The mean fourth power of real character sums

by

HENRI VIRTANEN (Turku)

1. Introduction. All real characters are given by the Kronecker symbol $\left(\frac{q}{n}\right)$, which gives a real character of modulus |q|. We denote by S(X) the set of all real non-principal characters of modulus at most X.

The mean value estimate

$$\sum_{\chi \in S(X)} \left| \sum_{n \le Y} \chi(n) \right|^2 \ll XY \log^8 X$$

for real character sums was first proved by M. Jutila [J1] in 1973. This estimate is best possible up to the exponent of $\log X$. Several authors, including Jutila, have observed that the method of [J1] in fact yields the exponent two. The best known estimate for this mean square is due to M. V. Armon [Ar], where the exponent of $\log X$ is one.

In his paper [J2] Jutila made also the following conjecture concerning higher powers of the character sums.

CONJECTURE. For all k = 1, 2, ... and $X \ge 3, Y \ge 1$ the estimate

$$S_k(X,Y) = \sum_{\chi \in S(X)} \left| \sum_{n \le Y} \chi(n) \right|^{2k} \le c_1(k) X Y^k (\log X)^{c_2(k)}$$

holds with certain coefficients $c_1(k)$, $c_2(k)$ depending on k.

The purpose of this paper is to prove Jutila's conjecture in the case k = 2 in a slightly weaker form.

THEOREM. For $X \ge 3$ and $Y \ge 1$, we have

$$S_2(X,Y) = \sum_{\chi \in S(X)} \left| \sum_{n \le Y} \chi(n) \right|^4 \ll_{\varepsilon} XY^2 X^{\varepsilon},$$

where the implied constant depends on ε .

2000 Mathematics Subject Classification: Primary 11L40.

We shall first restrict the outer sum to primitive characters and the result is easy to generalize to all real characters afterwards.

The proof is quite easy when Y is "small" or "large" compared with X. We shall see that the critical size of Y is $X^{1/2+\varepsilon} \ll Y \ll X$. It is also clear that the *n*-sum can be restricted to $n \simeq N$.

The idea is to use the reflection principle (see [I, p. 122]). By a suitable smooth weight function, we can reformulate the sum approximately in an analytical form, and "reflect" it into a shorter sum, which is easier to estimate. In fact we get sums whose lengths depend only on X. For these shorter sums, and also in the case $Y \ll X^{1/2+\varepsilon}$, we use an estimate due to D. R. Heath-Brown for the mean square of real character sums (see Lemma 1 below).

Introducing the weight function, we make a certain error. The error must be sufficiently small, and to see this we need some theory of uniform distribution.

We let ε stand for an arbitrary small positive number and C for a sufficiently large constant, not necessarily the same at each occurrence. The symbol \Box is used to denote a square integer.

2. Preliminary lemmas. To estimate the mean value of real character sums we shall use the following estimate due to Heath-Brown [HB, Corollary 2].

LEMMA 1. Let N, X be positive integers, and let a_1, \ldots, a_n be arbitrary complex numbers. Let $S^*(X)$ denote the set of all real primitive characters of conductor at most X. Then

$$\sum_{\chi \in S^*(X)} \left| \sum_{n \le N} a_n \chi(n) \right|^2 \ll_{\varepsilon} (XN)^{\varepsilon} (X+N) \sum_{n_1 n_2 = \Box} |a_{n_1} a_{n_2}|,$$

where the implied constant depends on ε .

This result essentially implies Jutila's estimate when $a_n = 1$ for all n and $N \leq X$, but it is more general. It can be used for estimating also the fourth powers of character sums.

Let u_n be a sequence of real numbers and $0 < \delta \leq 1/2$. We denote by $Z(N, \delta)$ the number of those u_n whose distance from the nearest integer is at most δ , that is, $||u_n|| \leq \delta$, when $1 \leq n \leq N$. If the sequence u_n is uniformly distributed modulo one, then

$$\lim_{N \to \infty} \frac{1}{N} Z(N, \delta) = 2\delta$$

for every $0 < \delta \leq 1/2$. Define

$$D(N,\delta) = Z(N,\delta) - 2\delta N.$$

The number $D(N, \delta)$ is related to the discrepancy of the sequence u_n . Therefore the following estimate [Mo, p. 8] holds:

(1)
$$|D(N,\delta)| \le \frac{N}{L+1} + 2\sum_{l=1}^{L} \left(\frac{1}{L+1} + \min\left(2\delta, \frac{1}{\pi l}\right)\right) \Big| \sum_{n=1}^{N} e(lu_n) \Big|,$$

where L is arbitrary positive integer.

LEMMA 2. Let $u_n = \sqrt{N/(N_1 + n)}$, where $N_1 \leq N$, and $0 < \delta \leq 1/2$. Then

(2)
$$Z(N_1, \delta) \ll \delta N_1 \quad if \quad N^{1/2} N_1^{-3/2} \le 2\delta.$$

And if

(3)
$$2\delta < N^{1/2}N_1^{-3/2} \le 1/2,$$

then

(4)
$$Z(N_1,\delta) \ll \sqrt{N/N_1} + \log N,$$

and always

(5)
$$Z(N_1, \delta) \ll \delta N_1 + \frac{N_1}{L} + \left(\frac{N}{N_1}\right)^{1/4} L^{1/2} + \frac{N_1^{5/4}}{N^{1/4}},$$

where L is any positive integer.

Proof. The difference of two successive terms u_n is $\approx N^{1/2}/N_1^{3/2}$. If this is $\leq 2\delta$, we get (2) by a simple combinatorial calculation.

Let us then assume (3). Let $D(N_1, \delta)$ be as above and choose $L = \lfloor N_1^{3/2}/(2N^{1/2}) \rfloor$ in (1). Now we can apply the following well-known estimate [Ti, Lemmas 4.3 and 4.8] to the exponential sum in (1):

$$\sum_{0 < n \le N_1} e(lu_n) = \int_{N_1}^{2N_1} e\left(l\sqrt{\frac{N}{x}}\right) dx + O(1) \ll \frac{N_1^{3/2}}{lN^{1/2}}.$$

to obtain the estimate

$$Z(N_1,\delta) \ll \delta N_1 + \frac{N_1}{L} + \frac{\delta N_1^{3/2}}{N^{1/2}} \sum_{l=1}^L \frac{1}{l} \ll \delta N_1 + \sqrt{\frac{N}{N_1}} + \log N,$$

which proves (4).

The last estimate follows when we use the estimate [Ti, Th. 5.9]

$$\ll \left(\frac{N}{N_1}\right)^{1/4} l^{1/2} + \frac{N_1^{5/4}}{N^{1/4} l^{1/2}}$$

for the exponential sum in (1). \blacksquare

LEMMA 3. For $N^{1/3} \leq N_0 \leq N$, we have

$$\Sigma_2 = \sum_{\substack{N-N_0 \le m, n \le N+N_0 \\ mn = \Box}} 1 \ll N_0 \log N.$$

Proof. Write $n = n_1 a^2$ and $m = n_1 b^2$, where n_1 is square-free. Then

$$\sqrt{\frac{N-N_0}{n_1}} \le a, b \le \sqrt{\frac{N+N_0}{n_1}}$$

and the length of the interval is $\ll N_0/\sqrt{n_1N}$. We distinguish some cases depending on the size of the number n_1 .

If $n_1 \leq N_0^2/N$, then $N_0/\sqrt{n_1N} \gg 1$ and the length of the interval can be used directly to estimate the number of the numbers a and b. In this case there are at most

$$\sum_{n_1 \le N_0^2/N} \frac{N_0}{\sqrt{n_1 N}} \cdot \frac{N_0}{\sqrt{n_1 N}} \ll \frac{N_0^2}{N} \log N \ll N_0 \log N$$

pairs of numbers m, n.

If the length of the interval where the numbers a and b lie is smaller than one, that is, $n_1 > N_0^2/N$, then we count only those numbers n_1 which really give some integers a and b, and at the same time a pair of numbers m, n.

Let $N_1 < n_1 \leq 2N_1$. The case $N_1 \ll N^{1/3}$ is clear, since there cannot be more pairs m, n than there are numbers n_1 and $N^{1/3} \leq N_0$. Therefore we can assume that $N_1 \geq (4N)^{1/3}$.

We apply Lemma 2 with $\delta = N_0/\sqrt{NN_1}$. If $N/(2N_0) \leq N_1$, then (2) gives the estimate $\ll N_0\sqrt{N_1/N} \leq N_0$, and from (4) we get the estimate $\ll \sqrt{N/N_1} \ll N_0$ when $N/(2N_0) > N_1$.

Since the sum $\sum_{N_0^2/N < n_1 \le N}$ can be divided into parts of the form $\sum_{A < n_1 \le 2A}$ which all are, as we have seen, at most $O(N_0)$, the lemma is proved.

LEMMA 4. For
$$N^{3/5} \leq N_0 \leq N$$
, we have

$$\Sigma_4 = \sum_{\substack{N-N_0 \leq m, n, r, s \leq N+N_0 \\ mnrs = \Box}} 1 \ll N_0^2 N^{\varepsilon}.$$

Proof. The idea of the proof is as above. We write nrs = k, and then

$$\Sigma_4 \le \sum_{\substack{N-N_0 \le m \le N+N_0 \ (N-N_0)^4/m \le k \le (N+N_0)^4/m \\ mk = \Box}} d_3(k),$$

where d₃ is a divisor function in the standard notation. If $m = m_1 m_2^2$ with m_1 square-free, then k must be of the shape $m_1 x^2$. There are $\ll N_0 \sqrt{N/m_1}$ numbers x, and m_2 lies in an interval of length $\ll \sqrt{N/m_1} \cdot N_0/N \ll$

 $N_0/\sqrt{m_1N}$. The cases $m_1 \leq N_0^2/N$ and $m_1 \approx M_1 \geq N/(2N_0)$ are similar to the previous lemma and the case $N_0^2/N < M_1 < N/(2N_0)$ follows from (5) by choosing $L = \lfloor N_0^2 M_1^{3/2}/N^{3/2} \rfloor$; note that $L \geq 1$ by our assumption on N_0 .

LEMMA 5. Let χ_q be a primitive real character modulo q and let $a = \frac{1}{2}(1 - \chi_q(-1))$. The Dirichlet L-function satisfies the functional equation

$$L(s,\chi_q) = \psi(s,\chi_q)L(1-s,\chi_q)$$

where

$$\psi(s,\chi_q) = 2^s \frac{G(\chi_q)}{i^a \sqrt{\pi q}} \left(\frac{\pi}{q}\right)^{s-1/2} \Gamma(1-s) \sin\frac{\pi}{2}(s+a),$$

and $G(\chi_q)$ is a Gaussian sum. Furthermore

(6)
$$\psi(s,\chi_q) \ll (q|s|)^{1/2-\sigma},$$

when $\sigma \leq 1/2$.

Proof. It is well-known that the *L*-function has the above functional equation. To verify the bound of the ψ -function, we only need some estimates for the Γ -function, since $|G(\chi_q)/(i^a\sqrt{\pi q})| = 1$.

By Stirling's formula we get the following well known estimates:

(7)
$$|\Gamma(s)| = \sqrt{2\pi} t^{\sigma - 1/2} e^{-(\pi/2)t} (1 + O(1/t))$$

where σ is bounded and $t \to \infty$, and

$$\frac{\Gamma'}{\Gamma}(s) = \log s - \frac{1}{2s} + O\left(\frac{1}{|s|^2}\right),$$

where $|\arg s| \le \pi - \delta, |s| \ge \delta > 0.$

We can now write, for $\sigma \geq 1/2$,

$$\begin{split} \log \left| \frac{\Gamma(\sigma + it)}{\Gamma(1/2 + it)} \right| &= \operatorname{Re} \int_{1/2}^{\sigma} \frac{\Gamma'}{\Gamma}(u + it) \, du \\ &= \operatorname{Re} \int_{1/2}^{\sigma} \left(\log(u + it) - \frac{1}{2(u + it)} + O\left(\frac{1}{u^2 + t^2}\right) \right) du \\ &= \frac{1}{2} \int_{1/2}^{\sigma} \log(u^2 + t^2) \, du - \frac{1}{2} \log \frac{|\sigma + it|}{|1/2 + it|} + O(1) \\ &< \frac{1}{2} \log[(\sigma^2 + t^2)^{\sigma - 1/2}] + O(1). \end{split}$$

The above estimates give

$$|\Gamma(\sigma+it)| = \left|\Gamma\left(\frac{1}{2}+it\right)\right| \cdot \left|\frac{\Gamma(\sigma+it)}{\Gamma(1/2+it)}\right| \ll e^{-(\pi/2)t}|s|^{\sigma-1/2}$$

when $\sigma \ge 1/2$. Since $\sin \frac{\pi}{2}(s+a) \ll e^{(\pi/2)t}$, we have $\psi(s, \chi_q) \ll (q|s|)^{1/2-\sigma}$ when $\sigma \le 1/2$.

3. Proof of the Theorem. We first prove the desired estimate if χ is restricted to primitive characters, that is, $\chi \in S^*(X)$.

Using the classical Pólya–Vinogradov estimate, we see that the case $Y \gg X$ is clear. If we first square out the sum and then use Lemma 1, we see that also the case $Y \ll X^{1/2+\varepsilon}$ is clear.

To estimate the sum when $X^{1/2+\varepsilon} \ll Y \ll X$ we use the reflection principle. We start with the familiar formula

$$e^{-x} = (2\pi i)^{-1} \int_{(c)} \Gamma(s) x^{-s} ds, \quad x, c > 0.$$

Making the substitutions $x = Y^h$ and s = w/h, where h > 1, we get

$$e^{-Y^{h}} = (2\pi i)^{-1} \int_{(c)} \Gamma\left(1 + \frac{w}{h}\right) Y^{-w} w^{-1} dw.$$

Now let Y = n/N. Multiplying both sides by $\chi(n)$ and summing over n, we have

$$\sum_{n=1}^{\infty} \chi(n) e^{-(n/N)^h} = (2\pi i)^{-1} \int_{(c)} \Gamma\left(1 + \frac{s}{h}\right) \frac{N^s}{s} L(s,\chi) \, ds.$$

Consider the sum

(8)
$$\sum_{\chi \in S^*(X)} \Big| \sum_{N < n \le M} \chi(n) \Big|^4,$$

where $X^{1/2+\varepsilon} \ll N \simeq M \ll X$ and $S^*(X)$ as in Lemma 1. It is clear that the desired estimate for this sum implies the same estimate for the sum $S_2(X,Y)$ when $X^{1/2+\varepsilon} \ll Y \ll X$. We start with the weighted sum

$$S = \sum_{n=1}^{\infty} \chi(n) (e^{-(n/M)^h} - e^{-(n/N)^h})$$

= $(2\pi i)^{-1} \int_{(c)} \Gamma\left(1 + \frac{s}{h}\right) \frac{M^s - N^s}{s} L(s, \chi) \, ds$.

Let us then move the integration line to $\sigma = -\varepsilon$, and use the functional equation for the *L*-function. We can cut the integration line at |t| = T, where $T = Ch \log X$, with a small error, since the Γ -function makes the integrand small when |t| > T. Now we divide the *L*-series, and hence the integral, into two parts $\sum_{n \le K}$ and $\sum_{n > K}$ where $K = CX^{1/2} \log^3 X$. Then we fix $h = (CM \log X)/X^{1/2}$, and move the integration line in the first integral to $\sigma = 1/2$, and in the second integral to $\sigma = -h/2$. By the choice of the parameters h, K and T we see that all the integrals over the horizontal segments are o(1). So we have

$$S = (2\pi i)^{-1} \int_{1/2 - iT}^{1/2 + iT} \Gamma\left(1 + \frac{s}{h}\right) \frac{M^s - N^s}{s} \psi(s, \chi) \sum_{n \le K} \chi(n) n^{s-1} ds + (2\pi i)^{-1} \int_{-h/2 - iT}^{-h/2 + iT} \Gamma\left(1 + \frac{s}{h}\right) \frac{M^s - N^s}{s} \psi(s, \chi) \sum_{n > K} \chi(n) n^{s-1} ds + o(1).$$

The second integral above is also small. Indeed, since $h/2 \le |s| \ll T = Ch \log X$ and estimates (6) and (7) are valid, this integral is

$$\ll \int_{-T}^{T} e^{-\frac{\pi}{2h}|t|} \left(\frac{MK}{q|s|}\right)^{-h/2} q^{1/2} |s|^{-1/2} dt \ll \left(\frac{C}{\log X}\right)^{h/2} \left(\frac{q}{h}\right)^{1/2} = o(1),$$

where K and h are as above and h is at least $\log X$. So

$$S = (2\pi i)^{-1} \int_{1/2 - iT}^{1/2 + iT} \Gamma\left(1 + \frac{s}{h}\right) \frac{M^s - N^s}{s} \psi(s, \chi) \sum_{n \le K} \chi(n) n^{s-1} \, ds + o(1).$$

We write $\phi(s) = |\Gamma(1 + s/h)s^{-1}|$ noting that $\int_{1/2-iT}^{1/2+iT} \phi(s) |ds| \ll \log T$. Using the Schwarz inequality twice we get

$$\begin{split} |S|^4 &\ll M^2 \log^2 T \frac{\int\limits_{1/2 - iT}^{1/2 + iT} \phi(s) \left| ds \right| \int\limits_{1/2 - iT}^{1/2 + iT} \phi(s) \left| \sum_{n \le K} \chi(n) n^{s-1} \right|^4 \left| ds \right| + 1 \\ &\ll M^2 \log^3 T \frac{\int\limits_{1/2 - iT}^{1/2 + iT} \phi(s) \left| \sum_{n \le K} \chi(n) n^{s-1} \right|^4 \left| ds \right| + 1 \\ &= M^2 \log^3 T \frac{\int\limits_{1/2 - iT}^{1/2 + iT} \phi(s) \left| \sum_{n \le K^2} c(n) \chi(n) n^{s-1} \right|^2 \left| ds \right| + 1, \end{split}$$

where $c(n) \leq d(n)$.

γ

For given s we can use the same estimation as in the case $Y \ll X^{1/2+\varepsilon}$. Now Heath-Brown's estimate is applied with $a_n = c(n)/n^{1/2+it}$, and

$$\sum_{nm=\square} |a_n a_m| \ll \sum_{n \le K^2} \frac{\mathrm{d}^2(n^2)}{n} \ll K^{\varepsilon}.$$

The mean value of the character sum is therefore $\ll_{\varepsilon} X^{\varepsilon}(X+K^2)$.

So the sum of $|S|^4$ over primitive characters is

$$\ll_{\varepsilon} M^2 \log^3 T \int_{1/2 - iT}^{1/2 + iT} \phi(s) X^{\varepsilon} (X + K^2) |ds|$$
$$\ll_{\varepsilon} M^2 \log^4 T X^{\varepsilon} (X + K^2) \ll_{\varepsilon} X M^2 X^{\varepsilon}.$$

Next, consider the error caused by the smoothing. The difference of the original sum and the smoothed sum is

$$\sum_{N < n \le M} \chi(n) - \sum_{n=1}^{\infty} \chi(n) (e^{-(n/M)^h} - e^{-(n/N)^h}) = \sum_{n=1}^{\infty} w(n) \chi(n),$$

where w(n) is small unless $|n - N| \ll N_0$ or $|n - M| \ll N_0$, and $N_0 = C\frac{N}{h}\log N \simeq X^{1/2}$.

Let us estimate the sum

$$\sum_{\chi \in S^*(X)} \Big| \sum_{|n-N| \ll N_0} w(n) \chi(n) \Big|^4,$$

where w(n) is as above. Squaring out the character sum and applying the result of Heath-Brown we get

$$\sum_{\chi \in S^*(X)} \left| \sum_{|n-N^2| \ll NN_0} a_n \chi(n) \right|^2 \ll_{\varepsilon} X^{\varepsilon} (X+N^2) \sum_{nm=\Box} |a_n a_m|.$$

where

$$\sum_{nm=\square} |a_n a_m| \ll \sum_{\substack{N-N_0 \ll n, m, r, s \ll N+N_0\\nmrs=\square}} 1.$$

By Lemma 4 the last sum is $\ll N_0^2 N^{\varepsilon}$, when $X^{1/2+\varepsilon} \ll N \leq X^{3/4}$, so in this case the error is at most $\ll_{\varepsilon} X N^2 X^{\varepsilon}$.

When $X^{3/4} \leq N \ll X$, we can first estimate trivially the square of the character sum and then apply Heath-Brown's estimate to obtain

$$\ll N_0^2 \sum_{\chi \in S^*(X)} \Big| \sum_{|n-N| \ll N_0} w(n)\chi(n) \Big|^2 \ll_{\varepsilon} X^{1+\varepsilon}(X+N) \sum_{nm=\Box} |a_n a_m|,$$

where

$$\sum_{nm=\square} |a_n a_m| \ll \sum_{\substack{N-N_0 \ll n, m \ll N+N_0 \\ nm=\square}} 1.$$

And Lemma 3 gives the estimate

$$\ll_{\varepsilon} X^{2+\varepsilon} N_0 N^{\varepsilon} \ll_{\varepsilon} X^{5/2+\varepsilon},$$

which is $\ll_{\varepsilon} X N^2 X^{\varepsilon}$, when $X^{3/4} \leq N \ll X$.

256

The above results gives the desired estimate for primitive characters. But it is easy to generalize the same estimate to all real characters (see for example [Ar]). So the Theorem is proved.

Acknowledgements. I am grateful to Professor Jutila for suggesting this problem and for valuable advice.

References

- [Ar] M. V. Armon, Averages of real character sums, J. Number Theory 77 (1999), 209–226.
- [HB] D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235–275.
- [I] A. Ivić, The Riemann Zeta-Function, Wiley, 1985.
- [J1] M. Jutila, On character sums and class numbers, J. Number Theory 5 (1973), 203–214.
- [J2] —, On sums of real characters, Proc. Steklov Inst. Math. 132 (1973), 283–286.
- [Mo] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1994.
- [Ti] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, 1951.

Department of Mathematics University of Turku FIN-20014 Turku, Finland E-mail: hekavi@utu.fi

> Received on 30.7.2001 and in revised form on 24.9.2001

(4086)