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1. Introduction. Let k be an algebraically closed field of characteristic
p ≥ 0, complete with respect to a non-Archimedean absolute value. Denote
by M(k) the field of meromorphic functions in k. For f ∈ M(k) and S a
subset of k, we let

E(f,S) = {(z,m) ∈ k × Z+ : f(z) = a ∈ S and f(z) = a

with multiplicity m},
E(f,S ∪ {∞}) = E(f,S)

∪ {(z,m) ∈ k × Z+ : z is a pole of order m of f}.
Let F be a non-empty subset of M(k). A subset S of k ∪ {∞} is called
a unique range set (URS for short) for F if f = g for any f, g ∈ F such
that E(f, S) = E(g, S). Similarly, let S, T be two subsets of k ∪ {∞} with
S ∩ T = ∅. (S, T ) is called a bi-URS for F if f = g for any f, g ∈ F such
that E(f, S) = E(g, S) and E(f, T ) = E(g, T ).

Several interesting results about URS and bi-URS for non-Archimedean
entire and meromorphic functions of zero characteristic have been obtained
in [BE1-3], [BEH], [CY], [EHV], and [KA]. Cherry and Yang [CY] gave a
characterization of a finite subset S of k to be an URS for p-adic entire
functions by observing that it is equivalent to S being an URS for the poly-
nomial ring over k. Recently, Khoai and An [KA] gave sufficient conditions
for URS and bi-URS in terms of uniqueness polynomials and strong unique-
ness polynomials for non-Archimedean meromorphic functions by using tools
from p-adic Nevanlinna’s theorem. In this paper we will give necessary and
sufficient conditions for uniqueness polynomials and strong uniqueness poly-
nomials for non-Archimedean meromorphic functions including the case of
positive characteristic. Our approach is based on Cherry–Yang’s observation
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and uses some basic results on plane curves and the truncated second main
theorem for rational functions (cf. [W1, 2]).

We recall some definitions.

Definition. Let F be a non-empty subset of M(k).

(1) A non-constant polynomial P (X) over k is said to be a uniqueness
polynomial for F if the identity P (f) = P (g) implies f = g for any pair of
non-constant functions f, g ∈ F .

(2) A non-constant polynomial P (X) over k is said to be a strong unique-
ness polynomial for F if the identity P (f) = cP (g) implies f = g for any
pair of non-constant functions f, g ∈ F and for any non-zero constant c.

Let P (X) be a polynomial of degree n in k[X]. We say it satisfies con-
dition (I) if

(I) P (X) is injective on the roots of P ′(X).

The basic ideas of the paper are as follows. Consider the plane curves
F (X,Y ) = (P (X) − P (Y ))/(X − Y ) = 0, and Fc(X,Y ) = P (X) − cP (Y )
with c 6= 0, 1. If P (f) = P (g) (resp. P (f) = cP (g)) for a pair of dis-
tinct non-constant non-Archimedean meromorphic functions f, g, then by
Berkovich’s non-Archimedean Picard theorem, the plane curve F (X,Y ) = 0
(resp. Fc(X,Y ) = 0) has a rational component. Therefore, P (X) is a strong
uniqueness polynomial if and only if the curves F (X,Y ) = 0 and Fc(X,Y )
= 0 for all c 6= 0, 1 have no rational components. In general, it is difficult
to show a curve has no rational component if it has many multiple points;
and even more difficult if it has non-ordinary multiple points. Therefore, we
need to assume condition (I) to reduce the number of multiple points. Even
so, there may still exist some non-ordinary multiple points for Fc(X,Y ) = 0.
We will use the truncated second main theorem for rational function fields
to show that the local expansion of Fc(X,Y ) = 0 at non-ordinary mul-
tiple points does not behave too badly for this. Indeed, one can perform
a sequence of linear and quadratic transformations to transform it into a
curve with only ordinary multiple points and having the same deficiency as
Fc(X,Y ) = 0.

The main results are as follows.

Theorem 1. Let k be an algebraically closed field of characteristic p≥ 0,
complete with respect to a non-Archimedean absolute value. Let P (X) be a
polynomial of degree n in k[X], and P ′(X) = λ(X − α1)m1 . . . (X − αl)ml
where λ is a non-zero constant. Suppose that P (X) satisfies condition (I).
Furthermore, for p > 0 assume that the multiplicity of X − αi in
P (X) − P (αi) is mi + 1, for 1 ≤ i ≤ l; in addition if p |n assume that
the coefficient of Xn−1 in P (X) is not zero. Then the following are equiv-
alent :
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(i) P (X) is a uniqueness polynomial for M(k),
(ii) P (X) is a uniqueness polynomial for the field of rational functions

in k,
(iii) (n− 2)(n− 3)/2−∑l

i=1mi(mi − 1)/2 > 0,
(iv) l ≥ 2 if p |n; and l ≥ 3 or l = 2 and min{m1,m2} ≥ 2 if p = 0

or p -n.

Definition. A subset S of k is called affinely rigid if no non-trivial
affine transformation of k preserves S.

Theorem 2. Let k be an algebraically closed field of characteristic p,
complete with respect to a non-Archimedean absolute value. Let P (X) be a
polynomial of degree n in k[X], and P ′(X) = λ(X − α1)m1 . . . (X − αl)ml
where λ is a non-zero constant. Suppose that P (X) satisfies condition (I)
and has no multiple zeros. Furthermore, for p > 0 assume that the multi-
plicity of X − αi in P (X)− P (αi) is mi + 1, for 1 ≤ i ≤ l; in addition if
p |n assume that the coefficient of Xn−1 in P (X) is not zero. Let S be the
set of roots of P (X) = 0. Then the following are equivalent :

(i) (S, {∞}) is a bi-URS for M(k),
(ii) P (X) is a strong uniqueness polynomial for M(k),
(iii) P (X) is a strong uniqueness polynomial for the field of rational func-

tions in k,
(iv) S is affinely rigid , and one of the following holds:

(a) if p |n, then either l ≥ 2;
(b) if p = 0 or p -n, then either l ≥ 3 but P (X) does not satisfy (A), or

l = 2 and min{m1,m2} ≥ 2 but P (X) does not satisfy (B), where (A) and
(B) are as follows:

(A) n = 4, m1 = m2 = m3 = 1 and
P (α1)
P (α2)

=
P (α2)
P (α3)

=
P (α3)
P (α1)

= ω,

where ω2 + ω + 1 = 0;

(B) n = 5, m1 = m2 = 2 and P (α1) = −P (α2).

Remark. (1) The characterization of uniqueness polynomials of rational
functions is independent of the constant field. To be more precise, under the
same assumption, (ii), (iii) and (iv) in Theorem 1 are equivalent and (i),
(iii) and (iv) in Theorem 2 are equivalent if k is replaced by an algebraically
closed field of the same characteristic.

(2) When p > 0, if the multiplicity of X−αi in P (X)−P (αi) is mi + 1,
for 1 ≤ i ≤ l, then p -mi + 1.

Acknowledgements. The author thanks W. Cherry for bringing this
problem to her attention and sending her an e-mail message by J. F. Voloch.
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In the message, Voloch gave a simpler proof of a result of [CY] which is in-
cluded in the appendix. The author thanks J. F. Voloch for sharing his ideas
and allowing her to include his proof. The author also thanks A. Escassut
and the referee for helpful comments.

2. Singularities of two plane curves. Without loss of generality, we
may assume that P (X) is monic. Throughout the paper we let

P (X) =
n∑

i=0

aiX
i, ai ∈ k, an = 1,

P ′(X) =




n(X − α1)m1 . . . (X − αl)ml if p = 0 or

p > 0 and p -n,
−an−1(X − α1)m1 . . . (X − αl)ml if p > 0 and p |n,

F (X,Y ) = (P (X)− P (Y ))/(X − Y ),

Fc(X,Y ) = P (X)− cP (Y ), c 6= 0, 1.

Denote by F (X,Y ) = 0 and Fc(X,Y ) = 0 the algebraic curves in P2(k)
obtained by homogenizing these polynomials into homogeneous polynomials
in three variables with the same degree. In this section, we will study the
singularities of these plane curves.

We first discuss the singularities of F (X,Y ) = 0. Let p be the character-
istic of k. If p = 0 or p > 0 and p -n, then F (X,Y ) = 0 has n − 1 distinct
points at infinity, hence they are all non-singular. If p |n and an−1 6= 0, then
(1, 1, 0) is the only point at infinity and its multiplicity is one.

For the affine points, we have

∂F

∂X
=

(X − Y )P ′(X)− (P (X)− P (Y ))
(X − Y )2 ,

∂F

∂Y
=
−(X − Y )P ′(Y ) + (P (X)− P (Y ))

(X − Y )2 .

A point (x, y) with x 6= y is in F (X,Y ) = 0 if and only if P (x) = P (y), and
is a singular point if and only if P ′(x) = P ′(y) = 0. Hence, if P (X) satisfies
condition (I), then it is non-singular.

A point (x, x) is in F (X,Y ) = 0 if and only if P ′(x) = 0. If (x, x) is
in F (X,Y ) = 0, we may assume that x = 0 and P ′(0) = 0 after changing
variables. If p = 0 or p > 0, and the multiplicity of X in P ′(X) is m, then by
assumption the multiplicity of X in P (X)−P (0) is m+1. Clearly, p -m+1,
and the multiplicity of (0, 0) in F (X,Y ) = 0 is m. Hence,

F (X,Y ) = am+1(Xm +Xm−1Y + . . .+XY m−1 + Y m)

+ am+2(Xm+1 + . . .) + . . .

where am+1 6= 0, and Xm + Xm−1Y + . . . + XY m−1 + Y m factors into m
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distinct linear forms. This shows that (0, 0) is an ordinary singularity. In
conclusion, we have

Proposition 1. Suppose that P (X) satisfies all the conditions in The-
orem 1. Then the set of singular points of F (X,Y ) = 0 is {(x, x) | x
is a multiple root of P ′(X) = 0}. Furthermore, every singular point in
F (X,Y ) = 0 is an ordinary singularity with multiplicity equal to its root
multiplicity in P ′(X).

We now discuss the singularities of Fc(X,Y ) = 0. Similarly, if P (X)
satisfies the conditions in Theorem 1, then the curve has no singular points
at infinity. For affine points, since

∂F

∂X
= P ′(X),

∂F

∂Y
= −cP ′(Y ), c 6= 0, 1,

a point (x, x) is in Fc(X,Y ) = 0 if and only if P (x) = 0, and is a singular
point if and only if P ′(x) = 0. That is equivalent to x being a double root of
P (X). If P (X) has no multiple roots, then (x, x) cannot be a singular point.
On the other hand, an affine point (x, y) with x 6= y in Fc(X,Y ) = 0 is a
singular point if and only if P (x) = cP (y) and P ′(x) = P ′(y) = 0. If (αi, αj)
and (αi, αk) are two points in Fc(X,Y ) = 0, then P (αj) = P (αk). If P (X)
satisfies condition (I), then αj = αk. Therefore there are at most l possible
singular points of this type (αi, αt(i)), 1 ≤ i ≤ l, where t is a permutation
of {1, . . . , l} and t(i) 6= i. In conclusion, we have

Proposition 2. Suppose that P (X) satisfies all the conditions on Theo-
rem 2. Then Fc(X,Y ) = 0 has at most l singular points (αi, αt(i)),
1 ≤ i ≤ l, where t is a permutation of {1, . . . , l} and t(i) 6= i. Further-
more, the multiplicity of (αi, αt(i)) in Fc(X,Y ) = 0 is less than or equal to
min{mi,mt(i)}+ 1.

Lemma 1. Assume that P (X) satisfies all the conditions in Theorem 2.
Suppose there exists a pair of non-constant rational functions (f, g) such
that P (f) = cP (g). Then |mi −mt(i)| ≤ 1 if P (αi) = cP (αt(i)).

To prove this lemma, we will use the truncated second main theorem for
rational functions which is stated as follows.

Truncated Second Main Theorem. Let f be a non-constant rational
function over k, and assume f is not a pth power if the characteristic p of
k is positive. Let f be a ratio of two relative prime polynomials f1 and f2,
and let c1, . . . , cq be q distinct elements in k. Then

(q − 2) max{deg f1,deg f2} ≤
q∑

i=1

N1(f− ci)− 1

where N1(f− ci) is the number of distinct zeros of f− ci.
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We refer to [W1] or [W2] for the proof and a more general statement of
this theorem.

Proof of Lemma 1. Let f = f1/f2 and g = g1/g2 where fi and gi
are polynomials over k, f1 is prime to f2 and g1 is prime to g2. Since
P (f) = cP (g), the pole order of f at any point of k equals the pole or-
der of g. Therefore g2 is a non-zero constant multiple of f2. By adjusting
the coefficients of g1, we may assume that g2 = f2. Then P (f) = cP (g)
gives

fn1 − cgn1 + an−1(fn−1
1 − cgn−1

1 )f2 + . . .+ a0(1− c)fn2 = 0.

If deg f1 > deg f2, then deg g1 = deg f1. If deg f1 ≤ deg f2, then deg g1 ≤
deg f2. Therefore,

(2.1) max{deg f1,deg f2} = max{deg g1,deg f2}.
If P (β) = P (αi) and β 6= αi, then P ′(β) 6= 0 because P (X) satisfies

condition (I). Hence, for each 1 ≤ i ≤ l, we have

P (X) = P (αi) + (X − αi)mi+1(X − βi1) . . . (X − βin−mi−1).

If P (αi) = cP (αt(i)), then

(2.2) (f − αi)mi+1(f − βi1) . . . (f − βin−mi−1)

= (g − αt(i))mt(i)+1(g − βt(i)1) . . . (g − βt(i)n−mt(i)−1).

Since αi, βij , 1 ≤ j ≤ n − mi − 1, are distinct, f − αi and f − βij ,
1 ≤ j ≤ n − mi − 1, have no common zero pairwise. Similarly, g − αt(i)
and g − βt(i)j , 1 ≤ j ≤ n−mt(i) − 1, have no common zero pairwise.

By assumption, f is not constant. When p > 0, we may write f =
fp
r

where f is not a pth power and r is a non-negative integer. Since k is
algebraically closed, the left hand side of (2.2) is a prth power. Since g−αt(i)
and g−βt(i)j , 1 ≤ j ≤ n−mt(i)−1, have no common zero pairwise, g is also
a prth power function. Let g = gp

r

. For α ∈ k, denote by α1/pr the unique
solution of Xpr = α. Then from (2.2), we have

N1(f− α1/pr

i ) +
n−mi−1∑

j=1

N1(f− β1/pr

ij )

= N1(g− α1/pr

t(i) ) +
n−mt(i)−1∑

j=1

N1(g− β1/pr

t(i)j ).

Now we will apply the truncated second main theorem for the non-pth
power rational function f and n −mi distinct points α1/pr

i and β
1/pr

ij , j =
1, . . . , n−mi − 1. We have
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(n−mi − 2)p−r max{deg f1,deg f2}

≤ N1(f− α1/pr

i ) +
n−mi−1∑

j=1

N1(f− β1/pr

ij )− 1

= N1(g− α1/pr

t(i) ) +
n−mt(i)−1∑

j=1

N1(g− β1/pr

t(i)j )− 1

≤ (n−mt(i))p
−r max{deg g1,deg f2} − 1.

This implies mt(i) −mi ≤ 1, by (2.1). Similarly, we have mi −mt(i) ≤ 1.
When p = 0, since f is not constant we may apply the truncated second

main theorem directly to derive the same result.

We will need the following lemma for later computation.

Lemma 2. Let d > 0 and ei ≥ 2 be integers and (d − 1)(d − 2) =∑h
i=1 ei(ei − 1) + 2g, where g = 0 or g = 1. If h ≥ 2, then

∑h
i=1 ei ≥

d+ h− 1− g; if h = 1 and g = 0, then e1 = d− 1.

Proof. We have
h∑

i=1

ei(ei − 1) =
( h∑

i=1

ei

)2
−

h∑

i=1

ei − 2
∑

1≤i<j≤h
eiej .

It is easy to see that
∑

1≤i<j≤h
eiej ≥

h− 1
2

min
i
{ei}

∑

1≤i≤h
ei ≥ (h− 1)

∑

1≤i≤h
ei.

If g = 1 and h ≥ 2, or g = 0 and h ≥ 1, then

(d− 1)(d− 2) ≤
( h∑

i=1

ei

)2
− (2h− 1)

h∑

i=1

ei + 2g

≤
( h∑

i=1

ei

)2
− (2h− 1)

h∑

i=1

ei + h(h− 1)

=
( h∑

i=1

ei − h+ 1
)( h∑

i=1

ei − h
)
.

Therefore,
∑h
i=1 ei ≥ d + h − 2. It is also clear that the inequality is strict

when g = 0 and h ≥ 2. In this case we have
∑h
i=1 ei ≥ d+ h− 1. Therefore,∑h

i=1 ei ≥ d+ h− 1− g when h ≥ 2. The other assertion is clear.

3. The proof of Theorem 1. Let Q(X,Y ) be a polynomial in two
variables over k, and degQ be the highest total degree. Then it can be
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homogenized into a homogeneous polynomial Q(X,Y,Z) of the same degree.
For simplicity, we sometimes use Q(X,Y ) = 0 to denote the plane curve
given by Q(X,Y,Z) = 0. Denote by δQ the deficiency of the plane curve
Q(X,Y,Z) = 0, which is

1
2

(degQ− 1)(degQ− 2)− 1
2

∑

P

mP (mP − 1)

where the sum is taken over all points in Q(X,Y,Z) = 0 and mP is the
multiplicity of Q(X,Y,Z) = 0 at P .

Lemma 3. Suppose that P (X) satisfies all the conditions in Theorem 1.
Then F (X,Y ) has an irreducible polynomial factor which defines a plane
curve of genus zero if and only if

δF =
(n− 2)(n− 3)

2
−

l∑

i=1

mi(mi − 1)
2

≤ 0.

Proof. From Proposition 1, (α1, α1), . . . , (αl, αl) are the only possible
singular points of F (X,Y ) = 0, and they are all ordinary under our as-
sumption. If F (X,Y ) is irreducible, then δF is the genus of the defining
curve. Therefore the assertion is clear.

Assume that F (X,Y ) is reducible. Let H(X,Y ) ∈ k[X,Y ] be a proper ir-
reducible factor of F (X,Y ), and write F (X,Y ) = G(X,Y )H(X,Y ). Then
H(X,Y ) -G(X,Y ) because F (X,Y ) = 0 has only finitely many multiple
points. In this case (αi, αi), 1 ≤ i ≤ l, are the only possible multiple points
of G(X,Y ) = 0 and H(X,Y ) = 0, and they are also the only possible points
in the intersection of these two curves. Let mG

i and mH
i be the multiplicity

of (αi, αi) in G(X,Y ) = 0 and H(X,Y ) = 0 respectively. Then the genus of
the curve defined by H(X,Y ) = 0 equals its deficiency δH . Since P ′(X) =
F (X,X) = G(X,X)H(X,X), we have

l∑

i=1

mH
i = d and mi ≤ d− 1,

where d is the total degree of H(X,Y ). Without loss of generality, we may
assume that the mH

i are arranged in decreasing order. From Lemma 2 one
can show easily that δH = 0 if and only if (i) d = 1 and mH

1 = 1, mH
i = 0

for 2 ≤ i ≤ l or (ii) d ≥ 2 and mH
1 = d − 1, mH

2 = 1, and mH
i = 0 for

3 ≤ i ≤ l. By Bézout’s theorem,

d(n− d− 1) =
l∑

i=1

mG
i m

H
i .

If (i) holds, we get mG
1 = n − d− 1 = degG, which implies that δG < 0. If
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(ii) holds, then

d(n− d− 1) = (d− 1)mG
1 +mG

2 ≤ (d− 1)(mG
1 +mG

2 ) ≤ (d− 1)(n− d− 1),

which is impossible. This shows that if δH = 0, then δG < 0. From Bézout’s
theorem and simple counting one can easily verify that

δF = δG + δH − 1.

Therefore we may conclude that if δH = 0, then δF < 0.
On the other hand, since F (X,Y ) = 0 has n − 1 distinct points at

infinity, F (X,Y ) cannot have multiple irreducible factors. Let F (X,Y ) =∏j
i=1 Hi(X,Y ) where Hi(X,Y ) are distinct irreducible polynomials. Then

δF =
∑j
i=1 δHi − j + 1. If δF ≤ 0, then at least one of the δHi has to be

zero. Hence F (X,Y ) has an irreducible factor of genus zero.

Proof of Theorem 1. (i) implies (ii) trivially. The proof of (ii) implying
(i) was already given in [CY]. We include the proof for reader’s convenience.
Assume that P (X) is a uniqueness polynomial for the ring of rational func-
tions. If f and g are two distinct non-constant non-Archimedean meromor-
phic functions such that P (f) = P (g), then F (f, g) = 0. Let H(X,Y ) be an
irreducible factor of F (X,Y ) such that H(f, g) = 0. Since f and g are not
constant, by Berkovich’s non-Archimedean Picard theorem (cf. [Ber] and
also [CW] for a more elementary proof), H(X,Y ) = 0 is a curve of genus
zero. Since k is algebraically closed, this curve is rationally parametrized. In
other words, there exist non-constant rational functions r(t) and s(t) and
R(X,Y ) such that t = R(X,Y ) and H(r(t), s(t)) = 0. Let h = R(X,Y ), so
that f = r(h) and g = s(h). Since P (X) is a uniqueness polynomial for the
rational function fields, f = r(h) = s(h) = g.

P (X) is a uniqueness polynomial for rational functions if and only if
F (X,Y ) has no irreducible polynomial factors which define a plane curve of
genus zero. Therefore (ii) and (iii) are equivalent by Lemma 3.

Without loss of generality, we may assume that mi’s are in decreasing
order. If p = 0 or p > 0 and p -n, then

∑l
i=1 mi = n−1. By Lemma 2, δF ≤ 0

if and only if (a) m1 = n−1, and mi = 0 for i ≥ 2 or (b) m1 = n−2, m2 = 1
and mi = 0 for i ≥ 3. Similarly, if p |n and an−1 6= 0, then

∑l
i=1mi = n−1.

Similarly, δF ≤ 0 if and only if m1 = n− 2, and mi = 0 for i ≥ 2. Therefore
(iii) and (iv) are equivalent.

4. The proof of Theorem 2. Since the plane curve Fc(X,Y ) = 0 may
have non-ordinary multiple points, its deficiency does not necessarily equal
its genus when Fc(X,Y ) is irreducible. However, if P (X) satisfies all the
conditions in Theorem 2 and there exists a pair of non-constant rational
functions (f, g) such that P (f) = cP (g), then the deficiency of the irre-
ducible plane curve Fc(X,Y ) = 0 does equal its genus. We will deduce this
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fact by showing that there exists a sequence of linear and quadratic trans-
formations which takes Fc(X,Y ) = 0 to a curve which has only ordinary
singularities and has the same deficiency as Fc(X,Y ) = 0. Furthermore, we
will show that Bézout’s theorem still holds in the sense of Lemma 4(2).

Lemma 4. Assume that P (X) satisfies all the conditions in Theorem 2.
If P (f) = cP (g) for a pair of non-constant rational functions (f, g), then:

(1) There exists a sequence of linear and quadratic transformations which
takes Fc(X,Y ) = 0 to a curve which has only ordinary singularities and has
the same deficiency as Fc(X,Y ) = 0.

(2) If Fc(X,Y ) is reducible, say Fc(X,Y ) = H(X,Y )G(X,Y ), then

degH degG =
∑

P

mH
Pm

G
P ,

where the sum is taken over the intersection of H = 0 and G = 0, and mH
P

(resp. mG
P ) is the multiplicity of H (resp. G) at P .

Proof. From Lemma 1, we see that (α1, αt(1)), . . . , (αl, αt(l)) are the only
possible singular points of Fc(X,Y ) = 0. Moreover, if P (αi) = cP (αt(i)),
then |mi −mt(i)| ≤ 1. By assumption,

Fc(X,Y ) = νi(X − αi)mi+1 + {higher order terms in X − αi}
+ µi(Y − αt(i))mt(i)+1 + {higher order terms in Y − αt(i)},

where νi, µi 6= 0, and p -mi + 1 if p > 0. If mi = mt(i), then (αi, αt(i))
is an ordinary singularity. If |mi − mt(i)| = 1, then it is not an ordinary
singularity and the multiplicity is min{mi,mt(i)} + 1. In what follows we
will perform a sequence of linear and quadratic transformations to obtain
a curve with only ordinary singularities and with the same deficiency as
Fc(X,Y ) = 0. We refer to [Ful, Chapter 5] for notation and terminology.
For simplicity of notation we denote by Fc(X,Y,Z) the homogenization of
Fc(X,Y ). Suppose that mt(i) = mi + 1. We first make a linear transforma-
tion which takes the curve in an excellent position, and the point (αi, αt(i))
to origin. Let

Q0(X,Y,Z) = Fc(X + αiZ + Y, Y + αt(i)Z,Z)

= νi(X + Y )mi+1Zn−mi−1 + νi1(X + Y )mi+2Zn−mi−2

+ . . .+ (X + Y )n + µiY
mi+2Zn−mi−2

+ µi1Y
mi+3Zn−mi−3 + . . .− c(X + Y )n

where νij ’s and µij ’s are in k. We then perform a quadratic transformation
to get Q0(Y Z,XZ,XY ) = Zmi+1Q1(X,Y,Z), with
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Q1(X,Y,Z) = νi(X + Y )mi+1(XY )n−mi−1

+ νi1(X + Y )mi+2(XY )n−mi−2Z + . . .

+ (X + Y )nZn−mi−1 + µiX
nY n−mi−2Z

+ µi1X
nY n−mi−3Z2 + . . .− cXnZn−mi−1.

Similar to [Ful, Chapter 5], the three fundamental points (1, 0, 0), (0, 1, 0),
and (0, 0, 1) become ordinary multiple points of Q1(X,Y,Z) = 0 with multi-
plicities n−mi, n−mi, and n respectively. It is easy to check that the only
non-fundamental point lies in the intersection of Q1(X,Y,Z) and the union
of three exceptional lines {X = 0}, {Y = 0}, and {Z = 0} is (1,−1, 0).
Since

Q1(1, Y, Z) = µiY
n−mi−2Z + µi1Y

n−mi−3Z2 + . . .− cZn−mi−1

+ νi(1 + Y )mi+1(Y )n−mi−1 + . . .+ (1 + Y )nZn−mi−1

where νij ’s are in k, the multiplicity of this point (1,−1, 0) is one.
For points of Q1(X,Y,Z) = 0 outside of the union of three exceptional

lines, this transformation preserves the multiplicities and ordinary multi-
ple points. One can easily show that the deficiency of Q1(X,Y,Z) = 0
equals δFc .

If (αi, αt(i)) is the only non-ordinary multiple points in Fc(X,Y ) = 0,
then we are done. Otherwise, there is another non-ordinary multiple point
(αj , αt(j)) in Fc(X,Y ) = 0. Clearly, it does not lie in those three excep-
tional lines. For points of Q1(X,Y,Z) = 0 outside of the union of three
exceptional lines, we may write Q1(X,Y, 1) = (XY )2nQ(1/X, 1/Y, 1) =
(XY )2nFc(1/X + αi + 1/Y, 1/Y + αt(i)). This implies that the quadratic
transformation does not change the local expansion of points outside of
the union of three exceptional lines. To be more precise, in this step we
first make a linear change of coordinates of the form X ′ = r1X − s1 and
Y ′ = r2Y −s2 such that X ′ = 0 and Y ′ = 0 is a singularity given by previous
transformations of (αj , αt(j)), and the local expansion is of the form

Q20(X ′, Y ′, 1) = Q1

(
1
r1

(X + s1),
1
r2

(Y + s2), 1
)

= νj(X ′ + %Y ′)mj+1(X ′Y ′)n−mj−1

+ νj1(X ′ + %Y ′)mj+2(X ′Y ′)n−mj−2 + . . .

+ µjX
′nY ′

n−mj−2 + µj1X
′nY ′

n−mj−3 + . . .

where % is a non-zero constant.Therefore when we perform another quadratic
transformation to resolve the singularity corresponding to (αi, αt(i)), there
is still only one non-fundamental point in the intersection of Q20(X ′, Y ′, Z)
and the union of three exceptional lines X ′ = 0, Y ′ = 0, and Z = 0, and
its multiplicity is one. Similarly, Q20(X ′, Y ′, Z) = 0 has the same deficiency
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as Q1(X,Y,Z) = 0. Since the number of non-ordinary multiple points is
finite, after finitely many linear and quadratic transformations we may ob-
tain a curve Q(X,Y,Z) = 0 with only ordinary singularities and with the
same deficiency as Fc(X,Y ) = 0. Therefore, the genus of the plane curve
Fc(X,Y ) = 0 equals its deficiency.

We now prove the second assertion. Let Fc(X,Y ) = G(X,Y )H(X,Y )
where H(X,Y ) ∈ k[X,Y ] is a proper factor of F (X,Y ) of degree d. Since
Fc(X,Y ) = 0 has only finitely many multiple points, H(X,Y ) and G(X,Y )
have no common factor. Clearly, (α1, αt(1)), . . . , (αl, αt(l)) are also the only
possible points in the intersection of G(X,Y ) = 0 and H(X,Y ) = 0. Let mG

i

and mH
i be the multiplicity of (αi, αt(i)) in G(X,Y ) = 0 and H(X,Y ) = 0

respectively.
Recall the previous construction of resolving singularities where we first

transform Fc(X,Y ) = 0 into Q1(X,Y,Z) = 0 by linear and quadratic trans-
formations. Assume that in this step H(X,Y ) and G(X,Y ) are transformed
to H1(X,Y ) and G1(X,Y ) respectively. Then the degree of H1(X,Y ) is
2d−mH

1 , and the multiplicities of the three fundamental points in H1(X,Y )
= 0 are d, d − mH

1 , and d − mH
1 respectively. Similarly, the degree of

G1(X,Y ) is 2n − 2d − mH
1 , multiplicities of the three fundamental points

in G1(X,Y ) = 0 are n − d, n − d − mG
1 , and n − d − mG

1 respectively.
Since the multiplicity of the only non-fundamental point in the intersection
of Q1(X,Y,Z) = 0 and the union of three exceptional lines is one, it is
not in the intersection of H1(X,Y ) = 0 and G1(X,Y ) = 0. Let mH1

P and
mG1
P be the multiplicity of the point P in H1(X,Y ) = 0 and G1(X,Y ) = 0

respectively. One can check easily that

(4.1) degH1 degG1 −
∑

P

mH1
P mG1

P

= (2d−mH
1 )(2n− 2d−mG

1 )− d(n− d)

− 2(d−mH
1 )(n− d−mG

1 )−
∑

i≥2

mH
i m

G
i

= d(n− d)−
∑

i≥1

mH
i m

G
i .

If the plane curve Fc(X,Y ) = 0 has only one non-ordinary multiple points,
then the multiple points of Q1(X,Y,Z) = 0 are ordinary. Hence the left hand
side of (4.1) equals zero by Bézout’s theorem. In general, after a sequence of
linear and quadratic transformations Fc(X,Y ) = 0 can be transformed into
a curve Q(X,Y ) = 0 with only ordinary multiple points. Since an equation of
the form (4.1) holds for each transformation, by Bézout’s theorem d(n−d) =∑
i≥1 m

H
i m

G
i .
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Lemma 5. Suppose that P (X) satisfies all the conditions in Theorem 2
and Fc(X,Y ) has no linear factor. Then Fc(X,Y ) has an irreducible factor
of genus zero if and only if

δFc =
(n− 1)(n− 2)

2
−

l∑

i=1

ei(ei − 1)
2

≤ 0,

where ei is the multiplicity of Fc(X,Y ) = 0 at (αi, αt(i)).

Proof. If Fc(X,Y ) is irreducible, then δFc is the genus by Lemma 4.1.
Hence the assertion is clear.

Assume that Fc(X,Y ) = G(X,Y )H(X,Y ) where H(X,Y ) ∈ k[X,Y ]
is a proper irreducible factor of F (X,Y ) and the genus of H(X,Y ) = 0 is
zero. Since a plane curve of genus zero is parametrized by rational functions,
this implies that P (f) = cP (g) for some non-constant pair of rational func-
tions (f, g). By Lemma 4.1, we may transform Fc(X,Y ) = 0 to another curve
Q(X,Y ) = 0 with only ordinary singularities and having deficiency equal
to δFc . Suppose that H(X,Y ) = 0 was taken to HQ(X,Y ) = 0 under this
transformation. Since they are birational to each other and the deficiency δH
of H(X,Y ) = 0 is preserved under this transformation, this implies δH = 0.
Clearly, (α1, αt(1)), . . . , (αl, αt(l)) are the only possible singular points for
G(X,Y ) = 0 and H(X,Y ) = 0, and are the only possible points in the
intersection of these two curves. Let mG

i and mH
i be the multiplicities of

(αi, αt(i)) in G(X,Y ) = 0 and H(X,Y ) = 0 respectively. Then

(4.2) 0 = δH =
(d− 1)(d− 2)

2
−

l∑

i=1

mH
i (mH

i − 1)
2

,

where d ≥ 2 is the total degree of H(X,Y ). Without loss of generality, we
may assume that mi’s are in descending order and exactly h of them are
non-zero. Since δH = 0, Lemma 2 implies either (i) mH

1 = d−1, mH
2 = . . . =

mH
h = 1 or (ii)

∑l
i=1 m

H
i ≥ d+h−1. Since

∑h
i=1 m

H
i +

∑h
i=1 m

G
i ≤ n+h−1,

we have
∑h
i=1 m

G
i ≤ n − d + 1 for (i) and

∑h
i=1 m

G
i ≤ n − d for (ii). Then

for (i), the following can be deduced from Lemma 4(2):

d(n− d) = (d− 1)mG
1 +

h∑

i=2

mG
i = (d− 2)mG

1 +
h∑

i=1

mG
i .

Therefore

(d− 2)mG
1 ≥ d(n− d)− (n− d+ 1) = (d− 1)(n− d)− 1.

If d = 2, this implies that n ≤ 3. Hence n = 3, P ′(X) has two single
roots and δG = 0. Therefore Fc(X,Y ) has only ordinary singularities, and
δFc = δH + δG − 1 < 0.
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For (ii), if mH
1 = mH

2 = . . . = mH
h , then by Lemma 4(2)

d(n− d) = mH
1

h∑

i=1

mG
i ≤ mH

1 (n− d).

This implies that mH
1 ≥ d, which is impossible. Otherwise, we may assume

mH
1 = mH

2 = . . . = mH
r−1 > mH

r > 0. By Lemma 4(2)

d(n− d) = mH
1

r−1∑

i=1

mG
i +

h∑

i=r

mH
i m

G
i

≤ (mH
1 −mH

r )
r−1∑

i=1

mG
i +mH

r (n− d).

This implies that

r−1∑

i=1

mG
i ≥ (n− d)

d−mH
r

mH
1 −mH

r

> n− d,

which contradicts the fact that
∑h
i=1 m

G
i ≤ n− d.

Conversely, let Fc(X,Y ) =
∏j
i=1 Hi(X,Y ) where each Hi is irreducible

with total degree no less than 2. Similarly, Hi are all distinct. One can check
easily that δFc ≥ δH1 + . . .+ δHj − j + 1. If δFc ≤ 0, then at least one of the
δHi is zero. Hence the genus of the plane curve Hi(X,Y ) = 0 is zero.

Lemma 6. Suppose that P (X) has no multiple zeros and S is the set of
zeros of P (X). Then S is affinely rigid if and only if neither F (X,Y ) nor
Fc(X,Y ), c 6= 0, 1, has a linear factor.

Proof. Since Fc(X,X) = P (X)−cP (X) 6= 0, X−Y is not a linear factor
of Fc(X,Y ). It is not a linear factor of F (X,Y ) either, because F (X,X) =
P ′(X) is not zero, otherwise P (X) would be a pth power, contrary to the
assumption that P (X) has no multiple zeros. If rX+s−Y divides Fc(X,Y )
for some c 6= 0, 1, or F (X,Y ), then (r, s) 6= (1, 0) and P (X) = bP (rX + s),
b = 1 or c.

Let S = {β1, . . . , βn}. Then

(X − β1) . . . (X − βn) = b(rX + s− β1) . . . (rX + s− βn).

Hence, r−n = b and rS + s = S. Therefore S is not affinely rigid. The
converse is clear.

When the characteristic of k is zero, Khoai and An show that P (X) is
a strong uniqueness polynomial if it has no multiple zeros, satisfies condi-
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tion (I), l ≥ 3, and

(G)
l∑

i=1

P (αi) 6= 0.

The following result shows that under the assumption of Theorem 2, if (G)
holds, then S is affinely rigid.

Proposition 3. Assume that P (X) satisfies all the conditions in The-
orem 2.

(1) If F (X,Y ) has a linear factor , then δF < 0.
(2) If Fc(X,Y ) has a linear factor , then

∑l
i=1 P (αi) = 0.

Proof. The first assertion follows from the proof of Lemma 3. For the
second assertion, we will use the notation from the proof of Lemma 6. Let
H be a linear factor of Fc(X,Y ), and mH

1 = mH
2 = . . . = mH

h = 1. Then by
Lemma 4(2),

(4.3)
h∑

i=1

mG
i = n− 1.

Since mG
i ≤ min{mi,mt(i)} and

∑l
i=1 mi = n − 1, (4.3) implies h = l, and

for each 1 ≤ i ≤ l, P (αi) = cP (αt(i)) and mi = mt(i).
Without loss of generality, we may assume that H = Y − rX − s.

Clearly, r 6= 0 and (r, s) 6= (1, 0). Then P (X) = cP (rX + s). Therefore,
P ′(X) = crP ′(rX + s). Clearly, P (αi) = cP (rαi + s) and P ′(rαi + s) = 0.
Since P (X) satisfies condition (I), this implies rαi + s = αt(i). Therefore,∑l
i=1 P (αi) = c

∑l
i=1 P (rαi + s) = c

∑l
i=1 P (αi). Since c 6= 1, this shows

that
∑l
i=1 P (αi) = 0.

Proof of Theorem 2. We first show that (i) is equivalent to (ii). Suppose
that f and g are two non-constant meromorphic functions on k satisfying
E(f, S) = E(g, S) and E(f,∞) = E(g,∞). Then P (f)/P (g) = c for some
non-zero constant. If P (X) is a strong uniqueness polynomial for M(k),
then f = g. Hence, (S, {∞}) is a bi-URS for M(k). Conversely, suppose
that f and g are two non-constant meromorphic functions on k such that
P (f) = cP (g) for some non-zero constant. Then E(f,∞) = E(g,∞). Let
S = {β1, . . . , βn}. Then

(f − β1) . . . (f − βn) = c(g − β1) . . . (g − βn).

Suppose that orda(f −β1) > 0 for some a ∈ k. Since β1, . . . , βn are distinct,
we have orda(f − β1) = orda(g − βm) > 0 for some m, and orda(f − βi) =
orda(g − βj) = 0 for i 6= 1, j 6= m. This shows that E(f, S) = E(g, S).
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Therefore, if (S, {∞}) is a bi-URS for M(k), then f = g. This shows that
P (X) is a strong uniqueness polynomial.

Similarly to Theorem 1, (ii) and (iii) are equivalent. By Theorem 1,
Lemma 5 and Lemma 6, (iii) is equivalent to S being affinely rigid, δF > 0
and δFc > 0 for each c 6= 0, 1. Let ei be the multiplicity of Fc(X,Y ) = 0 at
(αi, αt(i)). Since ei ≤ mi + 1, and

∑l
i=1 mi equals n − 2 if p |n, and n − 1

otherwise we have

δFc =
(n− 1)(n− 2)

2
−

l∑

i=1

ei(ei − 1)
2

(4.4)

≥ (n− 1)(n− 2)
2

−
l∑

i=1

mi(mi + 1)
2

=
(n− 1)(n− 2)

2
−

l∑

i=1

mi(mi − 1)
2

−
l∑

i=1

mi

=
{
δF if p |n,
δF − 1 otherwise.

Therefore, if p |n, then δFc ≤ 0 if and only if δF ≤ 0.
For p = 0 or p > 0 and p -n, if δF > 0, then by (4.4) δFc ≤ 0 only

if δF = 1 and ei = mi + 1 = mt(i) + 1 for each 1 ≤ i ≤ l. Suppose that
m1 ≥ m2 ≥ . . . ≥ mh ≥ 2 > mh+1 ≥ . . . If h ≥ 2, then by Lemma 2, δF = 1
implies that

∑l
i=1 mi ≥ n−1+h−2. Since

∑l
i=1 mi ≤ n−1, h ≤ 2. If δFc ≤ 0,

then m1 = mt(1) by (4.4). Since t(1) 6= 1, h cannot be 1. If h = 0 and δF = 1,
then n = 4 and P ′(X) = (X − α1)(X − α2)(X − α3), where αi, i = 1, 2, 3
are distinct; and P (α1) = cP (α2), P (α2) = cP (α3), P (α3) = cP (α1), or
P (α1) = cP (α3), P (α2) = cP (α1), P (α3) = cP (α2). In either case, we
have c = ω where ω2 + ω + 1 = 0. If h = 2, and δF = 1, then n = 5
and P ′(X) = (X − α1)2(X − α2)2, where α1 6= α2; and P (α1) = cP (α2),
P (α2) = cP (α1). Therefore, c = −1. One could also check that δFc ≤ 0
for these exceptional cases. Together with Theorem 1, we see that (iv) is
equivalent to (iii).

Appendix. URS for non-Archimedean entire functions. For the
sake of completeness, we include the following result on the URS of non-
Archimedean entire functions.

Theorem. Let k be an algebraically closed field of characteristic p ≥ 0,
complete with respect to a non-Archimedean absolute value. Let S be a finite
set in k, with n elements. Assume p -n if p > 0. Then S is a URS for
non-Archimedean entire functions over k if and only if S is affinely rigid.
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When the characteristic of k is zero, this result was obtained in [BEH] for
the case of polynomials and in [CY] for the general case. An important step
in [CY] is making use of Berkovich’s Picard theorem. Here we will include a
short proof which is due to Voloch based on Cherry and Yang’s observation.

Proof. Cherry and Yang [CY] have shown that S is a URS for non-
Archimedean entire functions if and only if S is a URS for polynomials
over k. Let f and g be two polynomials over k. If E(f, S) = E(g, S), then
P (f) = P (g) or P (f) = cP (g) for some c 6= 0, 1 ∈ k. Clearly, deg f(x) =
deg g(x) = d. Consider the curves F (X,Y ) = 0 and Fc(X,Y ) = 0 which
have n − 1 and n distinct points at infinity respectively, if p = 0 or p > 0
and p -n. On the other hand, (f(x), g(x), 1) defines a morphism from P1(k)
to a plane curve in P2(k) which has exactly one d-fold point at infinity.
Therefore, (f(x), g(x)) can only be a solution of a linear irreducible factor
of F (X,Y ) or Fc(X,Y ). Therefore F (X,Y ) or Fc(X,Y ) must have a linear
factor, which is equivalent to S not being affinely rigid by Lemma 6.

When p |n the characterization of a unique range set is more complicated.
In a recent joint work of Boutabaa, Cherry, and Escassut [BCE], they give
some examples and counterexamples concerning URS for non-Archimedean
entire functions.
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