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1. Introduction. Let K be an algebraic number field with ring of in-
tegers OK , let G be a finite abelian group, and let l be an odd prime.
Consider a Galois extension L/K with Gal(L/K) = G. There is a natural
action of G on OL, and OL may be viewed as an OK [G]-module. We say
that L/K has a trivial Galois module structure if OL is free as an OK [G]-
module, that is, OL has a normal integral basis over OK . A number field K
is Hilbert–Speiser if each tame abelian extension L/K is so that L/K has
trivial Galois module structure (see [5, §1]). The Hilbert–Speiser Theorem
states that Q is Hilbert–Speiser, and in [5] the authors determine that Q is
the only Hilbert–Speiser number field.

It is well known that OK [G] can be endowed with the structure of an
OK-Hopf order in K[G], and that in many instances, there are a number of
other OK-Hopf orders in K[G], all containingOK [G] (see [6, Proposition 3.2,
Proposition 7.3]). We denote an OK-Hopf order in K[G] by Λ. The counit
map is denoted by ε : Λ → OK . LΛ is the space of left integrals of Λ.
The linear dual of Λ, denoted by B, is an OK-Hopf order in the algebra
Map(G,K). The counit map of B is given by ε : B → OK , and LB is the
space of left integrals of B.

There is a notion of “tame Λ-extension” found in [2, §1]. The OK-algebra
M is a tame Λ-extension (of OK) if M is a Λ-module algebra, faithful
as a Λ-module, rankOK (M) = rankOK (Λ) as projective OK-modules, and
LΛM = MΛ = OK . If we specialize to the case where L/K is an abelian
extension with group G and Λ = OK [G], then OL is a tameOK [G]-extension
if and only if L/K is tamely ramified ([2, §1]). Thus the Hilbert–Speiser
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property may be recast as follows: A number field K is Hilbert–Speiser if
each tame OK [G]-extension of the form OL for an abelian extension L/K
with group G is so that OL is a free OK [G]-module. To say that a field K is
not Hilbert–Speiser means that for some finite abelian group G there exists a
tame OK [G]-extension which is not a free OK [G]-module. Thus for any field
K 6= Q, there exists a finite abelian group G, and a tame OK [G]-extension
which is not a free OK [G]-module. Moreover, this tame OK [G]-extension is
the ring of integers of some Galois extension L/K with group G.

We wonder: for a given field K, and an OK-Hopf order Λ in K[G],
Λ 6= OK [G], can one find a tame Λ-extension which is not a free Λ-module?
If so, what is the structure of such a tame Λ-extension?

In this paper we show how to find nontrivial tame extensions over Hopf
orders. We assume that G is an l-elementary abelian group of order ln,
which we denote by Cnl . To find nontrivial tame Λ-extensions, we extend
the technique used by the authors in [5] to show that no field K 6= Q is
Hilbert–Speiser. The key step is to generalize the authors’ lower bound on
the collection of “Galois module classes” to Hopf orders other than OK [Cnl ]
([5, Corollary 7]). We use our lower bound to give explicit examples of OK-
Hopf orders Λ in K[Cnl ] for which there exist tame Λ-extensions which are
not free over Λ. These nontrivial tame Λ-extensions are not necessarily the
full ring of integers of some Galois extension L/K with group Cnl , how-
ever. They have the structure of certain tame Λ-extensions which locally,
at primes above lOK , are principal homogeneous spaces over B. We call
these tame Λ-extensions “semilocal principal homogeneous spaces over B”
(see [1, §3]). These semilocal principal homogeneous spaces play the role
of the rings of integers in the integral group ring case; the collection of
their classes in the locally free classgroup Cl(Λ) generalizes the set of Galois
module classes.

For the convenience of the reader, we review the integral group ring case
of [5]. Let L/K be a Galois extension with group Cnl . It is well known that
L/K is tamely ramified (tame) if and only if OL is a locally free OK [Cnl ]-
module. OL then determines a Galois module class, (OL), in the locally
free classgroup Cl(OK [Cnl ]). Let R(OK [Cnl ]) denote the set of classes in
Cl(OK [Cnl ]) which are realizable as Galois module classes of rings of integers
of tame Galois extensions L/K with group Cnl . For any abelian group G,
McCulloh [8] has shown that R(OK [G]) is a subgroup of Cl(OK [G]), and
describes R(OK [G]) explicitly for the case G = Cnl in [7].

Let M denote the maximal integral order in K[Cnl ]. The homomor-
phism f : OK [Cnl ] → M induces a homomorphism of classgroups f∗ :
Cl(OK [Cnl ]) → Cl(M), defined by (M) 7→ (M ⊗OK [Cnl ] M). The ker-
nel of f∗ is called the kernel group of Cl(OK [Cnl ]), and is denoted by
D(OK [Cnl ]).
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The space of left integrals of the OK-Hopf order OK [Cnl ] in K[Cnl ]
is LOK [Cnl ] = OKΣn, where Σn denotes the sum of the elements in Cnl .
Thus ε(LOK [Cnl ]) = lnOK . A Swan module is the OK [Cnl ]-module defined
by 〈r,Σn〉 = rOK [Cnl ] + ΣnOK [Cnl ], where r ∈ OK is relatively prime to
lnOK . Each Swan module 〈r,Σn〉 is a locally free OK [Cnl ]-module and thus
corresponds to a class (〈r,Σn〉) in Cl(OK [Cnl ]). The collection of classes of
Swan modules forms a subgroup of Cl(OK [Cnl ]) which is called the Swan
subgroup of Cl(OK [Cnl ]). The Swan subgroup is denoted by T (OK [Cnl ]).

Put OK = OK/lnOK . Let S∗ denote the multiplicative group of units
of a ring S. Let Vln = O∗K/σ(O∗K), where σ(O∗K) is the image of O∗K un-
der the canonical surjection σ : OK → OK . Then there is a surjection of
groups T (OK [Cnl ]) → V l

n−1
ln . Moreover, the power T (OK [Cnl ])l

n−1(l−1)/2 is
contained in R(OK [Cnl ])∩D(OK [Cnl ]). These facts yield the following lower
bound for R(OK [Cnl ]) ∩D(OK [Cnl ]) ([5, Corollary 7]).

Theorem 1.0. Let K be an algebraic number field , and let Cnl be an

l-elementary abelian group of order ln. If V
(ln−1)ln−1(l−1)/2
ln is nontrivial ,

then R(OK [Cnl ]) ∩D(OK [Cnl ]) is nontrivial.

Thus, if V (ln−1)ln−1(l−1)/2
ln is nontrivial, there exists a Galois module class

(OL) for some tame extension L/K, for which OL is not free over OK [Cnl ].

Specifically, for any K 6= Q, there exists an odd prime l for which V (l−1)2/2
l is

nontrivial. Thus there exists a tame degree l Galois extension L/K for which
OL is not a free OK [Cl]-module, that is, OL is a tame OK [Cl]-extension
which is not free over OK [Cl]. In this manner the authors [5] show that no
field K 6= Q is Hilbert–Speiser.

Since we seek nontrival tame Λ-extensions for Λ 6= OK [Cnl ], it is natural
to seek an analogue of Theorem 1.0 for OK-Hopf orders Λ in K[Cnl ]. We
require that our OK-Hopf orders satisfy a technical condition which we
describe as follows. Let F+

ln denote the additive group of the finite field
of order ln. Then Cnl

∼= F+
ln and C ∼= F∗ln is a group of automorphisms

of Cnl . The OK-Hopf order Λ in K[Cnl ] admits C if these automorphisms
map Λ into itself. Such Λ are Raynaud orders, that is, OK-Hopf algebra
orders Λ in K[Cnl ] which admit a group of automorphisms of Cnl isomorphic
to F∗ln . (Equivalently: the corresponding group scheme SpecΛ is provided
with an action of Fln ; see [9], [4, §4].) One sees immediately that OK [Cnl ] is
a Raynaud order.

We shall generalize Theorem 1.0 to OK-Hopf orders Λ in K[Cnl ] which
admit C. We give the (somewhat expected) analogues for D(OK [Cnl ]),
T (OK [Cnl ]), and Vln , which we denote by D(Λ), T (Λ), and Vε(LΛ), respec-
tively. The proper analogue for R(OK [Cnl ]) is R(Λ), which we define to
be the set of classes in the locally free classgroup Cl(Λ) of the form (X )
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where X is a semilocal principal homogeneous space over B. The analogue
of Theorem 1.0 is the following:

Main Theorem (Theorem 2.12). Let Cnl be an elementary abelian group
of order ln, let K be an algebraic number field , and let Λ be an OK-Hopf
order in K[Cnl ] which admits C. Suppose ε(LB) is a principal ideal in OK .

If V (ln−1)ln−1(l−1)/2
ε(LΛ) is nontrivial , then R(Λ) ∩D(Λ) is nontrivial.

We apply our Main Theorem to the case K = Q(ζm), where ζm is a
primitive lmth root of unity, m ≥ 1, and Λ is a Raynaud order in K[Cnl ],
n = 1, 2, which is a Larson order (cf. [6]). For these Raynaud orders we show

that the group V
(ln−1)ln−1(l−1)/2
ε(LΛ) is nontrivial. Hence there exist tame Λ-

extensions which are not free Λ-modules. These nontrivial tame Λ-extensions
are semilocal principal homogeneous spaces over B.

2. Construction of the lower bound. In this section we prove our
Main Theorem. Throughout, we assume that Λ is an OK-Hopf order in
K[Cnl ] which admits C. We first develop an analogue for the collection of
Galois module classes R(OK [Cnl ]). Let Oc

K denote the integral closure of
OK in some fixed algebraic closure Kc of K. Let X be an OK-algebra which
is finitely generated and projective as an OK-module. Suppose Cnl acts on
X as OK-algebra automorphisms. Then X is a principal homogeneous space
over B if the action of Cnl extends to an action of Λ on X , and if for some
homomorphism τ : X → Oc

K of OK-algebras, the OK-linear map

% : X ⊗OK Oc
K → B ⊗OK Oc

K = HomOK (Λ,Oc
K),

defined by %(x ⊗ r)(h) = τ(h · x)r, for x ∈ X , r ∈ Oc
K and h ∈ Λ, is

bijective. X is a principal homogeneous space over B if and only if X is a
Galois Λ-extension of OK in the sense of [2, §1]. We denote the collection of
principal homogeneous spaces over B by PH(B).

Now let Ol denote the semilocalization of OK at the ideal lOK . (Here
we are surpressing the subscript K for convenience of notation.) Let Bl =
B ⊗OK Ol. The definition of principal homogeneous space over B extends
to the domain Ol, and we let PH(Bl) denote the collection of principal
homogeneous spaces over the Ol-Hopf order Bl in Map(Cnl ,K). Let X (l)

be a principal homogeneous space in PH(Bl). Let X = KX (l) and let OX
denote the integral closure of OK in X. A semilocal principal homogeneous
space over B is an order X of the form X (l) ∩ OX ([1, §3]). The set of
isomorphism classes of such orders is denoted by SPH(B). The linear dual
B is a semilocal principal homogeneous space over itself. Observe that X (l)

is the semilocalization Xl = X ⊗OK Ol. Moreover, each X ∈ SPH(B) is a
Λ-module (see [1, §3]).
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Let X = X (l) ∩ OX be a given element of SPH(B) for some X (l) ∈
PH(Bl). Put Λl = Λ⊗OK Ol. Then Xl is a Galois Λl-extension of Ol. Thus
by [3, Proposition 2.3], Xl is a tame Λl-extension of Ol. It follows that
Xl is Λl-faithful, and rankOl(Xl) = rankOl(Λl). Thus X is Λ-faithful, and
rankOK (X ) = rankOK (Λ). Moreover,

LΛX = LΛ(Xl ∩ OX) = LΛlXl ∩ OX = XΛll ∩ OX = XΛ

and

LΛX = LΛ(Xl ∩ OX) = LΛlXl ∩ OX = Ol ∩ OX = OK .
Hence each X ∈ SPH(B) is a tame Λ-extension.

Let $ be the element of Map(Cnl ,K) defined by $(g) = 1 if g = 1,
and $(g) = 0 if g 6= 1. Then by [1, Lemma 1.3(ii)], LB = I$ for some
ideal I ⊆ OK . Note ε(LB) = ε(I$) = I, hence LB = ε(LB)$. By [1,
Proposition 3.4], each X ∈ SPH(B) is a locally free rank one Λ-module, and
Tr(X ) = ε(LB), where Tr denotes the trace map.

As a locally free rank one Λ-module, the element X ∈ SPH(B) cor-
responds to a class (X ) ∈ Cl(Λ). We have the class invariant map Ψ :
SPH(B) → Cl(Λ), defined by Ψ(X ) = (X )(B)−1. Byott [1] has given a de-
scription of the image Ψ(SPH(B)) which we will presently state. We employ
the characterization of the classgroup given in [7] and [1]. LetO′K = OK [l−1],
and Λ′ = Λ⊗OK O′K . Let I(Λ′) denote the free abelian group generated by
the prime fractional ideals of Λ′. Let (Λ∗l ) denote the subgroup of principal
ideals in I(Λ′). Any locally free rank one Λ-module M can be written in
the form M = η · x where x is a “semilocal generator for M”, and where
η = η ∩ Λl, with η ∈ I(Λ′) (see [1, §4]). There is an isomorphism

(2.0) Cl(Λ) ∼= I(Λ′)/(Λ∗l ),

where the class (M) corresponds to the image of η in I(Λ′)/(Λ∗l ).
We now give Byott’s characterization of Ψ(SPH(B)). The augmentation

map ε : Λ → OK induces a map of classgroups ε∗ : Cl(Λ) → Cl(OK), de-
fined by (M) 7→ (OK ⊗Λ M). Let Cl0(Λ) denote the kernel of ε∗. Via the
isomorphism of (2.0), the action of C on Λ induces an action of C on Cl0(Λ).
This action extends to an action of Z[C] on Cl0(Λ). Put θ =

∑
δ∈C t(δ)δ

−1

where t(δ) is the least nonnegative residue (mod l) of the image of δ un-
der the trace map Tr : Fln → Fl ∼= Z/lZ. Then J = Z[C](θ/l) ∩ Z[C] is
the Stickelberger ideal in Z[C]. Let Cl0(Λ)J denote the image of Cl0(Λ)
under the Stickelberger ideal. We have the following theorem ([1, Theo-
rem 5.2]):

Theorem 2.1 (Byott). Let B denote the dual of an OK-Hopf order Λ
in K[Cnl ]. If Λ admits C, then the image of the map Ψ : SPH(B)→ Cl(Λ)
is precisely Cl0(Λ)J .
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We now define an analogue for the Galois module classes. Let R(Λ)
denote the collection of classes in Cl(Λ) of the form (X ) where X is a
semilocal principal homogeneous space over B. For Λ = OK [Cnl ], R(Λ) is
the collection of classes (X ) where X is a semilocal principal homogeneous
space over OK [Cnl ]D, the linear dual of OK [Cnl ]. These semilocal principal
homogeneous spaces consist of the integral closures of OK in the Galois
algebras over K with group Cnl which are at most tamely ramified at every
prime of OK (cf. [1, p. 422]).R(OK [Cnl ]) is therefore the collection of classes
of these integral closures. On the other hand, R(OK [Cnl ]) denotes the set of
classes in Cl(OK [Cnl ]) of the form (OL) where OL is the ring of integers of
a tame Galois extension L/K with group Cnl .

We claim that R(OK [Cnl ]) = R(OK [Cnl ]). Indeed, since OK [Cnl ]D is a
free OK [Cnl ]-module, the image of the class invarient map is R(OK [Cnl ]).
By the main result of McCulloh [7] we have Cl0(OK [Cnl ])J = R(OK [Cnl ]).
Thus by Theorem 2.1, R(OK [Cnl ]) = R(OK [Cnl ]). We conclude that R(Λ)
generalizes the collection of Galois module classes. In fact, if ε(LB) is a
principal ideal in OK , then R(Λ) is the image of the class invarient map for
any Λ which admits C.

Theorem 2.2. Let Λ be an OK-Hopf order in K[Cnl ] which admits C,
with linear dual B. Suppose ε(LB) is a principal ideal in OK , then R(Λ) =
Ψ(SPH(B)).

Proof. We claim that if ε(LB) is a principal ideal in OK , then the
class (B) is trivial in Cl(Λ), thus Ψ(X ) = (X ). It is then immediate that
Ψ(SPH(B)) = R(Λ). Recall that LB = ε(LB)$, where $ is the element of
Map(Cnl ,K) defined previously. Since ε(LB) is principal, ε(LB) = OKx for
some element x ∈ OK . By [1, Lemma 1.3(iii)],

B = Λ · LB = Λ · OKx$ = Λ · x$,
thus B is a free Λ-module, and (B) is trivial in Cl(Λ). Hence Ψ(X ) = (X )
for each X ∈ SPH(B).

We next develop analogues for the kernel group and the Swan subgroup
of Cl(OK [Cnl ]). The inclusion f : Λ→M induces a homomorphism of class
groups f∗ : Cl(Λ)→ Cl(M), given by (M) 7→ (M⊗ΛM). The kernel group
of Cl(Λ), denoted by D(Λ), is defined to be the kernel of f∗.

Let r ∈ OK be relatively prime to ε(LΛ). A Hopf–Swan module is the
Λ-module defined by 〈r,LΛ〉 = rΛ+LΛ. When Λ = OK [Cnl ] the Hopf–Swan
module 〈r,LΛ〉 specializes to a Swan module.

The methods of [11, Proposition 2.4] apply to show that each Hopf–Swan
module 〈r,LΛ〉 is a locally free rank one Λ-module. Let OK = OK/ε(LΛ),
and let σ denote the canonical surjection σ : OK → OK . Put Γ = Λ/LΛ,
and let κ denote the canonical surjection κ : Λ→ Γ . Let ε : Γ → OK be the



Nontrivial tame extensions over Hopf orders 73

map defined by ε(h mod LΛ) = ε(h) mod ε(LΛ). There exists a fiber product

(2.3)

Λ Γ

OK OK

κ //

ε

��
ε

��
σ //

and we can identify Λ with the subring N of OK × Γ defined by

N = {(s, γ) ∈ OK × Γ : σ(s) = ε(γ)}.
The element h ∈ Λ corresponds to the pairing (ε(h), κ(h)) ∈ N . Over K, the
fiber product (2.3) yields the identification K[Cnl ] = K ×K[Cnl ]/ΣnK[Cnl ],
and Λ may be viewed as an OK-order in K ×K[Cnl ]/ΣnK[Cnl ].

Let p be a prime ideal of K, and let Kp denote the completion of K
at the nontrivial discrete valuation of K corresponding to p. Let OKp be
the ring of integers of Kp. Let Λp = OKp ⊗OK Λ, 〈r,LΛ〉p = 〈r,LΛp〉, and
Γp = Λp/LΛp . We have the completions of the maps ε, κ, ε, and σ, which
we denote by εp : Λp → OKp , κp : Λp → Γp, εp : Γp → OKp , and σp :
OKp → OKp , respectively. Let J(K ×K[Cnl ]/ΣnK[Cnl ]) be the idèle group
of K ×K[Cnl ]/ΣnK[Cnl ] defined by

J(K ×K[Cnl ]/ΣnK[Cnl ])

=
{

(αp) ∈
∏

K∗p × (Kp[Cnl ]/ΣnKp[Cnl ])∗ : αp ∈ Λ∗p , a.e.
}
,

where the product is over all prime ideals of OK . For any idèle α in
J(K ×K[Cnl ]/ΣnK[Cnl ]), let Λα denote the locally free Λ-module defined
by

Λα =
⋂

p

(Λpαp ∩ (K ×K[Cnl ]/ΣnK[Cnl ])).

Theorem 2.4. The Hopf–Swan module 〈r,LΛ〉 is a locally free rank one
Λ-module equal to Λα, where α is the idèle in J(K × K[Cnl ]/ΣnK[Cnl ])
defined by αp = 1 if p - rOK , and αp = (1, r) ∈ OKp × Γp if p | rOK .

Proof. Following the method of [11, Proposition 2.4(i)], we show that
〈r,LΛ〉p = Λpαp for all primes p of K. Suppose p - rOK . Then r is a unit
of OKp , hence 〈r,LΛ〉p = Λp = Λpαp. On the other hand, if p | rOK then
p - ε(LΛ), since r is relatively prime to ε(LΛ). Thus the ideal ε(LΛp) consists
of units of OKp , and hence, OKp/ε(LΛp) is trivial. The identification from
the fiber product (2.3) then yields

(2.5) Λp = OKp × Γp.
Now let rh1 + h2 be an element of 〈r,LΛ〉p with h1 ∈ Λp, h2 ∈ LΛp . Then
rh1 +h2 is identified via (2.5) with the element (rεp(h1)+εp(h2), rκp(h1)) in
OKp×Γp. Since εp(h2) is a unit in OKp , 〈r,LΛ〉p corresponds to the cartesian
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product OKp × rΓp under the identification of (2.5). Thus any element of
〈r,LΛ〉p can be viewed as an (OKp × Γp)-multiple of the generator (1, r). It
follows that 〈r,LΛ〉p = Λpαp.

In view of Theorem 2.4, the Hopf–Swan module 〈r,LΛ〉 corresponds to
a class (〈r,LΛ〉) in Cl(Λ). We seek an explicit description of the collection
of Hopf–Swan classes in Cl(Λ). Observe that the fiber product (2.3) yields
the exact Mayer–Vietoris sequence

(2.6) 1→ Λ∗ → Γ ∗ ×O∗K → O
∗
K

∂→ D(Λ)→ D(Γ )⊕D(OK)→ 0

(see [10, 1.10]). For an element u = r mod ε(LΛ) ∈ O∗K , let Λ · u denote the
left Λ-module defined as

Λ · u = {(s, γ) ∈ OK × Γ : σ(s)u = ε(γ)}
(see [10, 4.19]). (Note that if u = 1, then Λ · 1 = Λ via the identification
from the fiber product (2.3).) By [10, 4.20], Λ · u is a locally free rank one
Λ-module, corresponding to the class (Λ · u) ∈ Cl(Λ). The boundary map
∂ : O∗K → D(Λ) is given as ∂(u) = (Λ · u). The image of the boundary map
∂ is precisely the collection of classes of Hopf–Swan modules.

Theorem 2.7. Let ∂ be the boundary map given in (2.6). Then the im-
age of ∂ is the collection of classes {(〈r,LΛ〉)}.

Proof. Following the method of [11, Proposition 2.4(ii)], let β be the
element of

∏
Λ∗p defined by βp = 1 if p | rOK , and βp = r if p - rOK . Let µ

be the element of
∏O∗Kp×Γ ∗p defined by µp = 1 if p | rOK , and µp = (r, 1) if

p - rOK . Then with (1, r−1) ∈ K×K[Cnl ]/ΣnK[Cnl ], we have α(1, r−1)β = µ.
It follows that Λµ ∼= Λα = 〈r,LΛ〉.

Since Λµ is a projective Λ-module, we may apply the exact functor
−⊗Λ Λµ to the fiber product of (2.3) to obtain the fiber product

Λµ Γ ⊗Λ Λµ

OK ⊗Λ Λµ OK ⊗Λ Λµ

//

�� ��
//

Over K we obtain

KΛµ K[Cnl ]/ΣnK[Cnl ]⊗Λ Λµ

K ⊗Λ Λµ 0

//

�� ��
//

and we may identify KΛµ with

(K ⊗Λ Λµ)× (K[Cnl ]/ΣnK[Cnl ]⊗Λ Λµ).
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There is a natural embedding of Λµ into the K[Cnl ]-module KΛµ. Let
OKΛµ denote the OK-submodule of KΛµ generated by {x1 : (x1, x2) ∈
Λµ}, and let ΓΛµ denote the Γ -submodule of KΛµ generated by {x2 :
(x1, x2) ∈ Λµ}. Then as in [10, §3], there are isomorphisms

OK ⊗Λ Λµ ∼= OKΛµ and Γ ⊗Λ Λµ ∼= ΓΛµ.

We claim that OKΛµ = OK and ΓΛµ = Γ . Suppose p | rOK . In this case

Λpµp = Λp = OKp × Γp,
hence, locally at p, OKpΛpµp = OKp , and ΓpΛpµp = Γp. If p - rOK , then
Λpµp = Np(r, 1) where Np = {(s, γ) ∈ OKp × Γp : σp(s) = εp(γ)}, and
r ∈ O∗Kp . Now since (r−1, r−1) ∈ Np we have (1, r−1) ∈ Λpµp. Thus
OKpΛpµp = OKp . Since (1, 1) ∈ Np, we have (r, 1) ∈ Λpµp. It follows that
ΓpΛpµp = Γp. We conclude OKΛµ = OK and ΓΛµ = Γ , which yields the
isomorphisms

OK ⊗Λ Λµ ∼= OK and Γ ⊗Λ Λµ ∼= Γ.

By [10, Lemma 4.20(iv)], Λµ ∼= Λ · v for some v ∈ O∗K , hence 〈r,LΛ〉 ∼= Λµ
∼= Λ · v. Since the collection of Hopf–Swan modules {〈r,LΛ〉} is in a one-to-
one correspondence with the elements of O∗K , it follows that the image of ∂
is {(〈r,LΛ〉)}.

In view of Theorem 2.7, we define the Hopf–Swan subgroup of Cl(Λ), de-
noted by T (Λ), to be the image of ∂. We consider T (Λ) as an additive abelian
subgroup of Cl(Λ). For a positive integer w, let (〈r,LΛ〉)w denote the sum
of w copies of the class (〈r,LΛ〉) ∈ T (Λ). Define T (Λ)w to be those elements
(〈s,LΛ〉) ∈ T (Λ) of the form (〈r,LΛ〉)w for some class (〈r,LΛ〉) ∈ T (Λ).

At this point we can begin the construction of our lower bound forR(Λ)∩
D(Λ). Let σ(O∗K) denote the image of O∗K under the canonical surjection
σ : OK → OK = OK/ε(LΛ). Put Vε(LΛ) = O∗K/σ(O∗K). We claim that there
is a surjection of groups T (Λ) → V l

n−1
ε(LΛ). From the exact sequence (2.6) we

obtain

(2.8) T (Λ) ∼= O∗K/(σ(O∗K) · ε(Γ ∗)).
We assert that the (ln − 1)st power of ε(Γ ∗) is in σ(O∗K).

Lemma 2.9. Suppose Λ is an OK-Hopf order in K[Cnl ] which admits C.
Recall Γ = Λ/LΛ. If γ ∈ Γ ∗, then ε(γ)l

n−1 ∈ σ(O∗K).

Proof. Since C is a group of automorphisms of Cnl , C is a group of
automorphisms of Λ and Γ . By [1, Lemma 1.3(i)], LΛ = I(Σn/ln), for
some integral ideal I. Thus ε(LΛ) = ε(I(Σn/ln)) = I. It follows that LΛ =
ε(LΛ)(Σn/ln). Write ς for the identity of Cnl . C fixes ς, and permutes the
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remaining elements of Cnl transitively, hence ΛC = OKς + LΛ. Now the
C-cohomology of the short exact sequence

0→ LΛ → Λ→ Γ → 0,

yields the exact sequence 0 → OKς → ΓC → H1(C,LΛ). Since C acts
trivially on LΛ, H1(C,LΛ) = Hom(C,LΛ). Note Hom(C,LΛ) = 0 since C is
a torsion group and LΛ is torsion-free as an abelian group. Thus we identify
ΓC with OK .

Now let N be the norm map N : Γ ∗ → O∗K , defined by N(γ) =
∏
δ∈C γ

δ.
For γ = h+ LΛ ∈ Γ , and δ ∈ C,

ε(γδ) = ε(hδ) mod ε(LΛ) = ε(h) mod ε(LΛ) = ε(γ),

since δ permutes the elements of Cnl , and ε(g) = 1 for all g ∈ Cnl . Thus

ε(N(γ)) = ε
( ∏

δ∈C
γδ
)

=
∏

δ∈C
ε(γδ) = ε(γ)l

n−1.

Now for u ∈ (ΓC)∗ ∼= O∗K , ε(u) = u mod ε(LΛ), since ε(u) = u for u ∈ OK .
Thus ε(N(γ)) ∈ σ(O∗K), which yields ε(γ)l

n−1 ∈ σ(O∗K).

Lemma 2.10. Let Λ be an OK-Hopf order in K[Cnl ] which admits C,
and let T (Λ) be the Hopf–Swan subgroup of Cl(Λ). Recall Vε(LΛ) =
O∗K/σ(O∗K). Then there is a surjective map T (Λ)→ V l

n−1
ε(LΛ).

Proof. From (2.8) we have

T (Λ) ∼= O∗K/σ(O∗K) · ε(Γ ∗) ∼= Vε(LΛ)/(ε(Γ
∗)/σ(O∗K)).

Now by Lemma 2.9, ε(Γ ∗)/σ(O∗K) is contained in the kernel of the (ln−1)st
power map Vε(LΛ) → Vε(LΛ), hence there is a surjection T (Λ)→ V l

n−1
ε(LΛ).

The next step in the construction of a lower bound for R(Λ) ∩D(Λ) is
to relate T (Λ) and R(Λ) ∩D(Λ).

Lemma 2.11. Let K be an algebraic number field with ring of integers
OK and let Λ be an OK-Hopf order in K[Cnl ] which admits C. Suppose
ε(LB) is a principal ideal in OK . Then T (Λ)l

n−1(l−1)/2 ⊆ R(Λ) ∩D(Λ).

Proof. We use the method of [5, Proposition 4], where the theorem is
proved for the case Λ = OK [Cnl ]. For δ ∈ C, one has (〈r,LΛ〉)δ = (〈r,LΛ〉),
thus T (Λ) is a Z[C]-submodule of D(Λ). Let εM∗ : Cl(M)→ Cl(OK) denote
the map of classgroups induced by the augmentation εM :M→OK . Then
εM∗ ◦ f∗ = ε∗ where f∗ is the homomorphism of class groups f∗ : Cl(Λ) →
Cl(M) defined by (M) 7→ (M⊗Λ M). Hence D(Λ) ⊆ Cl0(Λ). Let T (Λ)J

denote the image of T (Λ) under the action of J . Then

T (Λ)J ⊆ Cl0(Λ)J ∩D(Λ),
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and hence
T (Λ)J ⊆ Ψ(SPH(B)) ∩D(Λ),

by Theorem 2.1. Since ε(LB) is a principal ideal,

T (Λ)J ⊆ R(Λ) ∩D(Λ),
by Theorem 2.2.

The group of automorphisms C is finite and we may list its elements
δ1, . . . , δm. Let (〈r,LΛ〉) be a class in T (Λ), and let α =

∑m
i=1 aiδi be an

element in J ⊆ Z[C]. Let ε : Z[C] → Z denote the augmentation map
defined by ε(δi) = 1 for i = 1, . . . ,m. Then

(〈r,LΛ〉)α = (〈r,LΛ〉)a1δ1 + (〈r,LΛ〉)a2δ2 + . . .+ (〈r,LΛ〉)amδm
= (〈r,LΛ〉)a1 + (〈r,LΛ〉)a2 + . . .+ (〈r,LΛ〉)am

= (〈r,LΛ〉)ε(α).

Thus T (Λ)J = T (Λ)ε(J ). Now by [5, Lemma 3], T (Λ)ε(J ) = T (Λ)l
n−1(l−1)/2.

It follows that T (Λ)l
n−1(l−1)/2 ⊆ R(Λ) ∩D(Λ).

We are now in a position to prove our Main Theorem.

Theorem 2.12. Let Cnl be an l-elementary abelian group, let K be an
algebraic number field , and let Λ be an OK-Hopf order in K[Cnl ], which

admits C. Suppose ε(LB) is a principal ideal in OK . If V
(ln−1)ln−1(l−1)/2
ε(LΛ)

is nontrivial , then R(Λ) ∩D(Λ) is nontrivial.

Proof. Suppose V
(ln−1)ln−1(l−1)/2
ε(LΛ) is nontrivial. Then by Lemma 2.10,

T (Λ)l
n−1(l−1)/2 is nontrivial. It follows that R(Λ) ∩ D(Λ) is nontrivial by

Lemma 2.11.

3. Applications to cyclotomic fields. In this section we find a collec-
tion of fields K/Q and Raynaud orders Λ in K[Cnl ], n = 1, 2, for which the

corresponding group V
(ln−1)ln−1(l−1)/2
ε(LΛ) is nontrivial. We then apply The-

orem 2.12 to show the existence of tame Λ-extensions which are not free
Λ-modules. These tame Λ-extensions are semilocal principal homogeneous
spaces over B.

Assume n = 1, and let l > 3 be a prime which satisfies Vandiver’s
conjecture, that is, l -h+(Q(ζ1)), where h+(Q(ζ1)) is the class number of
the maximal real subfield of Q(ζ1), and ζ1 is a primitive lth root of unity.
Vandiver’s conjecture is known to be true for primes l < 4000000 (see [12]).

Let ζm denote a primitive lmth root of unity, m ≥ 1. We set
K = Q(ζm), then OK = Z[ζm]. The ideal lZ[ζm] decomposes as lZ[ζm] =
(1 − ζm)l

m−1(l−1)Z[ζm]. Each integer j with 0 ≤ j ≤ lm−1, gives rise to an
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Z[ζm]-Hopf order in K[Cl] of the form

Λj = Z[ζm][{(g − 1)(1− ζm)−jZ[ζm]}],
where the g runs through all the nontrivial elements of Cl. Such Hopf orders
are called Larson orders in K[Cl] ([6, Proposition 3.2]). It is easy to see
that each Λj admits C. The space of left integrals LΛj is so that ε(LΛj ) =
(1 − ζm)(lm−1−j)(l−1)Z[ζm] (cf. [6, Lemma 4.2]). For convenience, put S =
Z[ζm]. For each j, 0 ≤ j ≤ lm−1, let Sj = S/(1 − ζm)(lm−1−j)(l−1)S, and
let σj : S → Sj denote the canonical surjection. Put Vε(LΛj ) = S

∗
j/σj(S

∗).
We shall employ Theorem 2.12 to show that R(Λj)∩D(Λj) is nontrivial for
0 ≤ j ≤ lm−1 − 1. We begin with a lemma.

Lemma 3.0. For each j, 0 ≤ j ≤ lm−1 − 1, there is a surjective map of
groups,

Vε(LΛj ) → Vε(LΛ
lm−1−1

).

Proof. Since (1− ζm)(lm−1−j)(l−1)S ⊆ (1− ζm)l−1S, there is a surjection

βj : Sj → Slm−1−1.

We claim that βj restricts to a surjection of multiplicative groups,

βj : S
∗
j → S

∗
lm−1−1.

We have

S ∼= Z⊕ (1− ζm)Z⊕ (1− ζm)2Z⊕ . . .⊕ (1− ζm)l
m−1(l−1)−1Z,

so that Slm−1−1 = S/(1− ζm)l−1S is isomorphic to C l−1
l as additive groups.

Let
v = a0 + a1(1− ζm) + . . .+ al−2(1− ζm)l−2,

ar ∈ Cl, be an element of S
∗
lm−1−1. Necessarily, (a0, l) = 1. Consequently,

there exists an element w ∈ S∗j for which βj(w) = v, thus βj : S
∗
j → S

∗
lm−1−1

is a surjection of multiplicative groups.
The subgroup σj(S∗) of S

∗
j then induces a surjection

S
∗
j/σj(S

∗)→ S
∗
lm−1−1/βj(σj(S

∗)).

Observing that βj(σj(S∗)) = σlm−1−1(S∗) yields the desired surjection

Vε(LΛj ) → Vε(LΛ
lm−1−1

).

Theorem 3.1. Let l > 3 be a prime which satisfies Vandiver’s con-
jecture. Let m ≥ 1, and let j be any integer 0 ≤ j ≤ lm−1 − 1. Then
R(Λj) ∩D(Λj) is nontrivial.

Proof. We show that for j, 0 ≤ j ≤ lm−1 − 1, the group V
(l−1)2/2
ε(LΛj ) is

nontrivial. For the moment we fix j = lm−1−1. Our first step is to compute
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the group S
∗
lm−1−1 = (S/(1 − ζm)l−1S)∗. Observe that (S/(1 − ζm)l−1S)∗

has order (l − 1)ll−2 as a multiplicative group, and the elements

1 + (1− ζm), 1 + (1− ζm)2, 1 + (1− ζm)3, . . . , 1 + (1− ζm)l−2,

have order l. It follows that

S
∗
lm−1−1 = (S/(1− ζm)l−1S)∗ ∼= Cl−1 × Cl−2

l .

We next characterize the subgroup σlm−1−1(S∗) of (S/(1−ζm)l−1S)∗. We
employ the cyclotomic units of K+ and K, where K+ denotes the maximal
real subfield of K. The cyclotomic units U+ of K+ are the elements of S∗

generated by −1 and the quantities of the form

ua = ζ(1−a)/2
m

1− ζam
1− ζm

, 1 < a < lm/2, (a, l) = 1.

The cyclotomic units U of K are the elements of S∗ generated by ζm and
the cyclotomic units of K+ (cf. [12, Lemma 8.1]).

Let E+ denote the full group of units of the maximal real subfieldK+. By
Washington [12, Theorem 8.2], the index [E+ : U+] = h+(K). Moreover, by
[12, Corollary 4.13], S∗ = WE+, where W denotes the group of roots of
unity in K. Now since U = WU+ by definition,

[E+ : U+] = [WE+ : WU+] = [S∗ : U ],

thus the quotient group S∗/U is finite of order h+(K).
Consider the surjection of groups

σlm−1−1 : S∗ → σlm−1−1(S∗).

The subgroup U ≤ S∗ induces a surjection of quotients

S∗/U → σlm−1−1(S∗)/σlm−1−1(U).

Let −ζm denote the residue class of −ζm modulo (1− ζm)l−1S, and let
ua denote the residue class of ua modulo (1 − ζm)l−1S for 1 < a < lm/2,
(a, l) = 1. We claim that the classes −ζm and

{ua | 1 < a ≤ (l − 1)/2}
generate all the elements of σlm−1−1(U). Certainly this is true for the case
m = 1, so we assume that m > 1. Observe that

1 + ζm + . . .+ ζl−1
m ≡ 0 mod (1− ζm)l−1S,

hence for 1 < a < lm/2, (a, l) = 1, a ≡ 1 mod l,

ua ≡ ζ(1−a)/2
m mod (1− ζm)l−1S,

that is,
ua = (ζm)(1−a)/2.
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For a 6≡ 1 mod l, a > l+ 1, let k denote the least positive integer congruent
to a modulo l. Then

ua ≡ ζ(1−a)/2
m ζ(k−1)/2

m uk mod (1− ζm)l−1S,

thus
ua = (ζm)(k−a)/2uk.

We conclude that the classes {ua | 1 < a ≤ l−1} together with −ζm generate
σlm−1−1(U).

Similarly, one shows that the classes {ua | 1 < a ≤ (l − 1)/2} together
with −ζm generate σlm−1−1(U). It follows that σlm−1−1(U) is a subgroup of
(S/(1− ζm)l−1S)∗ ∼= Cl−1 × Cl−2

l of the form

σlm−1−1(U) = 〈−ζm〉 × 〈u2〉 × . . .× 〈u(l−1)/2〉.
Thus σlm−1−1(U) can have at most (l − 1)/2 copies of Cl in its cyclic de-
composition. Now suppose σlm−1−1(S∗) had more than (l−1)/2 copies of Cl
in its decomposition. Then l divides the order of σlm−1−1(S∗)/σlm−1−1(U),
and hence l divides h+(K), the order of the group S∗/U . By [12, Corol-
lary 10.6], l |h+(Q(ζ1)), that is, Vandiver’s conjecture does not hold for l.
This contradicts our assumption that l satisfies Vandiver’s conjecture.

It follows that σlm−1−1(S∗) can have at most (l − 1)/2 copies of Cl in
its cyclic decomposition. Hence Vε(LΛ

lm−1−1
) = S

∗
lm−1−1/σlm−1−1(S∗) must

contain at least one copy of Cl in its cyclic decomposition, since for l > 3,

l − 2 > (l − 1)/2.

We conclude that V l−1
ε(LΛ

lm−1−1
) is nontrivial. Thus by Lemma 3.0, V l−1

ε(LΛj )

is nontrivial for all j, 0 ≤ j ≤ lm−1 − 1, and all m, m ≥ 1. Consequently,
V

(l−1)2/2
ε(LΛj ) is nontrivial for all j, 0 ≤ j ≤ lm−1 − 1, and all m, m ≥ 1. Let

Bj denote the linear dual of Λj . The ideal ε(LBj ) is divisor of lS, hence
principal, since all ideals of the cyclotomic field K dividing lS are principal
ideals. An application of Theorem 2.12 then shows that R(Λj) ∩ D(Λj) is
nontrivial.

It is immediate from Theorem 3.1 that for each j, 0 ≤ j ≤ lm−1 − 1,
there exists a tame Λj-extension M which is not a free Λj-module. We know
that M is a semilocal principal homogeneous space over Bj . Thus locally,
at the prime ideal (1− ζm)S lying above lS, M is a principal homogeneous
space over Bj .

We claim that there exists a nontrivial class (M) ∈ R(Λj) for which M is
the full ring of integers of some Galois extension L/K with group Cl. To this
end, put w = 1 + (1− ζm)l(l

m−1−j)+1. Then L = K(z), z = w1/l, is a Galois
extension of degree l. By [2, Theorem 16.1], OL is a Galois Λj-extension,
thus OL is a semilocal principal homogeneous space over Bj . Hence there is
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some element of SPH(Bj) which is integrally closed over S. Now let (M) be
the nontrivial element of R(Λj) which exists via Theorem 3.1. Then by [1,
Theorem 5.6], there exists an X ∈ SPH(Bj) with (X ) = (M) for which X is
the full ring of integers of some Galois extension of K with group Cl. Since
K[Cl] satisfies the Eichler condition ([10, p. 307]), M ∼= X , thus M is the
full ring of integers of some Galois extension L/K with group Cl.

We next consider the case n = 2, and find a collection of Raynaud orders
Λ in K[C2

l ], l > 3, K = Q(ζm), S = Z[ζm], m ≥ 2, for which there exists
tame Λ-extensions which are not free over Λ.

Put C2
l = Cl × C ′l . Let ν denote the nontrivial discrete valuation on K

which corresponds to the prime ideal (1 − ζm)S. For each pair of integers
i, j with 0 ≤ i, j ≤ lm−1, one may define an l-adic order bounded group
valuation ξ on Cl×C ′l , by setting ξ(1, 1) =∞, ξ(h, 1) = i for h ∈ Cl, h 6= 1,
and ξ(h, h′) = j, for h ∈ Cl, h′ ∈ C ′l , h′ 6= 1 ([6, Definition 1.1]). ξ gives rise
to an S-Hopf order in K[Cl × C ′l ] of the form

Λi,j = S[{(g − 1)(1− ζm)−ξ(g)S}],
where g runs through all the nontrivial elements of Cl × C ′l ([6, Proposi-
tion 3.2]). It is easy to see that Λi,j is a Raynaud order if and only if i = j.

We consider only those Raynaud orders Λj,j for which 2j ≤ 2lm−1 − l.
We first compute the ideal ε(LΛj,j ). Note that each j satisfying the condition
2j ≤ 2lm−1 − l corresponds to a Raynaud order Λj in K[Cl]. There exists
an injection of K-Hopf algebras A : K[Cl]→ K[Cl ×C ′l ] defined by A(h) =
(h, 1), for h ∈ Cl. Let K[Cl]+ denote the augmentation ideal of K[Cl]. Then

A(K[Cl]+)K[Cl × C ′l ] = K[Cl × C ′l ]A(K[Cl]+),

thus the quotient ring K[Cl × C ′l ]/A(K[Cl]+)K[Cl × C ′l ] has the structure
of a K-Hopf algebra, which is isomorphic to K[C ′l ] as K-Hopf algebras.

It follows that there is a surjective map of K-Hopf algebras

B : K[Cl × C ′l ]→ K[C ′l ].

Thus, in the sense of Larson ([6, §2]), there exists a short exact sequence of
K-Hopf algebras

K[Cl]
A−→ K[Cl × C ′l ]

B−→ K[C ′l ].

Observe that Λj = A−1(Λj,j) and Λj = B(Λj,j). Thus by [6, Proposition 2.1]
one has ε(LΛj,j ) = (1− ζm)(l−1)(2lm−1−2j)S.

Let Sj,j = S/(1− ζm)(l−1)(2lm−1−2j)S, and let σj,j : S → Sj,j denote the
canonical surjection. Put Vε(LΛj,j ) = S

∗
j,j/σj,j(S

∗).

Theorem 3.2. Let l > 3 be a prime which satisfies Vandiver’s conjec-
ture, and let j be any integer for which 0 ≤ 2j ≤ 2lm−1 − l, m ≥ 2. Then
R(Λj,j) ∩D(Λj,j) is nontrivial.
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Proof. Consider the Raynaud (Larson) order Λlm−1−l in K[Cl], and the
corresponding canonical surjection σlm−1−l : S → S/(1 − ζm)l(l−1)S. Using
the method of Lemma 3.0 we have a surjection of groups

Vε(LΛj,j ) → Vε(LΛ
lm−1−l

) = (S/(1− ζm)l(l−1)S)∗/σlm−1−l(S
∗).

We seek to characterize the quotient Vε(LΛ
lm−1−l

). First observe that

S = Z⊕ (1− ζm)Z⊕ (1− ζm)2Z⊕ . . .⊕ (1− ζm)l
m−1(l−1)−1Z,

thus S/(1 − ζm)l(l−1)S is isomorphic to C
l(l−1)
l as additive groups.

Consequently, there are (l − 1)ll(l−1)−1 elements in the unit group
(S/(1− ζm)l(l−1)S)∗. The elements

1 + (1− ζm), 1 + (1− ζm)2, 1 + (1− ζm)3, . . . , 1 + (1− ζm)l−2,

have order l2 in (S/(1− ζm)l(l−1)S)∗. Moreover,

1 + (1− ζm)l−1, 1 + (1− ζm)l, 1 + (1− ζm)l+1, . . . , 1 + (1− ζm)l(l−1)−1,

have order l in the unit group. Note that

(1 + (1− ζm)r)l ≡ 1 + (1− ζm)lr mod (1− ζm)l(l−1)S,

for r = 1, . . . , l − 2. Thus the unit group (S/(1 − ζm)l(l−1)S)∗ is generated
by Cl−1, together with the elements 1 + (1− ζm)r, r = 1, . . . , l− 2, and the
elements 1 + (1− ζm)s, for l− 1 ≤ s ≤ l(l− 1)− 1, (s, l) = 1. It follows that

(S/(1− ζm)l(l−1)S)∗ ∼= Cl−1 × Cl
2−3l+3
l × Cl−2

l2 .

We next characterize the image σlm−1−l(S∗). We know that the quotient
group S∗/U is finite of order h+(K), where U denotes the cyclotomic units
of K. The subgroup U ≤ S∗ induces a surjection of quotients

S∗/U → σlm−1−l(S
∗)/σlm−1−l(U).

Let −ζm denote the residue class of −ζm modulo (1−ζm)l(l−1)S, and let
ua denote the residue class of ua modulo (1− ζm)l(l−1)S for 1 < a < lm/2,
(a, l) = 1. By the method of the proof of Theorem 3.1, one sees that the
classes {ua | 1 < a ≤ (l2 − 1)/2}, (a, l) = 1, together with −ζm generate
σlm−1−l(U).

The important question is: What is the maximum number of copies of
Cl2 that can occur in the cyclic decomposition of σlm−1−l(U)? To answer
this question, we consider the subgroup (σlm−1−l(U))l. Since

1 + ζlm + ζ2l
m + . . .+ ζ(l−1)l

m ≡ 0 mod (1− ζm)l(l−1)S,

it is fairly obvious that the classes

{(ua)l | 1 < a ≤ (l − 1)/2},
together with (−ζm)l generate (σlm−1−l(U))l. Thus there can be at most
(l−1)/2 copies of Cl in the cyclic decomposition of (σlm−1−l(U))l. It follows
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that there can be at most (l−1)/2 copies of Cl2 in the cyclic decomposition
of σlm−1−l(U).

If σlm−1−l(S∗) contains more than (l − 1)/2 copies of Cl2 in its cyclic
decomposition, then l2, and hence l, divides the order of the quotient

σlm−1−l(S
∗)/σlm−1−l(U).

It follows that l divides h+(K), the order of the group S∗/U . By [12, Corol-
lary 10.6], l |h+(Q(ζ1)), that is, Vandiver’s conjecture does not hold for l.
This contradicts our assumption that l satisfies Vandiver’s conjecture.

Thus σlm−1−l(S∗) contains at most (l − 1)/2 copies of Cl2 in its cyclic
decomposition. Now since l > 3,

(l − 1)/2 < l − 2,

thus σlm−1−l(S∗) has less than l−2 copies of Cl2 in its cyclic decomposition.
We conclude that Vε(LΛ

lm−1−l
) = S

∗
lm−1−l/σlm−1−l(S∗) contains at least

one copy of Cl2 in its cyclic decomposition. It follows that V l(l
2−1)(l−1)/2

ε(LΛ
lm−1−l

) is

nontrivial, and hence V l(l
2−1)(l−1)/2

ε(LΛj,j ) is nontrivial. Let Bj,j denote the linear

dual of Λj,j . Then the ideal ε(LBj,j ) is principal in the cyclotomic field K.
Theorem 2.12 then applies to show the existence of a semilocal principal
homogeneous space over Bj,j which is not a free Λj,j-module.
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