Sur la p-différente du corps des points de ℓ -torsion des courbes elliptiques, $\ell \neq p$

par

ÉLIE CALI (Boulogne) et ALAIN KRAUS (Paris)

Introduction. Soient p un nombre premier, K une extension finie non ramifi'ee de \mathbb{Q}_p et \overline{K} une clôture algébrique de K. Soient E une courbe elliptique définie sur K et ℓ un nombre premier. On désigne par E_ℓ le sous-groupe des points de ℓ -torsion de $E(\overline{K})$ et par $K(E_\ell)$ l'extension de K obtenue en adjoignant à K les coordonnées des points de E_ℓ . On s'intéresse dans ce travail à la détermination de l'entier D, caractérisé par les propriétés équivalentes suivantes :

- (a) la différente de l'extension $K(E_{\ell})/K$ est la puissance D-ième de l'idéal de valuation de $K(E_{\ell})$;
- (b) l'idéal discriminant de l'extension $K(E_{\ell})/K$ est engendré par $p^{nD/e}$, où n est le degré et e l'indice de ramification de l'extension $K(E_{\ell})/K$.

L'article [2] est consacré au cas où $\ell = p$. On se préoccupera ici du cas où ℓ et p sont distincts, ce que l'on supposera dans toute la suite.

- I. Énoncé des résultats. Considérons un corps K comme ci-dessus. Soit v la valuation de K qui prolonge celle de \mathbb{Q}_p ; on suppose que v est normée : on a v(p)=1. Soient E une courbe elliptique définie sur K et j son invariant modulaire. On note c_4 , c_6 et Δ les invariants standard associés à un modèle minimal de E sur K ([10, 1.]). Les entiers $v(c_4)$, $v(c_6)$ et $v(\Delta)$ sont indépendants du modèle minimal choisi (cf. loc. cit., 2.).
- **I.1.** Cas où E a bonne réduction sur K. Rappelons pour mémoire l'énoncé suivant :

Proposition 1. Si E a bonne réduction sur K, on a D=0.

C'est une conséquence directe du critère de Néron-Ogg-Shafarevich (cf. [9, p. 184, th. 7.1]).

²⁰⁰⁰ Mathematics Subject Classification: Primary 11G07.

I.2. Cas où v(i) < 0

Théorème 1. (a) Supposons que E ait réduction de type multiplicatif sur K. On a

$$D = \begin{cases} 0 & \text{si } \ell \text{ divise } v(j), \\ \ell - 1 & \text{si } \ell \text{ ne divise pas } v(j). \end{cases}$$

- (b) Supposons que E ait réduction de type additif sur K et que v(j) < 0.
 - (i) $Si \ p \neq 2$, on a

$$D = \begin{cases} 1 & \text{si ℓ divise $v(j)$ ou bien $si $\ell = 2$,} \\ 2\ell - 1 & \text{si ℓ ne divise pas $v(j)$ et $\ell \neq 2$.} \end{cases}$$

(ii) Si p = 2, on est dans l'un des cas suivants :

(ii.1)
$$v(c_6) = 6$$
,

$$D = \begin{cases} 2 & \text{si } \ell \text{ divise } v(j), \\ 3\ell - 1 & \text{si } \ell \text{ ne divise pas } v(j). \end{cases}$$
(ii.2) $v(c_6) = 9$,

$$D = \begin{cases} 3 & \text{si } \ell \text{ divise } v(j), \\ 4\ell - 1 & \text{si } \ell \text{ ne divise pas } v(j). \end{cases}$$

I.3. Cas où E a réduction de type additif sur K et où $v(j) \geq 0$

I.3.1. Cas où $p \geq 5$

Théorème 2. Supposons que E ait réduction de type additif sur K, et que l'on ait $v(j) \geq 0$ et $p \geq 5$. Soit m le dénominateur de $v(\Delta)/12$. On a

$$D = \begin{cases} m-1 & si \ \ell \neq 2, \\ 1 & si \ \ell = 2 \ et \ v(\varDelta) \ est \ impair, \\ 2 & si \ \ell = 2 \ et \ v(\varDelta) \ est \ pair \ et \ distinct \ de \ 6, \\ 0 & si \ \ell = 2 \ et \ v(\varDelta) = 6. \end{cases}$$

I.3.2. Cas où p = 3

Théorème 3. Supposons que E ait réduction de type additif sur K, et que l'on ait $v(j) \geq 0$ et p = 3.

(a) Supposons $\ell \geq 5$. On est dans l'un des cas suivants :

$v(\Delta)$	3	4	5	6	7
$v(c_6) = 3$	$D = 3 \ ou \ 15 \ (*)$	D=4	D = 15	D = 1	
$v(c_6) = 4$	D = 15		D = 23		
$v(c_6) = 5$	D=3			D=9	D = 23
$v(c_6) \ge 6$	D=3			D=1	

^(*) On a D=3 si et seulement si la congruence $4x^3-(c_4/3)x-c_6/27\equiv 0 \bmod 9$ a une solution dans l'anneau des entiers de K.

Si $K = \mathbb{Q}_3$, on a D = 3 si et seulement si $\Delta/27$ est congru à 2 ou 4 modulo 9.

$v(\Delta)$	9	10	11
$v(c_6) = 6$	$D = 3 \ ou \ 15 \ (**)$	D=9	D = 15
$v(c_6) = 7$	D = 15		D = 23
$v(c_6) \ge 8$	D=3		

(**) On a D=3 si et seulement si la congruence $4x^3-(c_4/27)x-c_6/729\equiv 0\bmod 9$ a une solution dans l'anneau des entiers de K.

Si $K = \mathbb{Q}_3$, on a D = 3 si et seulement si $\Delta/3^9$ est congru à 2 ou 4 modulo 9.

$v(\Delta)$	12	13		
$v(c_6) = 8$	D=4	D = 23		

(b) Supposons $\ell = 2$. On est dans l'un des cas suivants :

$v(\Delta)$	3	4	5	6	7
$v(c_6) = 3$	$D = 1 \ ou \ 7 \ (*)$	D=4	D=7	D = 0	
$v(c_6) = 4$	D = 7		D = 11		
$v(c_6) = 5$	D=1			D=4	D = 11
$v(c_6) \ge 6$	D = 1			D = 0	

(*) On a D=1 si et seulement si la congruence $4x^3-(c_4/3)x-c_6/27\equiv 0 \bmod 9$ a une solution dans l'anneau des entiers de K.

Si $K = \mathbb{Q}_3$, on a D = 1 si et seulement si $\Delta/27$ est congru à 2 ou 4 modulo 9.

$v(\Delta)$	9	10	11
$v(c_6) = 6$	$D = 1 \ ou \ 7 \ (**)$	D=4	D = 7
$v(c_6) = 7$	D = 7		D = 11
$v(c_6) \ge 8$	D=1		

(**) On a D=1 si et seulement si la congruence $4x^3-(c_4/27)x-c_6/729\equiv 0 \bmod 9$ a une solution dans l'anneau des entiers de K.

Si $K = \mathbb{Q}_3$, on a D = 1 si et seulement si $\Delta/3^9$ est congru à 2 ou 4 modulo 9.

$v(\Delta)$	12	13		
$v(c_6) = 8$	D=4	D = 11		

I.3.3. Cas où p=2. On suppose dans ce paragraphe que $K=\mathbb{Q}_2$. On notera $c_4'=c_4/2^{v(c_4)},\ c_6'=c_6/2^{v(c_6)},\ \Delta'=\Delta/2^{v(\Delta)}.$ On désignera respectivement par $\overline{c_4'},\ \overline{c_6'}$ et $\overline{\Delta'}$ les classes modulo $4\mathbb{Z}_2$ de $c_4',\ c_6'$ et Δ' .

THÉORÈME 4. Supposons que E ait réduction de type additif sur \mathbb{Q}_2 , et que l'on ait $v(j) \geq 0$. On est dans l'un des cas suivants :

$v(\Delta)$	4	6
$v(c_4) = 4$	$\begin{cases} \overline{c_4'} = -1 \\ \overline{c_6'} = 1 \end{cases} \Rightarrow D = 2$ $\begin{cases} \overline{c_4'} = -1 \\ \overline{c_6'} = -1 \end{cases} \Rightarrow D = 8$ $\begin{cases} \overline{c_4'} = 1 \\ \overline{c_6'} = -1 \end{cases} \Rightarrow D = 32$	$\overline{c_4'} = -1 \Rightarrow D = 16$
	$\begin{cases} \overline{c_4'} = 1\\ \overline{c_6'} = 1 \end{cases} \Rightarrow D = 38$	$\overline{c_4'} = 1 \Rightarrow D = 18$
$v(c_4) = 5$	$\frac{\overline{c_6'}}{\overline{c_6'}} = 1 \Rightarrow D = 32$ $\overline{c_6'} = -1 \Rightarrow D = 38$	D = 18
$v(c_4) \geq 6$	$\overline{c_6'} = 1 \Rightarrow D = 2$ $\overline{c_6'} = -1 \Rightarrow D = 8$	D=3

$v(\Delta)$	7	8	9	10
		$\begin{cases} \frac{\overline{\Delta'}}{c'_6} = -1 \\ \frac{\overline{C'}}{c'_6} = 1 \end{cases} \Rightarrow D = 8$	_	$\overline{c_6'} = 1 \Rightarrow D = 38$
$v(c_4) = 4$	D = 68	$\begin{cases} \frac{\Delta' = -1}{c'_6 = -1} \Rightarrow D = 2\\ \begin{cases} \frac{\overline{\Delta'}}{c'_6 = 1} \Rightarrow D = 32 \end{cases}$	D = 16	$\overline{c_6'} = -1 \Rightarrow D = 32$
		$\begin{cases} c_6' = 1 \\ \frac{\overline{\Delta'}}{c_6'} = 1 \\ \frac{\overline{c_6'}}{c_6'} = -1 \end{cases} \Rightarrow D = 38$		0
$v(c_4) = 5$		D = 68	$v(c_6) = 8 \Rightarrow D = 11$ $v(c_6) > 8 \Rightarrow D = 24$	
$v(c_4) = 6$		$\overline{c'_6} = 1 \Rightarrow D = 32$ $\overline{c'_6} = -1 \Rightarrow D = 38$		$\overline{c_4'} = -1 \Rightarrow D = 11$ $\overline{c_4'} = 1 \Rightarrow D = 50$
$v(c_4) = 7$		$\overline{c_6'} = 1 \Rightarrow D = 2$ $\overline{c_6'} = -1 \Rightarrow D = 8$		D = 50
$v(c_4) \geq 8$		$\overline{c_6'} = 1 \Rightarrow D = 2$ $\overline{c_6'} = -1 \Rightarrow D = 8$		D = 11

$v(\Delta)$	11	12	13	14
$v(c_4) = 4$	$\overline{c_6'} = 1 \Rightarrow D = 38$ $\overline{c_6'} = -1 \Rightarrow D = 32$	D=2		
$v(c_4) = 6$		$\overline{c_4'} = 1 \Rightarrow D = 16$ $\overline{c_4'} = -1 \Rightarrow D = 18$	D = 68	$\overline{\Delta'} = -1 \Rightarrow D = 11$ $\overline{\Delta'} = 1 \Rightarrow D = 50$
$v(c_4) = 7$		D = 16		D = 68
$v(c_4) = 8$		D=2		D = 50
$v(c_4) \ge 9$		D=2		D = 11

$v(\Delta)$	15	16	17	18
$v(c_4) = 6$	D = 18	D = 50	D = 50	D=3
$v(c_4) = 7$	$v(c_6) = 11 \Rightarrow D = 11$ $v(c_6) > 11 \Rightarrow D = 24$			

II. Démonstrations. Dans toute la suite on désignera par K_{nr} l'extension non ramifiée maximale de K contenue dans \overline{K} . On notera encore v le prolongement à \overline{K} de la valuation de K.

Rappel ([2, p. 411]). Soient N une extension finie de K_{nr} et M une extension galoisienne finie de N. La différente de l'extension M/N s'obtient de la façon suivante : soit $(G_i)_{i\geq 0}$ la suite des sous-groupes de ramification de l'extension M/N. Si π est une uniformisante de M, le groupe G_i est le sous-groupe du groupe de Galois Gal(M/N) formé des éléments σ tels que

$$v(\sigma(\pi) - \pi) \ge \frac{i+1}{[M:K_{nr}]},$$

où $[M:K_{\rm nr}]$ est le degré de M sur $K_{\rm nr}$. Le groupe G_i est réduit à l'élément neutre si i est assez grand. On a $G_0 = \operatorname{Gal}(M/N)$ et G_1 est le p-sousgroupe de Sylow de $\operatorname{Gal}(M/N)$. La différente de l'extension M/N est alors la puissance γ -ième de l'idéal de valuation de M, où

(1)
$$\gamma = \sum_{i \ge 0} (|G_i| - 1).$$

Si le degré de l'extension M/N est premier à p, on a donc

$$\gamma = |G_0| - 1.$$

II.1. Le théorème 1. On a par hypothèse v(j) < 0. Il existe donc une unique extension minimale L de K, de degré au plus 2 sur K, sur laquelle E est isomorphe à la courbe de Tate $\mathbb{G}_m/q^{\mathbb{Z}}$, où q est l'élément entier de K^*

défini par l'égalité (cf. [8, IV, pp. 29-30], ou [9, pp. 355-357]) :

$$j = \frac{1}{q} + 744 + 196884q + \dots$$

Rappelons le lemme suivant (cf. [6, p. 276], si E a réduction multiplicative) :

LEMME 1. On a $L = K(\sqrt{-c_6})$.

 $D\acute{e}monstration.$ La courbe de Tate $\mathbb{G}_m/q^{\mathbb{Z}}$ admet un modèle de Weierstrass de la forme

$$y^2 = x^3 - \frac{c_4(q)}{48}x - \frac{c_6(q)}{864},$$

tel que l'on ait (cf. loc. cit.)

(4)
$$-c_6(q) \equiv 1 - 504q \mod q^2.$$

Les courbes elliptiques E et $\mathbb{G}_m/q^{\mathbb{Z}}$ étant isomorphes sur L, il existe un élément u de L tel que

$$c_4 = u^4 c_4(q)$$
 et $c_6 = u^6 c_6(q)$.

On a L = K(u) et u^2 appartient à K. Par suite, on a l'égalité

$$L = K\left(\sqrt{\frac{c_6}{c_6(q)}}\right).$$

Par ailleurs, d'après la congruence (4), $-c_6(q)$ est un carré dans K. Cela entraı̂ne le lemme.

Choisissons une racine ℓ -ième $q^{1/\ell}$ de q dans \overline{K} .

PROPOSITION 2. 1) Supposons que E ait réduction de type multiplicatif sur K. Alors, on a $K_{\rm nr}(E_\ell) = K_{\rm nr}(q^{1/\ell})$.

2) Supposons que E ait réduction de type additif sur K. Alors, $-c_6$ n'est pas un carré dans K_{nr} et l'on a $K_{nr}(E_\ell) = K_{nr}(\sqrt{-c_6}, q^{1/\ell})$.

 $D\acute{e}monstration$. Soit μ_{ℓ} le sous-groupe des racines ℓ -ièmes de l'unité de \overline{K} . Puisque E est isomorphe à la courbe de Tate $\mathbb{G}_m/q^{\mathbb{Z}}$ sur L, on a l'égalité

(5)
$$L(E_{\ell}) = L(\mu_{\ell}, q^{1/\ell}).$$

(La preuve de la formule (5) est la même que celle de l'égalité (4), p. 413 de [2]; le fait que, dans notre situation, ℓ soit distinct de p n'intervient pas.)

Supposons que E ait réduction multiplicative sur K. Alors, L est une extension non ramifiée de K (cf. [9, th. 14.1]). D'après (5), on a donc $K_{\rm nr}(E_\ell) = K_{\rm nr}(\mu_\ell, q^{1/\ell})$. Puisque ℓ est distinct de p, le groupe μ_ℓ est contenu dans $K_{\rm nr}$; d'où l'assertion 1).

Supposons que E ait réduction additive sur K. Dans ce cas, L est une extension ramifiée de K (cf. loc. cit.). D'après le lemme 1, $-c_6$ n'est donc pas un carré dans K_{nr} . Par ailleurs, il résulte du lemme 1 et de l'égalité (5)

que $K_{\rm nr}(E_\ell)$ est contenu dans $K_{\rm nr}(\sqrt{-c_6},q^{1/\ell})$. Inversement, démontrons l'inclusion

(6)
$$K_{\rm nr}(\sqrt{-c_6}, q^{1/\ell}) \subseteq K_{\rm nr}(E_\ell).$$

Considérons pour cela le caractère quadratique ε associé à l'extension $K_{\rm nr}(\sqrt{-c_6})/K_{\rm nr}$. La courbe de Tate $\mathbb{G}_m/q^{\mathbb{Z}}$ possède un point d'ordre ℓ rationnel sur $K_{\rm nr}$ (cf. [8, IV, p. 31], en tenant compte du fait que μ_ℓ est contenu dans $K_{\rm nr}$). Puisque les courbes elliptiques E et $\mathbb{G}_m/q^{\mathbb{Z}}$ sont isomorphes sur $K_{\rm nr}(\sqrt{-c_6})$, elles se déduisent l'une de l'autre par torsion par le caractère ε . On déduit de là qu'il existe une base de E_ℓ dans laquelle la représentation donnant l'action de $\operatorname{Gal}(\overline{K}/K_{\rm nr})$ sur E_ℓ s'écrit matriciellement sous la forme $\binom{\varepsilon}{0} {\varepsilon \choose 0}$. Par conséquent, si σ est un élément de $\operatorname{Gal}(\overline{K}/K_{\rm nr}(E_\ell))$, on a $\varepsilon(\sigma)=1$, autrement dit, σ fixe $\sqrt{-c_6}$. D'après (5), σ fixe aussi $q^{1/\ell}$, ce qui prouve l'inclusion (6), puis l'assertion 2). D'où la proposition.

Notons n_{ℓ} le degré de l'extension $K_{\rm nr}(E_{\ell})/K_{\rm nr}$.

COROLLAIRE 1. 1) Si E a réduction de type multiplicatif sur K, on a

(7)
$$n_{\ell} = \begin{cases} 1 & \text{si } \ell \text{ divise } v(j), \\ \ell & \text{si } \ell \text{ ne divise pas } v(j). \end{cases}$$

2) Si E a réduction de type additif sur K, on a

(8)
$$n_{\ell} = \begin{cases} 2 & \text{si } \ell \text{ divise } v(j) \text{ ou bien si } \ell = 2, \\ 2\ell & \text{si } \ell \text{ ne divise pas } v(j) \text{ et } \ell \neq 2. \end{cases}$$

Démonstration. D'après (3), on a v(j) = -v(q). Puisque ℓ et p sont distincts, q est une puissance ℓ -ième dans $K_{\rm nr}$ si et seulement si ℓ divise v(q). Par ailleurs, si $\ell = 2$, on a $p \geq 3$, et dans ce cas il existe une unique extension quadratique de $K_{\rm nr}$. Compte tenu de ces remarques, le corollaire est une conséquence directe de la proposition 2.

Démonstration du théorème 1. 1) Supposons que E ait réduction multiplicative sur K. Les formules (2) et (7) entraı̂nent alors l'assertion (a) du théorème.

- 2) Supposons que E ait réduction additive sur K.
- 2.1) Si l'on a $p \neq 2$, le théorème résulte directement des formules (2) et (8).
- 2.2) Supposons p=2. Il résulte de l'inégalité v(j)<0, que l'on a (cf. [4, p. 129])

$$v(c_6) = 6$$
 ou bien $v(c_6) = 9$.

Notons D' l'entier tel que la différente de l'extension $K_{\rm nr}(E_\ell)/K_{\rm nr}(\sqrt{-c_6})$ soit la puissance D'-ième de l'idéal de valuation de $K_{\rm nr}(E_\ell)$. Soit D'' l'analogue de D' en ce qui concerne la différente de l'extension $K_{\rm nr}(\sqrt{-c_6})/K_{\rm nr}$.

Lemme 2. On a

$$D'' = \begin{cases} 2 & si \ v(c_6) = 6, \\ 3 & si \ v(c_6) = 9. \end{cases}$$

Démonstration. Posons $c_6' = c_6 2^{-v(c_6)}$. Soient $(H_i)_{i\geq 0}$ la suite des sous-groupes de ramification de l'extension $K_{\rm nr}(\sqrt{-c_6})/K_{\rm nr}$ et σ l'élément non trivial du groupe de Galois de $K_{\rm nr}(\sqrt{-c_6})$ sur $K_{\rm nr}$. L'indice de ramification absolu de K étant égal à 1, le groupe H_3 est trivial (cf. [7, p. 79, 3) alinéa c)]).

Supposons $v(c_6) = 6$. On a dans ce cas $K_{\rm nr}(\sqrt{-c_6}) = K_{\rm nr}(\sqrt{-c_6'})$. On a l'égalité $v(\sigma(\sqrt{-c_6'}) - \sqrt{-c_6'}) = 1$, ce qui entraı̂ne que H_2 est trivial (cf. loc. cit., p. 69, lemme 1). D'après la formule (1) on a donc D'' = 2.

Supposons $v(c_6) = 9$. On a alors $K_{\rm nr}(\sqrt{-c_6}) = K_{\rm nr}(\sqrt{-2c_6'})$. L'élément $\pi = \sqrt{-2c_6'}$ est une uniformisante de $K_{\rm nr}(\sqrt{-c_6})$, et l'on a $v(\sigma(\pi) - \pi) = 3/2$. On en déduit que H_2 est d'ordre 2, puis que D'' = 3. D'où le lemme.

Supposons que ℓ divise v(j). D'après (8), on a $n_{\ell} = 2$ et $K_{\rm nr}(E_{\ell}) = K_{\rm nr}(\sqrt{-c_6})$. On a donc D = D'' et le résultat dans ce cas (lemme 2).

Supposons que ℓ ne divise pas v(j). On a $\ell \neq 2$ et le degré de $K_{\rm nr}(E_{\ell})$ sur $K_{\rm nr}(\sqrt{-c_6})$ est égal à ℓ . On a par transitivité des différentes $D = D' + \ell D''$ (cf. loc. cit., p. 60, prop. 8). L'égalité $D' = \ell - 1$ (car $\ell \neq p$) et le lemme 2 entraînent alors le résultat.

Cela termine la démonstration du théorème 1.

- II.2. Le théorème 2. 1) Supposons $\ell \neq 2$. Puisque ℓ est distinct de p, $K_{\rm nr}(E_{\ell})$ est l'extension minimale de $K_{\rm nr}$ sur laquelle E acquiert bonne réduction ([3, p. 6, prop.]). Par ailleurs, p étant supérieur ou égal à 5, l'extension $K_{\rm nr}(E_{\ell})/K_{\rm nr}$ est modérément ramifiée de degré m ([1, prop. 1]). D'après la formule (2), on a donc D=m-1.
- 2) Supposons $\ell = 2$. Notons d le degré de l'extension $K_{\rm nr}(E_2)/K_{\rm nr}$. D'après la proposition de [3, p. 6], on a

$$d = m$$
 ou $d = m/2$.

- 2.1) Supposons que $v(\Delta)$ soit impair. On a alors $v(\Delta) \in \{3, 9\}$ (cf. [10, p. 46]), puis m = 4. Puisque d divise 6, on a donc d = 2, et d'après la formule (2), on a D = 1.
- 2.2) Supposons que $v(\Delta)$ soit pair. Dans ce cas, Δ est un carré dans $K_{\rm nr}$, ce qui entraı̂ne d=1 ou d=3. Par ailleurs, $v(\Delta) \in \{2,4,6,8,10\}$ (cf. loc. cit.). Si $v(\Delta) \neq 6$, on a $m \in \{3,6\}$, d'où d=3, et par suite D=2. Si $v(\Delta)=6$, on a m=2, puis d=1, ce qui conduit à D=0. D'où le théorème 2.

II.3. Les théorèmes 3 et 4

- **II.3.1.** Préliminaires. Soit r un nombre premier impair et distinct de p. On désignera désormais par
- L l'extension minimale de K_{nr} sur laquelle E acquiert bonne réduction. On a l'égalité $L = K_{nr}(E_r)$ ([3, p. 6, prop.]);
 - Φ le groupe de Galois $Gal(L/K_{nr})$ (cf. [6, pp. 311–312] et [1]);
- $(G_i)_{i\geq 0}$ la suite des sous-groupes de ramification de l'extension $L/K_{\rm nr}$. On a $G_0 = \Phi$. Pour tout $i\geq 0$, G_i est un sous-groupe distingué de Φ qui contient G_{i+1} ;
- I l'ensemble des entiers $i \geq 1$ tels que G_i ne soit pas le groupe réduit à l'élément neutre. C'est un ensemble fini ; plus précisément, on a (cf. [7, p. 79, 3) alinéa c)])
- (9) $|G_i| = 1$ dès que $i > |\Phi|/(p-1)$;
 - δ l'invariant sauvage du Gal($\overline{K}/K_{\rm nr}$)-module E_r (cf. [3, pp. 2–4]). On a

(10)
$$\delta = \sum_{i \in I} \frac{|G_i|}{|G_0|} \dim_{\mathbb{Z}/r\mathbb{Z}} (E_r / E_r^{G_i}),$$

où $E_r^{G_i}$ est l'ensemble des points de E_r fixés par G_i . D'après le théorème 1 de $loc.\ cit.,\ \delta$ ne dépend pas du nombre premier r choisi.

Lemme 3. On a l'égalité

$$\delta|\Phi| = 2\sum_{i \in I} |G_i|.$$

Démonstration. Les deux membres de l'égalité à démontrer étant indépendants de r, on peut supposer que $r \geq 5$. Soit i un élément de I. Montrons que $E_r^{G_i}$ est le groupe trivial. Supposons pour cela qu'il existe un point P non nul de E_r fixé par G_i . D'après la proposition de [3, p. 6], on a $L = K_{nr}(P)$. On déduit de là que G_i est réduit à l'élément neutre, ce qui conduit à une contradiction et prouve notre assertion. Le fait que $G_0 = \Phi$, et que E_r soit de dimension 2 sur $\mathbb{Z}/r\mathbb{Z}$, entraînent alors le lemme.

L'invariant δ peut se calculer en utilisant la formule de Ogg (cf. [3, th. 2]) : soit n le nombre de composantes connexes géométriques de la fibre spéciale du modèle de Néron de E. Alors, on a

(11)
$$v(\Delta) = n + \delta + 1.$$

Cette formule a été démontrée par Ogg dans loc. cit. si p est distinct de 2. Le cas général a par la suite été prouvé par Saito [5].

II.3.2. Démonstration du théorème 3. Les invariants c_4 , c_6 et Δ étant ceux associés à un modèle minimal de E sur K, $(v(\Delta), v(c_6))$ est l'un des couples intervenant dans les tableaux figurant dans l'énoncé du théorème 3 (cf. [1, p. 365]).

II.3.2.1. Cas où $\ell \geq 5$. Notons O_K l'anneau des entiers de K.

- (A) Supposons que l'on soit dans l'un des cas suivants :
- $(v(\Delta), v(c_6)) = (3, 3)$ et la congruence $4x^3 (c_4/3)x c_6/27 \equiv 0 \mod 9$ a une solution dans O_K ;
- $(v(\Delta), v(c_6)) = (9, 6)$ et la congruence $4x^3 (c_4/27)x c_6/729 \equiv 0 \mod 9$ a une solution dans O_K ;
 - $(v(\Delta), v(c_6)) \in \{(3, \geq 5), (9, \geq 8)\}.$

On a $|\Phi| = 4$ ([1, cor., pp. 355–356]) et donc G_1 est trivial; d'où D = 3 (formule (2)).

- (B) Supposons que l'on soit dans l'un des cas suivants :
- $(v(\Delta), v(c_6)) = (3, 3)$ et la congruence $4x^3 (c_4/3)x c_6/27 \equiv 0 \mod 9$ n'a pas de solution dans O_K ;
- $(v(\Delta), v(c_6)) = (9, 6)$ et la congruence $4x^3 (c_4/27)x c_6/729 \equiv 0 \mod 9$ n'a pas de solution dans O_K ;
 - $(v(\Delta), v(c_6)) \in \{(3, 4), (5, 3), (9, 7), (11, 6)\}.$

Si $(v(\Delta), v(c_6)) \in \{(3,3), (3,4)\}$ le type de Néron de E est II ([4, p. 126] et [1, p. 356]), et l'on a ainsi n = 1 ([10, p. 46]); si $(v(\Delta), v(c_6)) \in \{(9,6), (9,7)\}$, E de type est IV* et n = 7; si $(v(\Delta), v(c_6)) = (5,3)$, E est de type IV et n = 3; si $(v(\Delta), v(c_6)) = (11,6)$, E est de type II* et n = 9. D'après la formule (11), on constate que sous l'hypothèse (B), l'on a $\delta = 1$.

Par ailleurs, le groupe Φ est d'ordre 12. D'après le lemme 3, on a donc $\sum_{i\in I} |G_i| = 6$. Puisque le groupe G_1 est d'ordre 3, on déduit de là que $|G_2| = 3$ et $|G_i| = 1$ si $i \geq 3$. La formule (1) conduit alors à D = 15.

- (C) Supposons que l'on ait
- $(v(\Delta), v(c_6)) \in \{(4,3), (12,8)\}.$

Si $(v(\Delta), v(c_6)) = (4, 3)$, E est de type II, et l'on a n = 1. Si $(v(\Delta), v(c_6)) = (12, 8)$, E est de type II* et par suite n = 9. D'après la formule (11), on a donc $\delta = 2$.

On a dans ce cas $|\Phi| = 3$. D'après le lemme 3, on a ainsi $\sum_{i \in I} |G_i| = 3$. Le groupe G_1 est d'ordre 3. On déduit de là que G_2 est trivial, puis que D = 4.

- (D) Supposons que l'on ait
- $(v(\Delta), v(c_6)) \in \{(5, 4), (7, 5), (11, 7), (13, 8)\}.$

Si $(v(\Delta), v(c_6)) = (5, 4)$, E est de type II et n = 1. Si $(v(\Delta), v(c_6)) = (7, 5)$, E de type est IV et n = 3. Si $(v(\Delta), v(c_6)) = (11, 7)$, E est de type IV* et n = 7. Si $(v(\Delta), v(c_6)) = (13, 8)$, E est de type II* et n = 9. Dans tous ces cas on a donc $\delta = 3$.

Le groupe Φ est d'ordre 12 ; d'où l'égalité $\sum_{i\in I}|G_i|=18$. On déduit de là que l'on a $|G_i|=3$ si $1\leq i\leq 6$ et $|G_i|=1$ si $i\geq 7$; d'où D=23.

- (E) Supposons que l'on ait :
- $(v(\Delta), v(c_6)) \in \{(6,3), (6, \geq 6)\}.$

Dans ce cas, on a $|\Phi|=2$, et donc le groupe G_1 est trivial; d'où D=1.

- (F) Supposons que l'on ait
- $(v(\Delta), v(c_6)) \in \{(6, 5), (10, 6)\}.$

Si $(v(\Delta), v(c_6)) = (6, 5)$, E est de type IV, et l'on a n = 3. Si $(v(\Delta), v(c_6)) = (10, 6)$, E est de type IV* et n = 7. On a donc $\delta = 2$.

Le groupe Φ est d'ordre 6. On a ainsi $\sum_{i\in I} |G_i| = 6$. Puisque $|G_1| = 3$, on en déduit que $|G_2| = 3$, et $|G_i| = 1$ si $i \geq 3$; d'où D = 9.

Cela termine la démonstration de l'assertion (a) du théorème 3.

II.3.2.2. Cas où $\ell=2$. Soit $\Delta^{1/4}$ une racine quatrième de Δ dans \overline{K} . On a l'égalité ([1, p. 362, cor.])

(12)
$$L = K_{\rm nr}(E_2, \Delta^{1/4}).$$

Lemme 4. Soit s le degré de l'extension $L/K_{nr}(E_2)$. On a

$$s = \begin{cases} 1 & \text{si 4 divise } v(\Delta), \\ 2 & \text{si 4 ne divise pas } v(\Delta). \end{cases}$$

 $D\'{e}monstration$. Si 4 divise $v(\Delta)$, alors Δ est une puissance quatrième dans $K_{\rm nr}$, et d'après l'égalité (12), on a $L=K_{\rm nr}(E_2)$, i.e. on a s=1. Supposons $v(\Delta)\not\equiv 0$ mod 4. D'après la proposition de [3, p. 6], on a $s\leq 2$. Il suffit donc de prouver que les corps L et $K_{\rm nr}(E_2)$ sont distincts. Supposons le contraire, autrement dit que $\Delta^{1/4}$ appartienne à $K_{\rm nr}(E_2)$. Puisque 4 ne divise pas $v(\Delta)$, $\Delta^{1/4}$ n'est pas dans $K_{\rm nr}$, et donc 2 divise le degré $[K_{\rm nr}(\Delta^{1/4}):K_{\rm nr}]$. D'après l'hypothèse faite, 2 divise donc $[K_{\rm nr}(E_2):K_{\rm nr}]$, et Δ n'est pas un carré dans $K_{\rm nr}$. Il en résulte que $[K_{\rm nr}(\Delta^{1/4}):K_{\rm nr}]=4$, puis que 4 divise $[K_{\rm nr}(E_2):K_{\rm nr}]$. Cela conduit à une contradiction car $[K_{\rm nr}(E_2):K_{\rm nr}]$ divise 6. D'où le lemme.

Notons alors D' l'exposant de la différente de l'extension $L/K_{\rm nr}$. D'après la formule de transitivité des différentes, on a D'=sD+s-1, autrement dit, on a

$$D = \begin{cases} D' & \text{si 4 divise } v(\Delta), \\ (D'-1)/2 & \text{si 4 ne divise pas } v(\Delta). \end{cases}$$

La valeur de l'entier D' est donnée dans l'énoncé de l'assertion (a) du théorème 3 qui a été démontrée ci-dessus. On vérifie alors les valeurs de D indiquées dans les tableaux intervenant dans l'assertion (b) du théorème. Cela termine sa démonstration.

II.3.3. Démonstration du théorème 4. On suppose désormais $K = \mathbb{Q}_2$. Le groupe Φ est isomorphe à un sous-groupe de $SL_2(\mathbb{F}_3)$ ([6, p. 312]). On utilisera à plusieurs reprises le lemme suivant :

LEMME 5. Le groupe $SL_2(\mathbb{F}_3)$ ne possède pas de sous-groupe distingué d'ordre 4.

Démonstration. Il existe un unique 2-sous-groupe de Sylow dans $SL_2(\mathbb{F}_3)$. Il est d'ordre 8 isomorphe au groupe quaternionien. Il en résulte que $SL_2(\mathbb{F}_3)$ a exactement trois sous-groupes d'ordre 4, qui sont cycliques. Ces trois sous-groupes sont engendrés respectivement par $\binom{0}{1}$, $\binom{1}{1}$, $\binom{1}{1}$, $\binom{1}{1}$ et $\binom{1}{-1}$. On vérifie ensuite qu'ils ne sont pas distingués dans $\mathrm{SL}_2(\mathbb{F}_3)$. D'où le lemme.

Démontrons maintenant le théorème 4. Les invariants c_4 , c_6 et Δ étant ceux associés à un modèle minimal de E sur \mathbb{Q}_2 , $(v(c_4), v(\Delta))$ est l'un des couples intervenant dans l'énoncé du théorème 4 (cf. [1, p. 374]).

- (A) Supposons que l'on soit dans l'un des cas suivants :
- $(v(c_4), v(\Delta)) = (4, 4)$ et $\overline{c_4'} = -1$, $\overline{c_6'} = 1$; $(v(c_4), v(\Delta)) = (\geq 6, 4)$ et $\overline{c_6'} = 1$; $(v(c_4), v(\Delta)) = (4, 8)$ et $\overline{\Delta'} = -1$, $\overline{c_6'} = -1$; $(v(c_4), v(\Delta)) = (\geq 7, 8)$ et $\overline{c_6'} = 1$.

On a $|\Phi|=3$ (loc. cit., cor., pp. 357–358) et donc G_1 est trivial; d'où D=2 (formule (2)).

- (B) Supposons que l'on soit dans l'un des cas suivants :
- $(v(c_4), v(\Delta)) = (4, 4)$ et $\overline{c'_4} = -1$, $\overline{c'_6} = -1$; $(v(c_4), v(\Delta)) = (\geq 6, 4)$ et $\overline{c'_6} = -1$; $(v(c_4), v(\Delta)) = (4, 8)$ et $\overline{\Delta'} = -1$, $\overline{c'_6} = 1$;

- $(v(c_4), v(\Delta)) = (\geq 7, 8)$ et $\overline{c_6'} = -1$.

On a $|\Phi|=6$. D'après l'Appendice, on a $\delta=2$. On a donc $\sum_{i\in I}|G_i|=6$ (lemme 3). Puisque le groupe G_1 est d'ordre 2, on déduit de là que $|G_i|=2$ pour $1 \le i \le 3$ et $|G_i| = 1$ si $i \ge 4$. D'après la formule (1), on a donc D = 8.

- (C) Supposons que l'on soit dans l'un des cas suivants :
- $(v(c_4), v(\Delta)) = (4, 4)$ et $\overline{c'_4} = 1, \overline{c'_6} = -1$;
- $(v(c_4), v(\Delta)) = (5, 4)$ et $\overline{c_6'} = 1$;
- $(v(c_4), v(\Delta)) = (4, 8)$ et $\overline{\Delta'} = 1, \overline{c'_6} = 1$;
- $(v(c_4), v(\Delta)) = (6, 8)$ et $\overline{c'_6} = 1$;
- $(v(c_4), v(\Delta)) = (4, 10)$ et $\frac{\overline{c_6}}{\overline{c_6}} = -1$; $(v(c_4), v(\Delta)) = (4, 11)$ et $\overline{c_6} = -1$.

Le groupe Φ est d'ordre 24 et est isomorphe au groupe $SL_2(\mathbb{F}_3)$. Par ailleurs, on a $\delta = 1$. On a ainsi l'égalité $\sum_{i \in I} |G_i| = 12$. Le groupe G_1 est d'ordre 8. Puisque les sous-groupes G_i sont distingués dans $G_0 = \Phi$, on déduit alors du lemme 5 que $|G_2| = |G_3| = 2$, puis que $|G_i| = 1$ si $i \geq 4$. Cela conduit à D=32.

(D) Supposons que l'on soit dans l'un des cas suivants :

- $(v(c_4), v(\Delta)) = (4, 4)$ et $\overline{c_4} = 1, \overline{c_6} = 1$;
- $(v(c_4), v(\Delta)) = (5, 4)$ et $\overline{c'_6} = -1$;
- $(v(c_4), v(\Delta)) = (4, 8)$ et $\frac{6}{\Delta'} = 1, \frac{7}{c_6'} = -1;$
- $(v(c_4), v(\Delta)) = (6, 8)$ et $\overline{c'_6} = -1$;
- $(v(c_4), v(\Delta)) = (4, 10) \text{ et } \overline{c_6'} = 1;$
- $(v(c_4), v(\Delta)) = (4, 11)$ et $\overline{c_6} = 1$.

On a $|\Phi| = 24$ et $\delta = 2$. On a donc

$$(13) \qquad \sum_{i \in I} |G_i| = 24.$$

Prouvons que l'on a

$$(14) |G_2| = 2.$$

Remarquons d'abord que l'on a l'égalité $G_2 = G_3$ (cf. [7, p. 79, 3) alinéa e)]). Puisque G_1 est d'ordre 8, l'ordre de G_2 divise 8. Supposons que $|G_2| = 8$. On a alors $G_1 = G_2 = G_3$, et l'égalité (13) implique $|G_4| = 1$. Par ailleurs, G_1 est isomorphe au 2-sous-groupe de Sylow de $SL_2(\mathbb{F}_3)$, qui est quaternionien d'ordre 8. Ainsi G_2 possède un élément s d'ordre 4. D'après loc. cit., s^2 appartient à G_4 , et en particulier, G_4 n'est pas trivial. On obtient ainsi une contradiction et donc $|G_2| \neq 8$. D'après le lemme 5 le groupe G_2 n'est pas d'ordre 4, et la formule (13) entraı̂ne $|G_2| \neq 1$. D'où l'égalité (14).

On déduit alors de (13) et (14) que $|G_i| = 2$ pour $2 \le i \le 9$, et $|G_i| = 1$ si $i \geq 10$. On obtient ainsi D = 38.

(E) Supposons que l'on soit dans l'un des cas suivants :

- $(v(c_4), v(\Delta)) = (4, 6)$ et $\overline{c'_4} = -1$; $(v(c_4), v(\Delta)) = (6, 12)$ et $\overline{c'_4} = 1$;
- $(v(c_4), v(\Delta)) \in \{(4, 9), (7, 12)\}.$

On a $|\Phi|=8$ et $\delta=3$, de sorte que $\sum_{i\in I}|G_i|=12$. Le groupe G_1 est d'ordre 8. Par ailleurs, on a $|G_2/G_3| \le 2$ ([7, p. 79, 3) alinéa e)]). On déduit de là que $|G_2| = |G_3| = 2$ et $|G_i| = 1$ si $i \ge 4$. D'où D = 16.

(F) Supposons que l'on soit dans l'un des cas suivants :

- $(v(c_4), v(\Delta)) = (4, 6)$ et $\overline{c_4'} = 1$;
- $(v(c_4), v(\Delta)) = (6, 12) \text{ et } \overline{c'_4} = -1;$
- $(v(c_4), v(\Delta)) \in \{(5, 6), (6, 15)\}.$

On a $|\Phi| = 8$, $\delta = 4$ et $\sum_{i \in I} |G_i| = 16$. On a $G_1 = \Phi$, et G_1 est donc d'ordre 8 isomorphe au groupe quaternionien. Vérifions que l'on a

$$(15) |G_2| = 2.$$

On remarque pour cela que $|G_2| \neq 8$: sinon G_3 est trivial, ce qui contredit l'inégalité $|G_2/G_3| \leq 2$ (loc. cit.). Supposons $|G_2| = 4$. Puisque les entiers $i \geq 1$ tels que $G_i \neq G_{i+1}$ sont congrus entre eux modulo 2 (loc. cit., p. 77, prop. 11), on a donc $G_2 = G_3$, ce qui entraîne que G_4 est trivial. Par ailleurs, G_2 étant un sous-groupe d'ordre 4 de G_1 , il est cyclique. Si s est un élément d'ordre 4 de G_2 , s^2 appartient à G_4 (loc. cit., p. 79, 3), e)). Cela conduit à une contradiction et implique l'égalité (15). On déduit de là que $|G_i| = 2$ si $2 \leq i \leq 5$ et $|G_i| = 1$ si $i \geq 6$. Cela entraîne D = 18.

- (G) Supposons que l'on ait
- $(v(c_4), v(\Delta)) \in \{(\geq 6, 6), (6, 18)\}.$

On a $|\Phi| = 2$, $\delta = 4$ et $\sum_{i \in I} |G_i| = 4$. Le groupe G_1 étant d'ordre 2, il en résulte que $|G_2| = 2$, puis que $|G_i| = 1$ si $i \geq 3$. Par suite D = 3.

(H) Supposons que l'on ait

• $(v(c_4), v(\Delta)) \in \{(4,7), (5,8), (6,13), (7,14)\}.$

On a $|\Phi| = 24$ et $\delta = 5$. On a ainsi

(16)
$$\sum_{i \in I} |G_i| = 60.$$

Prouvons que l'on a

(17)
$$|G_i| = \begin{cases} 8 & \text{si } 1 \le i \le 5, \\ 2 & \text{si } 6 \le i \le 15, \\ 1 & \text{si } i > 16. \end{cases}$$

On remarque d'abord que l'on a les égalités

(18)
$$G_1 = G_2 = G_3$$
 et $G_4 = G_5$.

En effet, supposons $G_1 \neq G_2$. Puisque G_1 est d'ordre 8, il résulte du lemme 5 que $|G_2| = 2$. Cela entraı̂ne les inégalités $|G_i| \leq 2$ si $i \geq 2$; le fait que G_i soit trivial si $i \geq 25$ (formule (9)) contredit alors (16): d'où $G_1 = G_2$. Par ailleurs, l'alinéa 3) e) p. 79 de [7] entraı̂ne $G_2 = G_3$ et $G_4 = G_5$. D'où les égalités (18).

Vérifions que l'on a l'égalité

$$(19) G_3 = G_4.$$

On considère pour cela un élément s d'ordre 3 de Φ et un élément t d'ordre 4 de G_3 (un tel élément t existe, car d'après (18), G_3 est quaternionien d'ordre 8). Le corollaire 1, p. 77 de [7], appliqué avec i = 3, implique que $sts^{-1}t^{-1}$ appartient à G_4 . En identifiant Φ et $SL_2(\mathbb{F}_3)$, on constate que quel

que soit le choix de s et t, l'élément $sts^{-1}t^{-1}$ est d'ordre 4. On déduit de là que l'ordre de G_4 est divisible par 4, ce qui implique $|G_4| = 8$ (lemme 5) et l'égalité (19).

On remarque ensuite que

$$(20) G_6 = G_7.$$

En effet, si $G_6 \neq G_7$, les entiers $i \geq 1$ tels que $G_i \neq G_{i+1}$ sont pairs ([7, p. 77, prop. 11]), et le groupe G_1 devrait alors être cyclique, ce qui n'est pas (cf. loc. cit., p. 79, alinéa f)).

On déduit de là que

$$(21) G_5 \neq G_6.$$

En effet, supposons $G_5 = G_6$. D'après les égalités (18) à (20) les groupes G_i sont alors d'ordre 8 pour $1 \le i \le 7$. L'égalité (16) implique $|G_{10}| = 1$. Puisque $G_1 = G_5$, le groupe G_5 possède un élément σ d'ordre 4. L'élément σ^2 , qui est d'ordre 2, appartient à G_{11} (cf. loc. cit., p. 79, alinéa e)), ce qui conduit à une contradiction et prouve (21).

D'après (21) et le lemme 5 on a donc $|G_6| = 2$. L'égalité (16) entraı̂ne alors (17). On obtient ainsi D = 68.

- (I) Supposons que l'on soit dans l'un des cas suivants :
- $(v(c_4), v(\Delta)) = (5, 9)$ et $v(c_6) = 8$;
- $(v(c_4), v(\Delta)) = (7, 15)$ et $v(c_6) = 11$.

Le groupe Φ est cyclique d'ordre 4 et l'on a $\delta=6$, puis $\sum_{i\in I}|G_i|=12$. On a $|G_1|=4$ et $|G_i|=1$ pour tout $i\geq 5$ (formule (9)). Il en résulte que $|G_2|\neq 2$, et donc $|G_2|=4$. Si s est un élément d'ordre 4 de G_2 , s^2 appartient à G_4 , de sorte que G_4 n'est pas le groupe trivial. Par suite, on a $G_1=G_2$ et $|G_3|=|G_4|=2$. D'où D=11.

- (J) Supposons que l'on soit dans l'un des cas suivants :
- $(v(c_4), v(\Delta)) = (5, 9)$ et $v(c_6) > 8$;
- $(v(c_4), v(\Delta)) = (7, 15)$ et $v(c_6) > 11$.

On a $|\varPhi|=8,\,\delta=6,$ et l'égalité

(22)
$$\sum_{i \in I} |G_i| = 24.$$

On a $G_1 = \Phi$. Prouvons que

(23)
$$|G_i| = \begin{cases} 4 & \text{si } i = 2, 3, \\ 2 & \text{si } 4 \le i \le 7, \\ 1 & \text{si } i > 8. \end{cases}$$

Puisque G_1 n'est pas cyclique, on a $G_{2i} = G_{2i+1}$ pour tout $i \ge 1$ (cf. [7, p. 77, prop. 11 et p. 79 alinéa f)]). On déduit de là que $G_1 \ne G_2$: en effet, si

 $G_1 = G_2$, le groupe G_4 est trivial (cf. (22) et le fait que $G_2 = G_3$), et G_2 possède un élément d'ordre 4, ce qui conduit à une contradiction. D'après la formule (9) on a $|G_9| = 1$; l'égalité (22) implique alors $|G_2| = 4$. Il en résulte que G_8 est trivial, puis que $|G_4| \neq 4$: si $|G_4| = 4$, G_4 est cyclique d'ordre 4, ce qui entraîne de nouveau une contradiction. On a ainsi $|G_4|=2$. D'où les formules (23) et le fait que D = 24.

(K) Supposons que l'on soit dans l'un des cas suivants :

- $(v(c_4), v(\Delta)) = (6, 10)$ et $\overline{c'_4} = -1$; $(v(c_4), v(\Delta)) = (6, 14)$ et $\overline{\Delta'} = -1$;
- $(v(c_4), v(\Delta)) \in \{(> 8, 10), (> 9, 14)\}.$

On a $|\Phi|=6$ et $\delta=4$, d'où $\sum_{i\in I}|G_i|=12$. Le groupe G_1 est d'ordre 2. On a donc les égalités $|G_i| = 2$ pour $1 \le i \le 6$, ce qui conduit à D = 11.

(L) Supposons que l'on soit dans l'un des cas suivants :

- $(v(c_4), v(\Delta)) = (6, 10)$ et $\overline{c'_4} = 1$; $(v(c_4), v(\Delta)) = (6, 14)$ et $\overline{\Delta'} = 1$;
- $(v(c_4), v(\Delta)) \in \{(7, 10), (8, 14), (6, 16), (6, 17)\}.$

On a $|\Phi|=24$, $\delta=4$, et donc

(24)
$$\sum_{i \in I} |G_i| = 48.$$

Vérifions que

(25)
$$|G_i| = \begin{cases} 8 & \text{si } i = 1, \\ 2 & \text{si } 2 \le i \le 21, \\ 1 & \text{si } i \ge 22. \end{cases}$$

Tout revient à démontrer que G_2 est d'ordre 2. Puisque G_1 est d'ordre 8 et non cyclique, on a $G_{2i} = G_{2i+1}$ pour tout $i \ge 1$. Supposons $|G_2| = 8$. Dans ce cas, on a $G_1 = G_2$, et G_2 possède un élément t d'ordre 4. Si s est un élément d'ordre 3 de Φ , l'élément $sts^{-1}t^{-1}$ est d'ordre 4 et appartient à G_4 (cf. l'alinéa, (H) ci-dessus). D'après le lemme 5, on a alors $|G_4| = 8$. On a donc aussi $|G_5| = 8$ et l'on déduit de (24) que le groupe G_{10} est trivial. Cela conduit à une contradiction, car G_5 a un élément d'ordre 4, et G_{11} ne peut donc être trivial. D'où $|G_2| \neq 8$. Puisque $|G_2| \neq 4$ (lemme 5), on a donc $|G_2| = 2$. D'où (25) et le fait que D = 50.

(M) Supposons que l'on soit dans l'un des cas suivants :

• $(v(c_4), v(\Delta)) \in \{(4, 12), (\geq 8, 12)\}.$

On a $|\Phi|=2$ et $\delta=2$, d'où $\sum_{i\in I}|G_i|=2$. On a donc $|G_1|=2$ et $|G_i|=1$ si $i\geq 2$. On obtient dans ce cas D=2.

Cela termine la démonstration du théorème 4.

Appendice. Types de Néron des courbes elliptiques sur \mathbb{Q}_2 d'invariant modulaire entier. Soit E une courbe elliptique définie sur \mathbb{Q}_2 ayant mauvaise réduction de type additif. Soit v la valuation 2-adique de \mathbb{Q}_2 . On suppose que l'invariant modulaire j de E vérifie $v(j) \geq 0$. Soient c_4 , c_6 et Δ les invariants standards associés à un modèle minimal de E sur \mathbb{Q}_2 . Le triplet $(v(c_4), v(c_6), v(\Delta))$ ne dépend pas du modèle minimal choisi. On détermine dans cet Appendice le type de Néron de E sur \mathbb{Q}_2 en fonction du triplet (c_4, c_6, Δ) , ainsi que la valeur de l'entier

$$\delta = v(\Delta) - 1 - n,$$

où n est le nombre de composantes connexes géométriques de la fibre spéciale du modèle de Néron de E (cf. [10, p. 46]), que l'on a utilisée dans la démonstration du théorème 4.

On note

$$c_4' = \frac{c_4}{2^{v(c_4)}}, \quad c_6' = \frac{c_6}{2^{v(c_6)}}, \quad \Delta' = \frac{\Delta}{2^{v(\Delta)}},$$

et l'on désigne par $\overline{c_4'}$, $\overline{c_6'}$ et $\overline{\Delta'}$ les classes modulo $4\mathbb{Z}_2$ respectivement de c_4' , c_6' et Δ' .

Théorème. On est dans l'un des cas des tableaux suivants :

$v(\Delta)$	4		4		4		4		6	
$v(c_4)$	4			5		≥ 6		4		
$v(c_6)$	5		5		5		≥ 7			
$\overline{c'_4}$	1	1	-1	-1					1	-1
$\overline{c'_6}$	1	-1	1	-1	-1	1	-1	1		
Type de Néron	II	III	IV	II	II	III	II	IV	II	III
δ	2	1	0	2	2	1	2	0	4	3

$v(\Delta)$	6	7	8			8	8		8		
$v(c_4)$	≥ 5	4	4			5	6		≥ 7		
$v(c_6)$	6	6	6			7	7		7		
$\overline{c'_6}$			-1	1	1	-1		-1	1	-1	1
$\overline{\Delta'}$			1	-1	1	-1					
Type de Néron	II	II	I_0^*	I_0^*	I_1^*	IV^*	III	I_0^*	I_1^*	I_0^*	IV^*
δ	4	5	2	2	1	0	5	2	1	2	0

$v(\Delta)$	9	9	10		10	11		12	12		12
$v(c_4)$	4	5	4		≥ 6	4		4	6		7
$v(c_6)$	6	≥ 8	6		8	6		6	≥ 10		9
$\overline{c_4'}$									-1	1	
$\overline{c'_6}$			1	-1		1	-1				
Type de Néron	I_0^*	III	I_2^*	III^*	I_0^*	I_3^*	II^*	I_4^*	I_2^*	I_3^*	III^*
δ	3	6	2	1	4	2	1	2	4	3	3

$v(\Delta)$	12	13	14	14	14	15	15	16	17	18
$v(c_4)$	≥ 8	6	6	7	≥ 8	6	7	6	6	6
$v(c_6)$	9	9	9	10	10	9	≥ 11	9	9	9
Type de Néron	II^*	I_2^*	I_4^*	III^*	II^*	I_5^*	III^*	I_6^*	I_7^*	I_8^*
δ	2	5	4	5	4	4	6	4	4	4

Démonstration. Le fait que l'on parte d'un modèle minimal de E sur \mathbb{Q}_2 implique que le triplet $(v(c_4), v(c_6), v(\Delta))$ est l'un de ceux indiqués dans les tableaux ci-dessus (cf. [1, p. 374]). Dans tous les cas, l'équation de Weierstrass

(W)
$$y^2 = x^3 - \left(\frac{c_4}{48}\right)x - \frac{c_6}{864}$$

est un modèle entier minimal de E (cf. [10, 1.]). Afin de déterminer le type de Néron de E, nous allons utiliser principalement l'article de Papadopoulos ([4]). Avec les notations de loc. cit., on a

$$a_1 = a_2 = a_3 = 0, \quad a_4 = -2^{v(c_4)-4} \left(\frac{c_4'}{3}\right), \quad a_6 = -2^{v(c_6)-5} \left(\frac{c_6'}{27}\right),$$

$$b_2 = 0, \quad b_4 = -2^{v(c_4)-3} \left(\frac{c_4'}{3}\right),$$

$$b_6 = -2^{v(c_6)-3} \left(\frac{c_6'}{27}\right), \quad b_8 = -2^{2v(c_4)-8} \left(\frac{c_4'^2}{9}\right).$$

Étant donnés deux éléments r et t de \mathbb{Z}_2 , on notera (cf. loc. cit., prop. 1–3, p. 124)

$$A(r,t) = a_6 + ra_4 + r^3 - t^2$$
 et $B(r) = b_8 + 3rb_6 + 3r^2b_4 + 3r^4$.

(A) Supposons $(v(c_4), v(c_6), v(\Delta)) = (4, 5, 4)$. Le type de Néron de E est II, III ou IV ($loc.\ cit.$, p. 129). On utilise la proposition 1 de $loc.\ cit.$ avec r=1 et t=1. On est alors amené à décider si 4 divise A(1,1). On vérifie pour cela que

$$A(1,1) \equiv c_4' + c_6' \mod 4.$$

On déduit de là que le type de Néron de E est II si $c'_4 \equiv c'_6 \mod 4$. Supposons maintenant $c'_4 \not\equiv c'_6 \mod 4$. D'après la proposition 2 de loc. cit., utilisée avec r = 1, il s'agit alors de décider si B(1) est multiple de 8. On constate que

$$B(1) \equiv 2(3 - c_4) \mod 8.$$

Ainsi, 8 divise B(1) si et seulement si $c_4' \equiv -1 \mod 4$. Cela entraı̂ne le résultat.

(B) Supposons $(v(c_4), v(c_6), v(\Delta)) = (\geq 5, 5, 4)$. Le type de Néron de E est II, III ou IV. On a

$$A(0,1) \equiv c_6' - 1 \mod 4.$$

Il en résulte que si $c_6' \equiv -1 \mod 4$, le type de Néron de E est II (loc. cit., prop. 1). Supposons $c_6' \equiv 1 \mod 4$. On a $B(0) = b_8$, de sorte que B(0) est multiple de 8, i.e. le type de Néron de E est IV, si et seulement si $v(c_4) \geq 6$ (loc. cit., prop. 2). D'où le résultat dans ce cas.

(C) Supposons $(v(c_4), v(c_6), v(\Delta)) = (4, \geq 7, 6)$. Le type de Néron de E est II ou III. Par ailleurs, on a

$$A(1,0) = c_4' + 1 \mod 4.$$

Cela entraı̂ne notre assertion (loc. cit., prop. 1).

(D) Supposons $(v(c_4),v(c_6),v(\Delta))=(4,6,8)$. Le type de Néron de E est I_0^* , I_1^* ou IV*. Remarquons que l'égalité $c_4^3-c_6^2=1728\Delta$ implique la congruence

$$c_4' \equiv 5 \bmod 8.$$

On utilise alors la proposition 3 de loc. cit. : on a

$$9B(c_6') = -c_4'^2 - 8c_6'^2 - 18c_4'c_6'^2 + 27c_6'^4.$$

On vérifie que l'on a la congruence

(2)
$$B(c_6') \equiv 0 \bmod 32.$$

Par ailleurs, on a

(3)
$$27A(c_6', 2) \equiv -2c_6' - 9c_4'c_6' + 27c_6'^3 + 4 \mod 16.$$

D'après (1), on a $c_4'^2 \equiv 9 \mod 16$, et de l'égalité $c_4^3 - c_6^2 = 1728\Delta$, on déduit alors que $9c_4' \equiv -4\Delta' + c_6'^2 \mod 16$. La congruence (3) conduit ainsi à

$$27A(c_6', 2) \equiv 4(3 + \Delta' c_6') \mod 16.$$

En particulier, on a $A(c'_6, 2) \equiv 0 \mod 8$. Si $\Delta' \equiv -c'_6 \mod 4$, le type de Néron de E est donc I_0^* (loc. cit., prop. 3). Si $\Delta' \equiv c'_6 \mod 4$, la proposition 4 de loc. cit., utilisée avec $r = c'_6$ (cf. (2)), entraı̂ne alors le résultat.

(E) Supposons $(v(c_4), v(c_6), v(\Delta)) = (6, 7, 8)$. Le type de Néron de E est I_0^* ou I_1^* . On constate que

$$B(2) \equiv 0 \mod 32$$
.

Par ailleurs, on a

$$A(2,2) \equiv 4(c_6'-1) \mod 16.$$

D'où notre assertion (loc. cit., prop. 3).

(F) Supposons $(v(c_4), v(c_6), v(\Delta)) = (\geq 7, 7, 8)$. Le type de Néron de E est I_0^* ou IV*. On a

$$B(0) \equiv \mod 32$$
.

On vérifie par ailleurs que

$$A(0,2) \equiv 4(c_6'-1) \bmod 16,$$

ce qui entraı̂ne le résultat (cf. loc. cit.).

(G) Supposons $(v(c_4), v(c_6), v(\Delta)) = (4, 6, 10)$. Le type de Néron de E est I_2^* ou III*. D'après l'égalité $c_4^3 - c_6^2 = 1728\Delta$, on a les congruences $c_4' \equiv 1 \mod 8$ et $c_4' \equiv c_6'^2 \mod 16$. Par ailleurs, on a

$$9B(c_6') = -c_4'^2 - 8c_6'^2 - 18c_4'c_6'^2 + 27c_6'^4.$$

On déduit de là que

$$B(c_6') \equiv 0 \mod 32.$$

La proposition 4 de loc. cit. entraı̂ne alors le résultat.

(H) Supposons $(v(c_4), v(c_6), v(\Delta)) = (4, 6, 11)$. Le type de Néron de E est I_3^* ou II*. L'égalité $c_4^3 - c_6^2 = 1728\Delta$ implique de nouveau $c_4' \equiv c_6'^2$ mod 16 et l'on a encore

$$9B(c_6') = -c_4'^2 - 8c_6'^2 - 18c_4'c_6'^2 + 27c_6'^4.$$

On a donc $B(c_6') \equiv 0 \mod 32$, et l'on conclut comme dans l'alinéa (G) ci-dessus.

- (I) Supposons $(v(c_4), v(c_6), v(\Delta)) = (6, \geq 10, 12)$. Le type de Néron de E est I_2^* ou I_3^* . On va utiliser dans ce cas l'algorithme de Tate ([10, pp. 49–51]).
- (I.1) Supposons $c'_4 \equiv -1 \mod 4$. Le changement de variables x = X + 2, y = Y transforme le modèle initial (W) en l'équation

$$Y^2 = X^3 + 6X^2 + A_4X + A_6,$$

avec

$$A_4 = 12 - \frac{c_4}{48}$$
 et $A_6 = -\left(\frac{c_6}{864} + \frac{c_4}{24} - 8\right)$.

On a $v(A_4) = 3$ et $A_6 \equiv 0 \mod 32$. Le polynôme $3T^2 + (A_4/8)T + (A_6/32)$ a ainsi deux racines distinctes modulo 2. Le type de Néron de E est donc I_2^* (cf. loc. cit., p. 50).

(I.2) Supposons $c'_4 \equiv 1 \mod 4$. Le changement de variables x = X + 2, y = Y + 4 transforme le modèle (W) en l'équation

$$Y^2 + 8Y = X^3 + 6X^2 + A_4X + A_6,$$

avec

$$A_4 = 12 - \frac{c_4}{48}$$
 et $A_6 = -\left(\frac{c_6}{864} + \frac{c_4}{24} + 8\right)$.

On a $A_4 \equiv 0 \mod 16$ et $A_6 \equiv 0 \mod 32$. Le polynôme $3T^2 + (A_4/8)T + (A_6/32)$ a donc une racine double modulo 2. On déduit de là que le type de Néron de E est dans ce cas I_3^* (cf. *loc. cit.*). D'où le résultat.

(J) En ce qui concerne les autres cas qui figurent dans les tableaux intervenant dans l'énoncé du théorème, les types de Néron de E se lisent directement dans le tableau IV de [4, p. 129].

Cela termine la démonstration du théorème.

Références

- A. Kraus, Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive, Manuscripta Math. 69 (1990), 353–385.
- [2] —, Sur la p-différente du corps des points de p-torsion des courbes elliptiques, Bull. Austral. Math. Soc. 60 (1999), 407–428.
- [3] A. Ogg, Elliptic curves and wild ramification, Amer. J. Math. 89 (1967), 1–21.
- [4] I. Papadopoulos, Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3, J. Number Theory 44 (1993), 119–152.
- T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J. 57 (1988), 151–173.
- [6] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.
- [7] —, Corps Locaux, 3-ième éd., Hermann, Paris, 1980.
- [8] —, Abelian \(\ell \)-Adic Representations and Elliptic Curves, Adv. Book Classics, Addison-Wesley, 1989.
- [9] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.
- [10] J. Tate, Algorithm for determining the type of singular fiber in an elliptic pencil, dans: Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer, 1975, 33–52.

App. 231 9 rue de Sèvres 92100 Boulogne, France E-mail: elie.cali@wanadoo.fr Institut de Mathématiques Université de Paris VI UMR 7586 du CNRS 175 rue du Chevaleret 75013 Paris, France E-mail: kraus@math.jussieu.fr