{1 / 2}|s|^{-1 / 2} d t \ll\left(\frac{C}{\log X}\right)^{h / 2}\left(\frac{q}{h}\right)^{1 / 2}=o(1)
$$

where K and h are as above and h is at least $\log X$. So

$$
S=(2 \pi i)^{-1} \int_{1 / 2-i T}^{1 / 2+i T} \Gamma\left(1+\frac{s}{h}\right) \frac{M^{s}-N^{s}}{s} \psi(s, \chi) \sum_{n \leq K} \chi(n) n^{s-1} d s+o(1)
$$

We write $\phi(s)=\left|\Gamma(1+s / h) s^{-1}\right|$ noting that $\int_{1 / 2-i T}^{1 / 2+i T} \phi(s)|d s| \ll \log T$. Using the Schwarz inequality twice we get

$$
\begin{aligned}
|S|^{4} & \ll M^{2} \log ^{2} T \int_{1 / 2-i T}^{1 / 2+i T} \phi(s)|d s| \int_{1 / 2-i T}^{1 / 2+i T} \phi(s)\left|\sum_{n \leq K} \chi(n) n^{s-1}\right|^{4}|d s|+1 \\
& \ll M^{2} \log ^{3} T \int_{1 / 2-i T}^{1 / 2+i T} \phi(s)\left|\sum_{n \leq K} \chi(n) n^{s-1}\right|^{4}|d s|+1 \\
& =M^{2} \log ^{3} T \int_{1 / 2-i T}^{1 / 2+i T} \phi(s)\left|\sum_{n \leq K^{2}} c(n) \chi(n) n^{s-1}\right|^{2}|d s|+1
\end{aligned}
$$

where $c(n) \leq \mathrm{d}(n)$.
For given s we can use the same estimation as in the case $Y \ll X^{1 / 2+\varepsilon}$. Now Heath-Brown's estimate is applied with $a_{n}=c(n) / n^{1 / 2+i t}$, and

$$
\sum_{n m=\square}\left|a_{n} a_{m}\right| \ll \sum_{n \leq K^{2}} \frac{\mathrm{~d}^{2}\left(n^{2}\right)}{n} \ll K^{\varepsilon}
$$

The mean value of the character sum is therefore $<_{\varepsilon} X^{\varepsilon}\left(X+K^{2}\right)$.

So the sum of $|S|^{4}$ over primitive characters is

$$
\begin{aligned}
& <_{\varepsilon} M^{2} \log ^{3} T \int_{1 / 2-i T}^{1 / 2+i T} \phi(s) X^{\varepsilon}\left(X+K^{2}\right)|d s| \\
& <_{\varepsilon} M^{2} \log ^{4} T X^{\varepsilon}\left(X+K^{2}\right) \ll_{\varepsilon} X M^{2} X^{\varepsilon}
\end{aligned}
$$

Next, consider the error caused by the smoothing. The difference of the original sum and the smoothed sum is

$$
\sum_{N<n \leq M} \chi(n)-\sum_{n=1}^{\infty} \chi(n)\left(e^{-(n / M)^{h}}-e^{-(n / N)^{h}}\right)=\sum_{n=1}^{\infty} w(n) \chi(n)
$$

where $w(n)$ is small unless $|n-N| \ll N_{0}$ or $|n-M| \ll N_{0}$, and $N_{0}=$ $C \frac{N}{h} \log N \asymp X^{1 / 2}$.

Let us estimate the sum

$$
\sum_{\chi \in S^{*}(X)}\left|\sum_{|n-N| \ll N_{0}} w(n) \chi(n)\right|^{4}
$$

where $w(n)$ is as above. Squaring out the character sum and applying the result of Heath-Brown we get

$$
\sum_{\chi \in S^{*}(X)}\left|\sum_{\left|n-N^{2}\right| \ll N N_{0}} a_{n} \chi(n)\right|^{2} \ll \varepsilon X^{\varepsilon}\left(X+N^{2}\right) \sum_{n m=\square}\left|a_{n} a_{m}\right|
$$

where

$$
\sum_{n m=\square}\left|a_{n} a_{m}\right| \ll \sum_{\substack{N-N_{0} \ll n, m, r, s \ll N+N_{0} \\ n m r s=\square}} 1 .
$$

By Lemma 4 the last sum is $\ll N_{0}^{2} N^{\varepsilon}$, when $X^{1 / 2+\varepsilon} \ll N \leq X^{3 / 4}$, so in this case the error is at most $<_{\varepsilon} X N^{2} X^{\varepsilon}$.

When $X^{3 / 4} \leq N \ll X$, we can first estimate trivially the square of the character sum and then apply Heath-Brown's estimate to obtain

$$
\ll N_{0}^{2} \sum_{\chi \in S^{*}(X)}\left|\sum_{|n-N| \ll N_{0}} w(n) \chi(n)\right|^{2} \ll \varepsilon X^{1+\varepsilon}(X+N) \sum_{n m=\square}\left|a_{n} a_{m}\right|,
$$

where

$$
\sum_{n m=\square}\left|a_{n} a_{m}\right| \lll \sum_{\substack{N-N_{0} \ll n, m \ll N+N_{0} \\ n m=\square}} 1 .
$$

And Lemma 3 gives the estimate

$$
<_{\varepsilon} X^{2+\varepsilon} N_{0} N^{\varepsilon}<_{\varepsilon} X^{5 / 2+\varepsilon}
$$

which is $<_{\varepsilon} X N^{2} X^{\varepsilon}$, when $X^{3 / 4} \leq N \ll X$.

The above results gives the desired estimate for primitive characters. But it is easy to generalize the same estimate to all real characters (see for example [Ar]). So the Theorem is proved.

Acknowledgements. I am grateful to Professor Jutila for suggesting this problem and for valuable advice.

References

[Ar] M. V. Armon, Averages of real character sums, J. Number Theory 77 (1999), 209-226.
[HB] D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235-275.
[I] A. Ivić, The Riemann Zeta-Function, Wiley, 1985.
[J1] M. Jutila, On character sums and class numbers, J. Number Theory 5 (1973), 203-214.
[J2] -, On sums of real characters, Proc. Steklov Inst. Math. 132 (1973), 283-286.
[Mo] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1994.
[Ti] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, 1951.

Department of Mathematics
University of Turku
FIN-20014 Turku, Finland
E-mail: hekavi@utu.fi

[^0]: 2000 Mathematics Subject Classification: Primary 11L40.

