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On a theorem of Erdős and Fuchs

by

Gábor Horváth (Budapest)

Let k ≥ 2 be a fixed integer, let A(j) = {a(j)
1 , a

(j)
2 , . . .} (j = 1, . . . , k) be

nondecreasing infinite sequences of nonnegative integers, and let

rk(n) = |{(i1, . . . , ik) : a(1)
i1

+a(2)
i2

+ . . .+ a
(k)
ik
≤ n, a(j)

ij
∈ A(j) (j = 1, . . . , k)}|,

and c > 0.
Erdős and Fuchs [1] showed that if k = 2 and A(1) ≡ A(2), then

r2(n) = cn+ o(n1/4(logn)−1/2)(1)

cannot hold.
Sárközy [3] extended this theorem to two sequences which are “near” in

a certain sense. He proved that if

a
(2)
i − a

(1)
i = o((a(1)

i )1/2(log a(1)
i )−1),(2)

then (1) cannot hold. (A simple example shows that a condition of type (2)
is necessary: Let A(j) = {∑l εl2

lk+j : εl = 0 or 1} for j = 1, . . . , k. Then
rk(n) = n+ 1, thus rk(n)− n = O(1).)

In [2] I extended this result to the case k > 2 and, among other things,
I showed that if we assume

a
(j)
i − a

(l)
i = o((min(a(j)

i , a
(l)
i ))1/2(log min(a(j)

i , a
(l)
i ))−1−1/(k−1))(3)

for all 1 ≤ j < l ≤ k, then

rk(n) = cn+ o(n1/4(logn)−1/2−3/(2(k−1)))(4)

cannot hold. In this paper I will show that, at the price of replacing the
error term in (4) by a slightly weaker one, condition (3) can be replaced
by a much weaker assumption. Namely, perhaps somewhat unexpectedly, it
suffices to assume that two of the given sequences A(j) are “near”:
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Theorem. If k ≥ 2, a(1)
i − a

(2)
i = o((a(1)

i )1/2(log a(1)
i )−k/2) and

∑

a
(j)
i ≤N

1�
∑

a
(1)
i ≤N

1�
∑

a
(j)
i ≤N

1 for j = 3, . . . , k,

then

rk(n) = cn+ o(n1/4(logn)1−3k/4)(5)

cannot hold.

Proof. Suppose that (5) holds. Let v(n) = rk(n) − cn and Fj(z) =
∑∞

i=1 z
a

(j)
i (j = 1, . . . , k). Then for |z| < 1,

1
1− z F1(z) . . . Fk(z) =

∞∑

n=0

rk(n)zn = c

∞∑

n=0

nzn +
∞∑

n=0

v(n)zn

= c
z

(1− z)2 +
∞∑

n=0

v(n)zn,

hence

F1(z) . . . Fk(z) =
cz

1− z + (1− z)
∞∑

n=0

v(n)zn.(6)

Let ε be a fixed small positive number,N a large positive integer,m(n) =
[εn1/2(logn)−k/2], m = m(N), z = re(α), where r = 1 − 1/N and e(α) =
e2πiα (for real α). Let

(7)

J =
1�

0

|F1(z) . . . Fk(z)|
∣∣∣∣
1− zm
1− z

∣∣∣∣
2

dα,

J1 = c

1�

0

|1− z|−1
∣∣∣∣
1− zm
1− z

∣∣∣∣
2

dα,

J2 =
1�

0

∣∣∣(1− z)
∞∑

n=0

v(n)zn
∣∣∣
∣∣∣∣
1− zm
1− z

∣∣∣∣
2

dα.

Then, by (6),

J ≤ J1 + J2.(8)

We first estimate J . By (7),

J ≥
∣∣∣∣

1�

0

F1(z)F2(z)F3(z) . . . Fk(z)

∣∣∣∣
1− zm
1− z

∣∣∣∣
2

dα

∣∣∣∣

=
∣∣∣

1�

0

(
F1(z)F2(z)

m−1∑

t=0

rte(−tα)
)(
F3(z) . . . Fk(z)

m−1∑

t=0

rte(tα)
)
dα
∣∣∣.
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Let
∞∑

b=−∞
gbe(bα) = F1(z)F2(z)

m−1∑

t=0

rte(−tα),

∞∑

i=0

hie(iα) = F3(z) . . . Fk(z)
m−1∑

t=0

rte(tα)

(so that all the coefficients gb, hi are nonnegative). Then

J ≥
∣∣∣

1�

0

∞∑

b=−∞
gbe(bα)

∞∑

i=0

hie(iα) dα
∣∣∣ =

∑

b+i=0

gbhi ≥
∑

m/4≤i≤m/2
g−ihi.(9)

If m/4 ≤ i ≤ m/2, then

hi =
∑

a
(3)
i3

+...+a(k)
ik

+t=i
0≤t≤m−1

r
a

(3)
i3

+...+a(k)
ik

+t

≥ rN
∑

a
(3)
i3

+...+a(k)
ik

+t=i

0≤t≤m/2

1�
∑

a
(3)
i3

+...+a(k)
ik
≤m/4

1

since rN = (1− 1/N)N → 1/e.
For k > 2, since

∑

a
(j)
ij
≤m/(4(k−2))

1�
∑

a
(1)
i1
≤m/(4(k−2))

1 (j = 3, . . . , k),

it follows that for m/4 ≤ i ≤ m/2,

hi �
∑

a
(3)
i3

+...+a(k)
ik
≤m/4

1 ≥
( ∑

a
(3)
i3
≤m/(4(k−2))

1
)
. . .
( ∑

a
(k)
ik
≤m/(4(k−2))

1
)

�
( ∑

a
(1)
i1
≤m/(4(k−2))

1
)k−2

,

and thus, by (9),

J �
∑

m/4≤i≤m/2
g−i
( ∑

a
(1)
i1
≤m/(4(k−2))

1
)k−2

(10)

=
( ∑

a
(1)
i1
≤m/(4(k−2))

1
)k−2 ∑

m/4≤i≤m/2
g−i.

Since m = m(N) = [εN1/2(logN)−k/2] is eventually nondecreasing, and



324 G. Horváth

a
(1)
i1
− a

(2)
i1

= o((a(1)
i1

)1/2(log a(1)
i1

)−k/2), it follows that if a(1)
i1
≤ N , then

|a(1)
i1
− a

(2)
i1
| ≤ m(a(1)

i1
)/4 ≤ m(N)/4 = m/4 for all sufficiently large a(1)

i1
.

Hence, for all sufficiently large N , if a(1)
i1
≤ N , then |a(1)

i1
− a(2)

i1
| ≤ m/4. If

a
(1)
i1
≤ N −m, then a

(2)
i1
≤ a(1)

i1
+ |a(2)

i1
− a(1)

i1
| ≤ N −m+m/4 < N and

0 = m/4−m/4 ≤ i− |a(2)
i1
− a(1)

i1
| ≤ i+ a

(1)
i1
− a(2)

i1
≤ i+ |a(2)

i1
− a(1)

i1
|

≤ m/2 +m/4 < m− 1,

thus

g−i =
∑

a
(1)
i1
−a(2)

i2
−t=−i

0≤t≤m−1

ra
(1)
i1

+a(2)
i2

+t(11)

≥
∑

a
(1)
i1
−a(2)

i1
−t=−i

0≤t≤m−1

a
(1)
i1
,a

(2)
i1
≤N

ra
(1)
i1

+a(2)
i1

+t ≥ r3N
∑

a
(1)
i1
≤N−m

1�
∑

a
(1)
i1
≤N−m

1.

Hence, by (10) and (11),

J � m
( ∑

a
(1)
i1
≤m/(4(k−2))

1
)k−2 ∑

a
(1)
i1
≤N−m

1.(12)

Since a(2)
i −a

(1)
i = a

(1)
i (a(2)

i /a
(1)
i −1) and a(2)

i −a
(1)
i = o(m(a(1)

i )), so that

a
(2)
i /a

(1)
i = 1 + o(m(a(1)

i )/a(1)
i ) = 1 + o(1), it follows that

a
(2)
i − a

(1)
i

= o(m(a(1)
i )) = o((a(1)

i )1/2(log a(1)
i )−k/2)

= o((a(2)
i )1/2(log a(2)

i )−k/2)(a(1)
i (a(2)

i )−1)1/2((log a(2)
i )(log a(1)

i )−1)k/2

= o((a(2)
i )1/2(log a(2)

i )−k/2) = o(m(a(2)
i )).

As m is eventually nondecreasing, it follows that if a(2)
i ≤N , then |a(1)

i −a
(2)
i |

≤ m(a(2)
i )/4 ≤ m(N)/4 = m/4 for all sufficiently large a(2)

i . Hence, for all

sufficiently large N , if a(2)
i ≤ N , then |a(1)

i − a
(2)
i | ≤ m/4. Furthermore,

∑

a
(j)
ij
≤N−5m/4

1�
∑

a
(1)
i1
≤N−5m/4

1 for j = 3, . . . , k,
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and rk(N) ∼ cN , thus

N � rk(N/2) ≤ rk(N − [N/2]) ≤ rk(N − 5m/4)

=
∑

a
(1)
i1

+...+a(k)
ik
≤N−5m/4

1 ≤
k∏

j=1

∑

a
(j)
ij
≤N−5m/4

1

�
( k∏

j=1
j 6=2

∑

a
(1)
i1
≤N−5m/4

1
)( ∑

a
(1)
i2
≤N−m

1
)
≤
( ∑

a
(1)
i1
≤N−m

1
)k
,

hence
∑

a
(1)
i1
≤N−m

1� N1/k.(13)

By a similar argument for k > 2 and for all sufficiently large N , if
a

(2)
i ≤ N , then |a(1)

i − a
(2)
i | ≤ m/(8(k − 2)). Thus

m� rk

(
m

8(k − 2)

)
≤

k∏

j=1

∑

a
(j)
ij
≤m/(8(k−2))

1

�
( k∏

j=1
j 6=2

∑

a
(1)
i1
≤m/(8(k−2))

1
)( ∑

a
(1)
i2
≤m/(4(k−2))

1
)
≤
( ∑

a
(1)
i1
≤m/(4(k−2))

1
)k
,

hence
∑

a
(1)
i1
≤m/(4(k−2))

1� m1/k.(14)

By (12)–(14),

J � mm(k−2)/kN1/k = m2−2/kN1/k.(15)

We now estimate J1 and J2. Since

|1− z|2 = (1− r cos 2πα)2 + (r sin 2πα)2 = (1− r)2 + 2r(1− cos 2πα)

=
1
N2 + 4r sin2 πα

and

|(2/π)πα| ≤ |sinπα| for |α| ≤ 1/2,
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it follows that max(1/N 2, α2) � |1 − z|2, thus max(1/N,α) � |1 − z|.
Hence

J1 = c

1�

0

|1− z|−1
∣∣∣∣
1− zm
1− z

∣∣∣∣
2

dα� m2
1�

0

|1− z|−1 dα(16)

� m2
( 1/N�

0

|1− z|−1 dα+
1/2�

1/N

|1− z|−1 dα
)

� m2
(

1
N
N +

1/2�

1/N

1
α
dα

)
≤ m2(1 + logN)

� m2 logN.

By Cauchy’s inequality and Parseval’s formula,

J2 =
1�

0

∣∣∣(1− z)
∞∑

n=0

v(n)zn
∣∣∣
∣∣∣∣
1− zm
1− z

∣∣∣∣
2

dα(17)

≤ 2
1�

0

∣∣∣
∞∑

n=0

v(n)zn
∣∣∣
∣∣∣∣
1− zm
1− z

∣∣∣∣ dα

�
( 1�

0

∣∣∣
∞∑

n=0

v(n)zn
∣∣∣
2
dα
)1/2

( 1�

0

∣∣∣∣
1− zm
1− z

∣∣∣∣
2

dα

)1/2

≤
( ∞∑

n=0

|v(n)|2r2n
)1/2

m1/2.

By our assumption, v(n) = o(n1/4(logn)1−3k/4), therefore for every
η > 0, there exists a natural number K (≥ 2) such that for all n ≥ K,
|v(n)| ≤ ηn1/4(logn)1−3k/4 and n1/4(logn)1−3k/4 is nondecreasing. Then for
all N ≥ K,

∞∑

n=0

|v(n)|2r2n ≤
K−1∑

n=0

|v(n)|2 + η2
∞∑

n=K

n1/2(logn)2−3k/2r2n

≤
K−1∑

n=0

|v(n)|2 + η2NN1/2(logN)2−3k/2

+ η2
∞∑

j=0

2j+1N∑

n=2jN+1

n1/2(logn)2−3k/2rn.
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Since
∞∑

j=0

2j+1N∑

n=2jN+1

n1/2(logn)2−3k/2rn

≤
∞∑

j=0

2jN(2j+1N)1/2(log(2j+1N))2−3k/2r2jN

≤ N3/2(logN)2−3k/2
∞∑

j=0

2j+j/2+1/2e−2j = C0N
3/2(logN)2−3k/2,

it follows that
∞∑

n=0

|v(n)|2r2n ≤
K−1∑

n=0

|v(n)|2 + η2N3/2(logN)2−3k/2(1 + C0)

< ηN3/2(logN)2−3k/2

for η < (2(1 + C0))−1 and for N > N0(η). Thus
∞∑

n=0

|v(n)|2r2n = o(N3/2(logN)2−3k/2).(18)

By (17) and (18),

J2 = o(N3/4(logN)1−3k/4m1/2).(19)

By (8), (15), (16), and (19),

m2−2/kN1/k � m2 logN + o(m1/2N3/4(logN)1−3k/4).(20)

Since m = [εN1/2(logN)−k/2], (20) yields
(
ε

2
N1/2(logN)−k/2

)2−2/k

N1/k

� ε2N(logN)−k logN + o(ε1/2N1/4(logN)−k/4N3/4(logN)1−3k/4)

for all sufficiently large N , hence ε3/2−2/k � ε3/2 + o(1). Thus ε−2/k � 1;
but this cannot hold for sufficiently small ε. This completes the proof of the
theorem.
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