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0. Introduction. In [5] we gave a partial solution to a problem of
Rankin [8] on the behaviour of the Fourier coefficients of a special family
of cusp-forms introduced by Hecke. Our purpose in this paper is to extend
and refine the methods of [5]. One consequence of this will be a complete
solution of Rankin’s problem. To explain our new results we adhere to the
notation and terminology of [5]. Let K be a number field, [K : Q] = κ,
2 ≤ κ < ∞, and let χ be a normalised Grössencharakter of K. For n ∈ N
let T (n, χ) =

∑
χ(a), the sum being over all integral ideals a in K with

absolute norm Na = n. In the present context, the most important result
in [5] is the asymptotic formula

(0.1)
∑

n≤x
|T (n, χ)|2β = A(χ, β)x(logx)c(χ,β)−1{1 +O(logx)−γ(χ,β)}

as x → ∞. Here β is any fixed positive number, while A(χ, β), c(χ, β) and
γ(χ, β) are positive constants depending only on χ and β. In fact, we showed
that (0.1) holds with γ(χ, β) ≥ min{1, β/2}; in §1 this will be improved
to γ(χ, β) ≥ min{1, β}. Unfortunately we were not able in [5] to give an
explicit expression for c(χ, β), although we were able to prove the existence
of a unique upper-semicontinuous probability distribution function M(t) =
M(t, χ) such that

(0.2) c(χ, β) =
�

t∈R
tβ dM(t, χ) (∀β > 0).

Here M(0−, χ) = 0 and M(κ2, χ) = 1. In particular M(t, χ) is compactly
supported, and so, by classical Hausdorff moment theory [2], it is uniquely
determined if, for example, we know the values c(χ, k) for all k ∈ N, or even
just for a subset of k ∈ N with

∑
k−1 =∞.
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One of our main aims in this paper is the determination of M(t, χ) and
c(χ, β) when χ is “generic”. The precise definition of genericity will be given
in §4, where we also show that, in an appropriate sense, “almost all” χ are
generic. Our precise result for M(t, χ), χ generic, is given in Theorem 2,
stated below.

If we adopt the convention that y0 = 1 for all y ≥ 0 in R, then (0.1)
still holds (trivially) if we put c(χ, β) = 0, and γ(χ, 0) > 0 is arbitrary. Our
other main result (Theorem 1) relates to the following generalisation of (0.1).
Let m ∈ N, let K1, . . . ,Km be number fields (of respective finite degrees
κ1, . . . , κm ≥ 2), and, for j ≤ m, let χj be a normalised Grössencharakter
of Kj . In a certain sense, Theorem 1 is a direct “vector” analogue of (0.1).
Formally, we have:

Theorem 1. Let χ= (χ1, . . . , χm) be as above, and let β = (β1, . . . , βm)
be any vector of non-negative real numbers. Then we have an asympototic
formula

(0.3)
∑

n≤x

∏

j≤m
|T (n, χj)|2βj = A(χ,β)x(logx)c(χ,β)−1{1 +O(log x)−γ(χ,β)}

as x → ∞. Here A(χ,β), c(χ,β) and γ(χ,β) are positive and depend only
on χ,β. If β = 0 then A(χ,0) = 1, c(χ,0) = 1 and γ(χ,0) can be cho-
sen to be arbitrarily large positive. If β 6= 0, we may choose γ(χ,β) =
min{1, βj > 0}.

Moreover the following formula holds for all β:

(0.4) c(χ,β) =
�

t∈Rm
tβ1
1 . . . tβmm dM(χ, t).

Here, given χ, t 7→ M(χ, t) is a unique compactly supported probabil-
ity distribution function on Rm, upper-semicontinuous in the sense that
M(χ, t) = infs>t{M(χ, s)}, where s > t means that s1 ≥ t1, . . . , sm ≥ tm,
while t ≥ 0 and s 6= t.

The proof of Theorem 1 occupies §1, and relies on a refinement of the clas-
sical Wirsing method [15, 16] for certain non-negative multiplicative func-
tions, due to H. Halberstam. In §1 we axiomatise the processes involved in
proving Theorem 1, since the method may turn out to be applicable to other
problems.

To explain Theorem 2 (stated below), we introduce a sequence Dr (r≥0)
of upper-semicontinuous probability distribution functions on R, by the fol-
lowing procedure. We have Dr(t) = Prob{Xr ≤ t} for all r ≥ 0 and all
t ∈ R, where the random variables X0,X1, . . . ,Xr, . . . are as follows:

(a) X0 is identically 0,X1 is identically 1;



Solution of a generalised problem of Rankin 203

(b) For r ≥ 2, let Θ1, . . . , Θr be independent random variables, each
uniformly distributed in the closed unit interval [0, 1]. Then

(0.5) Xr :=
∣∣∣
r∑

j=1

exp(2πiΘj)
∣∣∣
2

(i =
√
−1).

Now suppose that [K : Q] = κ, 2 ≤ κ < ∞. For r = 0, . . . , κ let ∂r be
the Dirichlet density of the set of primes p ∈ N having, in K, exactly r
distinct prime ideal factors p of residual degree 1 (i.e. Np = p). By Chebo-
tarev’s density theorem [4, pp. 379–389] the ∂r exist, and are non-negative
rational numbers summing to 1. Consequently,

∑κ
r=0 ∂rDr(t) is another

upper-semicontinuous probability distribution on R, supported by [0, κ2].
Then Theorem 2 is as follows.

Theorem 2. Let [K : Q] = κ, 2 ≤ κ < ∞, and let χ be a generic
normalised Grössencharakter of K (see §4). Then M(χ, t) of (0.2) satisfies

(0.6) M(χ, t) =
κ∑

r=0

∂rDr(t) (∀t ∈ R)

while for β ≥ 0 in R we have

(0.7) c(χ, β) =
κ∑

r=0

∂r
�

t∈R
tβ dDr(t),

with c(χ, β) as in (0.1).

Whereas in [5] we obtained (0.1) without recourse to global relative Weil
groups, the latter seem to be essential for the proof of Theorem 2, and we
devote §3 to an exposition of the relevant properties of Weil groups, their rep-
resentations and the associated Weil L-functions. On the other hand, these
methods are not needed for Theorem 1. The crucial “replication formula”
(1.14) for products T (p, χ)T (p, ψ) can be proved by entirely “elementary”
methods, as we showed in [6].

Our paper is organised as follows. In §1 we review the Halberstam re-
finement of Wirsing’s method, and then prove an “interpolation theorem”
of some independent interest; by combining the latter with Halberstam–
Wirsing method we then obtain Theorem 1.

In §2 we summarise the (classical) theory of the distribution functions
Dr(t) which figure in Theorem 2, concentrating only on those aspects rele-
vant for the proof of the latter.

In §3 we give a detailed description of those properties of Weil groups,
their representations and associated Weil L-functions which are needed for
the proof of Theorem 2.

In §4 we study the action of Galois groups on normalised Grössencha-
raktere χ, leading to the formal definition of generic χ, and a proof that
“almost all” χ are generic.



204 R. W. K. Odoni

In §5 we prove Theorem 2, while in §6 we discuss possible further exten-
sions of our results and methods.

I am greatly indebted to Professor R. Rankin and Professor K. A. Brown
of Glasgow University; the former inspired the work leading to [5] and the
present paper, while discussions with the latter have been very helpful in
developing the ring and module theory used in §4. I am also grateful to
Professor H. Halberstam (University of Illinois, Urbana) for his letter of
July 1990, pointing out how to sharpen the error term of (0.1).

1. Halberstam’s refinement of Wirsing’s method, and
an interpolation theorem

1A. For n ∈ N let d(n) =
∑
d|n 1 be the classical divisor function. We

introduce the special class M of non-negative multiplicative functions f :
N → R by assigning f to M if and only if there are positive constants
A = Af , B = Bf such that

(1.1) 0 ≤ f(n) ≤ Ad(n)B (∀n ∈ N).

Note that if f, g ∈ M so does f ∗ g (Dirichlet convolution); also, for β ≥ 0,
m 7→ f(m)β is in M when f ∈M.

The original method of Wirsing [15, 16] starts from an f ∈ M with the
additional property

(1.2)
∑

p≤x
f(p) ∼ c x

log x
(x→∞),

where c = cf > 0, and p denotes a prime in N. Wirsing shows that (1.2)
implies

(1.3)
∑

n≤x
f(n) ∼ Ex(log x)c−1 (x→∞),

where E = Ef > 0. Wirsing’s techniques are “elementary”, but very inge-
nious.

First, using summation by parts, (1.2) is converted to

(1.4)
∑

p≤x
f(p)

log p
p
∼ c log x (x→∞).

Next, using logn =
∑
pk‖n log(pk) and another summation by parts, (1.4)

is converted to

(1.5)
∑

n≤x

f(n)
n
∼ F (log x)c−1 (x→∞),

with F = Ff > 0. The next, and most difficult step, is the transition from
(1.5) to (1.3). First, to avoid problems caused by high powers of small primes,
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f is replaced by f0, where f0(n) = f(n)δ0(n) and δ0(n) = 1 unless n is
divisible by some prime p ≤ p0 (suitably chosen), when δ0(n) = 0. It is then
shown that (1.5) (with f0 in place of f) yields (1.3) with f0 in place of f , and
some E0 in place of E. For this a study of g(n) =

∑
d|n f0(d)f̂0(n/d) log d is

required, where f̂0 is the inverse of f0 under Dirichlet convolution. Finally,
further summation by parts allows one to obtain (1.3) with f and E in place
of f0 and E0.

For various purposes one requires a quantitative version of Wirsing’s
method. Specifically, suppose that f ∈ M and that (1.2) is replaced by the
stronger condition

(1.2)∗
∑

p≤x
f(p) ∼ c x

log x
+O(x(logx)−1−γ) (x→∞).

(Here c, γ > 0.) We then ask whether a corresponding stronger version of
(1.3) holds, in particular, whether we have

(1.3)∗
∑

n≤x
f(n) = Ex(log x)c−1{1 +O(logx)−δ} (x→∞)

for some δ > 0.
In [5] we showed that (1.3)∗ does indeed hold, with δ = min{1, γ/2}; our

method used a subtle Tauberian theorem of Subhankulov, depending on
the behaviour of Laplace transforms with complex argument. In a letter to
the author H. Halberstam (July 1990) showed that (1.3)∗ holds, even with
δ = min{1, γ}; his method involved a careful re-examination of Wirsing’s
arguments, and avoids Subhankulov’s theorem. Moreover his main argu-
ment is very similar to that used in [1]; since this is readily available, there
is no point in reproducing Halberstam’s argument here; we merely record
that (1.2)∗ implies (1.3)∗ with δ = min{1, γ}, and refer to this result as
Halberstam’s refinement (of Wirsing’s method).

1B. An interpolation theorem. Now suppose that m ∈ N, and that
f1, . . . , fm ∈ M. We assume a very strong form of (1.2)∗, namely that

(1.6)
∑

p≤x

∏

j

fj(p)kj = c(k) Li(x) +O(A
∑
kj

1 x exp(−A2

√
log x))

as x→∞, where Li(x) = � x2 dt/log t.
Here the result holds for all vectors k = (k1, . . . , km) of non-negative

integers, while c(k) > 0 for all k. Moreover A1, A2 > 0 are constants (i.e.
independent of k, x) and the implied constant in O(. . .) is also indepen-
dent of k, x. Our aim here is to show that a version of (1.3)∗ holds for
f(n) = f1(n)α1 . . . fm(n)αm , where α is an arbitrary vector of non-negative
numbers. (Again we emphasise the convention that y0 = 1 for all y ≥ 0 in



206 R. W. K. Odoni

R.) Our task thus involves the determination of c(α) > 0 and γ(α) > 0 such
that

(1.7)
∑

p≤x

∏

j

fj(p)αj = c(α)
x

log x
{1 +O((logx)−γ(α))}

as x→∞.
Our procedure is, in essence, an induction on m. (If any αj is 0, the

result (1.7) will follow from the induction hypothesis, using fewer than m
functions.) The formal result is as follows.

Theorem 0. Suppose that (1.6) holds. Then for all m,α we have

(1.8)
∑

p≤x

∏

j≤m
fj(p)αj = c(α)

x

log x
{1 +O((logx)−γ(α))}.

Here c(α) > 0 for all α ≥ 0. Moreover c(0) = 1 and γ(0) = 1. If α 6= 0 we
have γ(α) = 1

2 min{αj > 0}. Further there is a unique, compactly supported
upper-semicontinuous probability distribution function Ω on [0,∞)m such
that

(1.9) c(α) =
�
tα1
1 . . . tαmm dΩ(t)

for all α ≥ 0.

Remark. The casem = 1 of Theorem 0 was proved in [5]. There we used
a Fourier-series argument. Here we use the binomial expansion of (1 + x)θ

(θ > 0), which turns out to yield a rather simpler proof of the general case
of Theorem 0.

The following elementary result is very useful in the proof of Theorem 0.

Lemma 1.1. Let θ ∈ R, θ > 0, and for n ≥ 0 in Z let
(
θ
n

)
be the classical

binomial coefficient. Thus
(
θ
0

)
= 1,

(
θ
1

)
= θ and

(
θ
n

)
= O(n−1−θ) as n→∞;

moreover , the power series
∑∞
n=0

(
θ
n

)
xn converges absolutely and uniformly

for −1 ≤ x ≤ 1 to (1 + x)θ.

We omit the proof, which is quite simple (although the last part requires
Abel’s continuity theorem for convergent power series).

As a corollary we have the estimate

(1.10)
∣∣∣∣yθ −

N∑

n=0

(
θ

n

)
(y − 1)n

∣∣∣∣ ≤ A(θ)N−θ,

where A(θ) depends only on θ, and N ∈ N, 0 ≤ y ≤ 1 are arbitrary.
More generally, if α1, . . . , αm > 0 we have an analogous formula:

(1.11)
∣∣∣∣
∏

j≤n
y
αj
j −

∑

0≤n1,...,nm≤N

∏

j≤m

(
αj
nj

)
(yj − 1)nj

∣∣∣∣ ≤ B(α)N−µ
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whenever N ∈ N, and 0 ≤ maxj{yj} ≤ 1. Here B(α) > 0 depends only on
α, while µ = min{α1, . . . , αm} > 0.

We first prove (1.7) (given (1.6)) when µ = min{α1, . . . , αm} > 0. Since
f1, . . . , fm are in M, we see from (1.1) that there is a C > 0 such that
0 ≤ fj(p) ≤ C holds for all j ≤ m and all primes p.

We substitute yj = C−1fj(p) in (1.11) and sum over all p ≤ x, using
(1.6) with 0 ≤ kj ≤ N for all j. If we then choose N = λ

√
log x, λ fixed but

suitably small > 0, we obtain (1.7) for some (as yet unspecified) c(α) > 0,
with γ(α) = 1

2µ = 1
2 min{α1, . . . , αm}.

If some, but not all, the αj are zero, then the fj with αj = 0 are effectively
absent, and we obtain (1.7) with γ(α) = 1

2 minj≤m{αj : αj > 0}. Finally
if α = 0, the left-hand side of (1.6) reduces to

∑
p≤x 1; we may then take

c(0) = 1 and γ(0) = 1. To complete the proof of Theorem 0 we need only
prove the existence and uniqueness of Ω of (1.9). To do this we choose a
large x and let Sx be the set of all primes p in N with p ≤ x. We make the
set of all subsets of Sx into a finite probability space by assigning to each
A ⊆ Sx the measure #A/π(x), where π(x) =

∑
p≤x 1 = #Sx. Now choose

a prime Px “at random” in Sx. Then the functions fj(Px) (j ≤ m) become
random variables on [0, C], for any C ≥ supj,p{fj(p)}. By (1.6), we have

(1.12) E
(∏

j

fj(Px)kj
)

= c(k) + o(1) (x→∞)

for each fixed integral k ≥ 0, E denoting expectation. Let

(1.13) Ωx(t) = Prob{fj(Px) ≤ tj , ∀j}.
Using the obvious multivariable analogue of Hausdorff’s moment theory

[2], and noting the uniform boundedness of the fj(Px), we let x→∞.
Then there is a unique upper-semicontinuous probability distribution

function Ω(t), supported by [0, C]m, such that

c(k) =
�

Rm
tk1
1 . . . tkmm dΩ(t) (k integral non-negative),

while Ω(t) is the weak limit of the Ωx(t). Hence, for every fixed α =
(α1, . . . , αm) (αj ≥ 0 in R) we have

�

Rm
tα1
1 . . . tαmm dΩ(t) = lim

x→∞
E
(∏

j

fj(Px)αj
)
,

while the latter is the c(α) of (1.9), whose existence we proved earlier. This
completes the proof of Theorem 0.

1C. Proof of Theorem 1. This will follow easily from Theorem 0, once
we note the following result.
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Lemma 1.2. Let χ1, . . . , χm be normalised Grössencharaktere of K1, . . .
. . . ,Km respectively , let L/Q be the Galois hull of the compositum K1 . . .Km

over Q, and let g ∈ N be divisible by the finite parts of the conductors
of χ1, . . . , χm. We denote [Kj : Q] by κj , 1 ≤ j ≤ m. Then there exist
normalised Grössencharaktere θ1, . . . , θt of subfields of L (1 ≤ t ≤ ∏j≤m κj)
such that

(a) the finite part of the conductor of each θr (r ≤ t) divides g;
(b) the equation

(1.14)
∏

j≤m
T (p, χj) =

∑

r≤t
T (p, θr)

holds for all primes p ∈ N such that p - g dis(L/Q), where dis(L/Q) is the
discriminant of L/Q.

This was proved by Moroz in [3, p. 24], using Weil groups; the author
supplied an “elementary” proof in [6]. We apply Lemma 1.2 in the following
way to obtain Theorem 1. We fix χ1, . . . , χm, choose k = (k1, . . . , km) (kj ∈
Z, kj ≥ 0) and use the identity

|T (p, χj)|2kj = T (p, χj)kjT (p, χj)kj , in conjunction with (1.14).

We then have

(1.15)
∏

j

|T (p, χj)|2kj =
∑

r≤t
T (p, θr) (p - g disL/Q)

where t now satisfies 1 ≤ t ≤ ∏j≤m κ
2kj
j .

Again the θr are normalised Grössencharaktere of subfields of L, the
finite parts of whose conductors still divide g. Because of this, there are
asymptotic formulae [3, p. 48] of the type

(1.16)
∑

p≤x
T (p, θr) = δr Li(x) +O(x exp(−A

√
log x)),

where A depends only on g and L, the implied constant in O(. . .) simi-
larly depends only on g and L, while δr = 1 if θr is the trivial character
and is 0 otherwise. Moreover, from (1.15), at least one of the δr is 1, since
|T (p, χj)|2 ≥ 0 for all p, χj .

If we now put fj(n) = |T (n, χj)|2 (j = 1, . . . ,m), we see that fj ∈ M
for all j and that (1.6) holds for suitable A1, A2 > 0. Theorem 0 can now
be applied, giving Theorem 1.

2. The distribution function Dr(t). We refer to the function Dr(t)
occurring in Theorem 2.

It seems that the problem of determining all the Dr(t) (r ≥ 0) was
originally posed by the English statistician Karl Pearson in the 1880’s. For
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r ≥ 3 there is no description of Dr(t) in terms of elementary functions.
However, in a virtuoso performance in the manipulation of Bessel functions
[9], Lord Rayleigh was able to express Dr(t) in terms of such functions for all
r ≥ 3. Rayleigh worked with Fourier transforms. Here we obtain quick proof
of the main relevant results of Rayleigh by means of Hankel’s transformation
[13]. We summarise the pertinent results here.

For r = 0, 1, there is nothing to discuss. Also, an elementary geometrical
argument (not given here) shows that

(2.1) D2(t) =





0 for t ≤ 0,
1 for t ≥ 4,
1− π−1 cos−1(2−1(t− 2)) for 0 ≤ t ≤ 4.

Here, for y ∈ [−1, 1], cos−1(y) ∈ [0, π].
For r ≥ 3 there is no elementary analogue of (2.1). However, for r ≥ 2

we can use the following general method.
Let Xr have Dr as its distribution function, so that Dr(t)=Prob{Xr≤ t}

for t ∈ R, while Xr = |∑r
j=1 exp(2πiΘj)|2 (as defined above the statement

of Theorem 2 in §0). Denoting expectations by E(. . .), we have, for k ∈ N,

(2.2) E(Xk
r) =

�

0≤θj≤1

∣∣∣
r∑

j=1

exp(2πiθj)
∣∣∣
2k
dθ1 . . . dθr.

Now the multinomial theorem gives

(2.3) S :=
(∑

j≤r
exp(2πiθj)

)k
=
∑

m

(
k

m

)

r

(exp 2πi(m.θ)),

where m runs over all ordered r-tuples m = (m1, . . . ,mr) of non-negative
integers summing to k,

(
k
m

)
r

is k!/
∏
j≤r(mj !) and m.θ =

∑
j≤rmjθj . Mul-

tiplying S by S, and integrating, we see from (2.2) and (2.3) that

(2.4) E(Xk
r) =

∑

m

(
k

m

)2

r

(∀k ∈ N),

since the functions θ 7→ exp(2πinθ) (n ∈ Z) are orthonormal over [0, 1].
In fact, (2.4) also holds (vacuously) when k = 0.
(2.4) is important in its own right, and will be used in §5.
For completeness we push the analysis further when r ≥ 3. Let

(2.5) J0(z) =
∞∑

k=0

(−1)k(z/2)2k

(k!)2 (z ∈ C)

so that J0 is the standard Bessel function of order 0; it is entire, the power
series (2.5) converging uniformly on each compact subset of C.
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We pick y ∈ R, multiply (2.4) by (−1)k(k!)−2(y/2)2k and sum over
k, 0 ≤ k ≤ ∞, obtaining

(2.6) E(J0(y
√

Xr)) = J0(y)r (y ≥ 0 in R).

(The rearrangements of series involved in this calculation are justified by
the absolute convergence of (2.5) at each z ∈ C.) For r ≥ 3 we use the
theory of Hankel’s transformation [13], applied to (2.6). This shows that
d
dtDr(t) = fr(t) exists for 0 < t < r2, and is, in fact, continuous, while

(2.7) fr(t) =
1
2

∞�

0

yJ0(y
√
t)J0(y)r dy (0 < t < r2),

which is one of Rayleigh’s formulae. In fact (2.7) is of only limited interest;
for example, it is not directly clear from (2.7) that Dr(t) = 1 for t ≥ r2,
although the latter is immediate from Xr = |∑j≤r exp(2πiΘj)|2. Moreover,
(2.7) is not well-adapted for obtaining numerical approximations to fr(t),
because the integrand in (2.7) is oscillatory. Fortunately, (2.4) will suffice to
prove Theorem 2.

3. Weil groups, representations and L-functions. For this section
convenient general references are [3, 10, 11, 12, 14]; for the most part we
use [3].

3A. Global relative Weil groups. Suppose that [K : Q] <∞. We denote
by JK the group of idèles of K, given, as is standard, the restricted direct-
product topology; thus JK is a locally compact abelian group. As usual
we embed K∗ diagonally into JK ; then K∗ becomes a discrete subgroup.
For each place v of K let | · |v be the usual normalised absolute value on
the completion Kv, and for x = (xv)v ∈ JK let vol(x) =

∏
v |xv|v. The

map x 7→ log(vol(x)) is a continuous epimorphism JK � R (under +), the
kernel being J0

K , the closed subgroup of JK consisting of those x ∈ JK with
vol(x) = 1. The group J0

K contains K∗ and J0
K/K

∗ is compact; we denote
it by C0(K).

For r ∈ R let jK(r) be the idèle x having xv = 1 for all non-archimedean
v and xv = er = exp(r) for all archimedean v. Then jK(R) is a closed
subgroup of JK , while jK(R) ∩ J0

K = 〈1〉, and r 7→ JK(r) is a bicontinuous
isomorphism between R and jK(R). Putting C(K) = JK/K

∗ we see by
means of jK that

(3.1) C(K) ∼= R⊕ C0(K)

as topological groups.
Now let [L : Q] < ∞ with L/K Galois, GalL/K = H. Then H acts on

JL, C(L), and C0(L), fixing jL(R) pointwise, and we have

(3.2) C(L) ∼= R⊕ C0(L)
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as ZH-modules, H acting trivially on R. (The H-action of σ ∈ H on x ∈ JL
is denoted by x 7→ xσ; thus we are treating all terms in (3.2) as right
ZH-modules.)

Now R is uniquely divisible as a Z-module; consequently, for q ∈ N, the
cohomology groups Hq(H,R) vanish, and so (3.2) implies that

(3.3) Hq(H,C(L)) ∼= Hq(H,C0(L)) (∀q ∈ N).

In particular, each class in Hq(H,C(L)) can be represented by a q-cocycle
with values in C0(L). This is useful in our definition of reduced relative
global Weil groups, which we shall give shortly.

First, taking q =1 in (3.3), we haveH1(H,C0(L)) = 0 sinceH1(H,C(L))
= 0. We may thus safely identify C(L)H = {H-fixed points of C(L)} with
C(K) and C0(L)H with C0(K).

Next let q = 2, and let u be the fundamental class in H2(H,C(L)), in
the sense of class field theory [12].

By (3.3) we may represent u by a 2-cocycle a(%, σ) of H in C0(L), nor-
malised to satisfy the conditions:

(3.4)
(i) a(%, 1) = 1 = a(1, σ), ∀%, σ ∈ H,

(ii) a(%σ, τ)a(%, σ)τ = a(%, στ)a(σ, τ), ∀%, σ, τ ∈ H.
We now define the (relative global) Weil group W (L/K) as follows. As a

set , W (L/K) consists of all ordered pairs (%, b), % ∈ H, b ∈ C(L). We now
give H the discrete topology, C(L) its usual topology, and W (L/K) the
corresponding product topology, making W (L/K) into a locally compact
space. Finally, we impose a group law on W (L/K) via

(3.5) (%, b) · (σ, c) = (%σ, bσca(%, σ))

for all %, σ ∈ H, b, c∈C(L), with a(%, σ) as in (3.4). Then W (L/K) becomes
a locally compact topological group. In general W (L/K) is not abelian.

The reduced Weil group W0(L/K) is defined analogously by using only
the ordered pairs (%, b) with % ∈ H, b ∈ C0(L). Using the natural embedding
C0(L) ⊂ C(L) we see that W0(L/K) is a compact normal subgroup of
W (L/K).

(This compactness is useful since it guarantees the existence of a unique
Haar measure µ on W0(L/K) which is (2-sided) translation-invariant and
assigns measure 1 to W0(L/K) itself; also the continuous representations of
W0(L/K) (over C) are easy to classify. This will simplify some of our later
calculations.)

Next we note that the subgroup (1, C(L)) of W (L/K) is closed, normal
and abelian, of finite index, and fits into an exact sequence

(3.6) 1→ (1, C(L))→W (L/K)→ H → 1
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of topological groups. In (3.6) we may also replace C(L) by C0(L) and
W (L/K) by W0(L/K).

The fact that u ∈ H2(H,C(L)) is the fundamental class leads to a num-
ber of important functorial properties of the groups W (L/K) under changes
of L and K.

For us, the most important of these properties is the (topological) iso-
morphism
(3.7) W (L/K)ab ∼= C(K),
where W (L/K)ab is W (L/K)/W (L/K)c, and W (L/K)c is the closure of
the commutator subgroup of W (L/K). The isomorphism (3.7) arises from
the reciprocity law isomorphism [12]:

(3.8) C(K)/NL/K(C(L)) ∼= Hab,

and the transfer map W (L/K)ab → (1, C(L)) (well-defined since (1, C(L))
has finite index in W (L/K) and is abelian).

It is not difficult to see that we may replace C(L), C(K) and W (L/K) by
C0(L), C0(K) and W0(L/K) in (3.7) and (3.8). For later use it is important
to make (3.7), and its analogue (3.7)0 (for W0, C0), quite explicit.

It is clear that
(3.9) W0(L/K) =

⋃

σ∈H
(σ, 1) · (1, C0(L))

(disjoint union). Let (%, b) ∈ W0(L/K). Then, for σ ∈ H, we have, using
(3.4) and (3.5),

(3.10) (%, b) · (σ, 1) = (%σ, bσa(%, σ)) = (%σ, 1) · (1, bσa(%, σ)).

Let Ver be the transfer map W0(L/K) → (1, C0(L)). Then, by (3.10), we
have
(3.11) Ver((%, b)) =

(
1,
∏

σ∈H
bσa(%, σ)

)
= (1, NL/K(b))

(
1,
∏

σ∈H
a(%, σ)

)
.

Now let `(%) =
∏
σ∈H a(%, σ) ∈ C0(L).

From (3.4)(ii), we easily see that `(%) is H-invariant (i.e. `(%)σ = `(%)
for all %, σ ∈ H). From this we see that the isomorphism (3.7) arises by
mapping (%, b) ∈ W (L/K) to NL/K(b)`(%) ∈ C(K) for b ∈ C(K), and that
(3.7)0 arises in the same way with b ∈ C0(L).

Now let χ be a continuous character of C0(K). By (3.7)0, χ yields a
continuous character of W0(L/K)ab, lifting to a continuous character χ∗ on
W0(L/K) via the formula

(3.12) χ∗((%, b)) = χ(NL/K(b))χ(`(%)) (% ∈ H, b ∈ C0(L)).

Viewed another way, χ lifts via (3.1) to a continuous character of C(K),
lifting to a continuous character χ∗ of W (L/K). The analogue of (3.12)
then holds with b ∈ C(L) and χ∗ in place of χ∗.
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3B. Weil L-functions. Let Γ be a (Hausdorff) topological group. In
this section we mean by a representation of Γ a continuous homomor-
phism R : Γ → GL(V ), V a finite-dimensional C-vector space; GL(V )
is topologised by choosing some fixed (abstract group) isomorphism θ :
GL(n,C)→ GL(V ) (n = dimV ) and then transporting the standard topol-
ogy on GL(n,C) to GL(V ) via θ. (Clearly, the choice of θ is irrelevant.) Obvi-
ously, kerR is a closed normal subgroup of Γ . The degree degR is dimV . Let
L/K be a finite Galois extension of number fields ([L : Q] <∞). In [14] Weil
introduced an L-function L(s,R,W (L/K)) for each representation R of
W (L/K). We do not need to consider the generalR here, merely those which
arise as follows. From (3.1), and our construction of W (L/K),W0(L/K), we
have a bicontinuous isomorphism

(3.13) W (L/K) ∼= R⊕W0(L/K).

Thus a representation R0 of W0(L/K) can be lifted to a representation R
of W (L/K), of the same degree, via R(r⊕w0) = R0(w0) for all r ∈ R, w0 ∈
W0(L/K).

Representations R of W (L/K) arising in this way are called liftable,
and only these will be used here. The corresponding Weil L-functions have
particularly pleasant properties; we quote from [3].

(a) For liftable R, L(s,R,W (L/K)) is a meromorphic function of s ∈ C.
It has no zeros for Re s ≥ 1, and the only singularity for Re s ≥ 1 is

a pole at s = 1 of order 〈R0,1〉, where the latter is the multiplicity of the
trivial representation 1 of W0(L/K) in R0. If 〈R0,1〉 = 0, the apparent pole
at s = 1 is a removable singularity, and we can choose a suitable non-zero
value for L(1,R,W (L/K)) to make L(s,R,W (L/K)) analytic for Re s ≥ 1.

(b) If R, T are liftable, so is R⊕ T and we have

L(s,R⊕ T ,W (L/K)) = L(s,R,W (L/K))L(s, T ,W (L/K))

for all s ∈ C.
(c) Now suppose (temporarily) that L/Q is a finite Galois, K a sub-

field of L, R a representation of W (L/K), lifted from R0 in W0(L/K).
Then R (resp. R0) induces a representation T (resp. T 0) of W (L/Q) (resp.
W0(L/Q)), T is lifted from T 0, and we have

(3.14) L(s, T ,W (L/Q)) = L(s,R,W (L/K)) (∀s ∈ C).

(Clearly deg T = [L : K] degR here.)
(d) Let χ be a normalised Grössencharakter of K; by the standard pro-

cedure, χ can be regarded as a continuous character of C0(K), lifting via
(3.12) to a continuous character χ∗ of W0(L/K); i.e. χ∗ is really a represen-
tation R0 of W0(L/K) with degR0 = 1, lifting to an R on W (L/K). Then
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we have

(3.15) L(s,R,W (L/K)) = L(s, χ) (s ∈ C)

where L(s, χ) is the classical Hecke L-function associated with χ. It is entire
unless χ is the trivial Grössencharakter, when the only singularity of L(s, χ)
is a simple pole at s = 1.

(e) We now suppose once more that L/Q is finite Galois, withK1, . . . ,Km

subfields of L, and that χj is a normalised Grössencharakter of Kj (j =
1, . . . ,m). Imitating the procedure outlined in (d), we construct the cor-
responding degree-one representation R0

j on W0(L/Kj), lifting to Rj on
W (L/Kj). Then the R0

j induce representations T 0
j on W0(L/Q), lifting to

Tj on W (L/Q). Clearly the tensor product T1 ⊗ . . .⊗Tm of any representa-
tions Tj of W (L/Q) lifted from T 0

j on W0(L/Q) is lifted from T 0
1 ⊗ . . .⊗T 0

m

on W0(L/Q). Hence T1⊗. . .⊗Tm is lifted from T 0
1 ⊗. . .⊗T 0

m. We consider the
Weil L-function L(s, T1⊗ . . .⊗Tm,W (L/Q)). On the one hand, by (a), this
L-function has a pole of order 〈T 0

1 ⊗ . . .⊗T 0
m,1〉 (calculated over W0(L/Q))

at s = 1, and no other zero of pole for Re s ≥ 1. On the other hand, with
the branch of log such that log 1 = 0, we have [3, p. 24] the relation

(3.16) logL(s, T1 ⊗ . . .⊗ Tm,W (L/Q)) =
∑

p∈N
prime

p−s
∏

j≤m
T (p, χj) + E(s)

for Re s > 1, where E(s) is analytic, non-zero and bounded, say for Re s ≥
3/4. Here T (n, χ) is as in §0.

(f) Returning to (a), and taking K = Q, L/Q finite Galois, the function
L(s,R,W (L/Q)) has the following properties. There is an a(R) > 0 such
that

(i) L(s,R,W (L/Q)) has no zero in the s-region

4R : Re s ≥ 1− a(R)
log(2 + (Im s)2)

,

(ii) there is a b(R) > 0 such that on the left edge of 4R we have

(3.17) |L(s,R,W (L/Q))|±1 ≤ (2 + (Im s)2)b(R).

By the standard Mellin-transform method of analytic number theory,
(3.16) and (3.17), together with (e), can be made to yield the estimate (1.6)
with fj(n) = |T (n, χj)|2 (j = 1, . . . ,m) needed for the proof of Theorem 1.
Moreover if we fix χ,K, and choose m = 2k, χ1 = . . . = χk = χ, χk+1 =
. . . = χ2k = χ, we obtain the formula

(3.18) c(χ, k) = 〈T 0⊗ . . .⊗︸ ︷︷ ︸
k

T 0, (self)〉 (k ∈ N)
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for c(χ, k) as in (0.1), (0.2); here T 0 is the representation of W0(L/Q) aris-
ing from the normalised Grössencharakter χ of K by the procedure of (e).
Theorem 2 will be proved by evaluating the right-hand side of (3.18) for
“generic” χ.

4. Generic normalised Grössencharaktere. Our aim here is to give
a suitable definition of generic normalised Grössencharaktere of K (2 ≤ κ =
[K : Q] <∞).

Our procedure is to embed K in a finite Galois extension L/Q and then
to study the action of GalL/Q on normalised Grössencharaktere of L. Our
main references here are [3, 4]. It is acceptable to take L/Q to be the Galois
hull of K/Q.

Let [K : Q] = κ, 2 ≤ κ < ∞, and let f ∈ N. We consider Gr0(K, f),
the (abelian) group of all those normalised Grössencharaktere χ of K such
that the finite part of the conductor of χ divides f ! = 1 · 2 · . . . · f . It is well
known [6] that, as an abstract group, Gr0(K, f) has the structure

(4.1) Gr0(K, f) ∼= Zκ−1 ⊕Rf (K),

where Rf (K) is a finite abelian group, isomorphic to the ray class group
(modXf !) of K.

If g ≥ f we have Gr0(K, f) / Gr0(K, g), while
⋃
f∈NGr0(K, f) is the

group of all normalised Grössencharaktere of K.
If we regard Gr0(K, f) as a group of homomorphisms I(K, f)→ R/Z ∼=

T = {z ∈ C : |z| = 1}, where I(K, f) is the group of fractional ideals of K
generated by the prime ideals p 6= 0 (in the ring ZK of integers of K) with
p - f !, then the intersection of the kernels of the χ ∈ Gr0(K, f) is precisely
the set of fractional ideals of the type qZK , where q > 0 lies in Q and
q ≡ 1 (modXf !); these q have the form q = r/s, r, s ∈ N, with r ≡ 1 ≡ s
(mod (f !Z)).

By a standard procedure [3, pp. 12–14], normalised Grössencharaktere
of K correspond 1 : 1 to continuous characters of the compact abelian
group C0(K) of §3. Let Ĉ0(K) be the dual of C0(K), i.e. the group of
continuous characters of C0(K). We may then identify Gr0(K, f) (f ∈ N),
with a subgroup of Ĉ0(K), and we have

(4.2) Ĉ0(K) =
⋃

f∈N
Gr0(K, f).

Since C0(K) is compact, Ĉ0(K) is discrete, so we do not need to use topo-
logical arguments when discussing Ĉ0(K).

Now suppose that L/Q is finite Galois, and that K is a subfield of L. If
χ ∈ Gr0(K, f), the map

y 7→ χ(NL/K(y)) (y ∈ C0(L))
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is clearly in Gr0(L, f); we denote it by EL/K(χ). It is then clear that χ 7→
EL/K(χ) is a homomorphism Gr0(K, f) 7→ Gr0(L, f); moreover, EL/K(χ)
has finite order if and only if χ has finite order.

Now let G = GalL/Q,H = GalL/K. We denote the action of σ ∈ G on
C0(L) by x 7→ xσ, i.e. we treat C0(L) as a right ZG-module.

Let χ ∈ Ĉ0(L), σ ∈ G and y ∈ C0(L). We denote the map y 7→ χ(yσ)
by σ.χ. It is immediately clear that σ.χ ∈ Ĉ0(L), and in this way we make
Ĉ0(L) into a left ZG-module. Moreover, for each f ∈ N, Gr0(L, f) is a left
ZG-submodule of Ĉ0(L).

Using the classical interpretation of Gr0(L, f) (i.e., taking L = K in the
discussion following (4.1), it is easy to see that the left ZG-annihilator of
Gr0(L, f) (f ∈ N), is exactly Z · (∑g∈G g). Here, for λ ∈ ZG,Z · λ is the
Z-span of λ.

Let UL be the group of units of ZL. The map u 7→ uσ (u ∈ UL, σ ∈ G)
makes UL into a right ZG-module. By a classical result of Minkowski [4,
p. 113] we can find a cyclic right ZG-submodule VL of UL such that

(i) VL has finite index in UL,
(ii) VL is a free Z-submodule of UL.

By classical results [4, p. 138] there is an f0 = f0(L) ∈ N such that VL
contains all totally positive units ε ∈ UL such that ε ≡ 1 (mod f0!).

If we now examine the compatibility relations [3, p. 13] on the local com-
ponents of a character χ ∈ Gr0(L, f), we see that, for f ≥ f0(L),Gr(L, f)
contains (many) left ZG-submodules Gr∗(L, f) with the following proper-
ties:

(4.3)

(i) Gr∗(L, f) has finite index in Gr0(L, f);

(ii) Gr∗(L, f) is a free Z-module of rank #G− 1;

(iii) Gr∗(L, f) is a cyclic left ZG-module.

For each f ≥ f0(L) we choose some arbitrary but fixed Gr∗(L, f) satisfy-
ing (4.3). We claim that, as a left ZG-module, Gr∗(L, f) is isomorphic to
Z/Z ·∑g∈G g. (It is clear that Z ·∑g∈G g is actually a 2-sided ideal in ZG.)

Indeed, since Gr∗(L, f) = ZG · θ for some θ, we have Gr∗(L, f) ∼=ZG
ZG/ann(θ), where ann(S) is the left ZG-annihilator of any subset S of
any left ZG-module. Now ann(θ) ⊇ ann(Gr∗(L, f)) = ann(Gr0(L, f)) since
Gr∗(L, f) has finite index in Gr0(L, f), while it is clear that ann(Gr0(L, f))
is Z ·∑g∈G g, again from the discussion below (4.1). In particular, Gr∗(L, f)
is left ZG-isomorphic to a quotient of ZG/Z ·∑g∈G g; but both of these
modules are free Z-modules of rank #G−1. This forces ann(θ) = Z·∑g∈G g,
as required.
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For commutative superrings R of Z, let

(4.4) IG(R) =
{∑

xgg ∈ RG :
∑

xg = 0
}
.

Thus IG(R) is the usual augmentation ideal of RG; it is a 2-sided ideal in
RG, and is also a free R-submodule of RG on #G− 1 generators.

It is clear that IG(Z) ∩ Z · ∑g∈G g = 0. Thus the natural left ZG-
epimorphism ZG � ZG/Z ·∑g∈G g

∼= Gr∗(L, f) yields a monomorphism
IG(Z) ↪→ Gr∗(L, f) of free Z-modules; both of these are of rank #G − 1;
hence there exist b, c ∈ N allowing us to assume that

(4.5) cIG(Z) ⊆ bGr∗(L, f) ⊆ IG(Z).

It is clear that bGr∗(L, f) shares the important properties (4.3) with
Gr∗(L, f). (Incidentally, a useful check that our arguments yielding (4.5)
are valid is to note that IG(Z) also has left ZG-annihilator Z ·∑g∈G g; this
is trivial to verify.)

Now let K (6= Q) be a subfield of L,GalL/K = H ( G.
We consider Gr∗(L, f)H = {χ ∈ Gr∗(L, f) : hχ = χ,∀h ∈ H}, i.e. the

set of H-fixed points of Gr∗(L, f). It is clear from (4.5) that Gr∗(L, f)H is
a free Z-submodule of Gr∗(L, f), of rank κ− 1, κ = [K : Q] = (G : H) ≥ 2.

Now let Gr∗(K, f) = {χ ∈ Gr0(K, f) : EL/K(χ) ∈ Gr∗(L, f)}. Then
Gr∗(K, f) is a free Z-module of rank κ−1, and maps monomorphically into
Gr∗(L, f)H under EL/K . Thus EL/K(Gr∗(K, f)) and Gr∗(L, f)H are free
Z-modules of the same rank κ−1; in particular, EL/K(Gr∗(K, f)) has finite
index in Gr∗(L, f)H . We recall that we wish to define the notion of a generic
member of Gr0(K, f). We do this by considering the left ZG-annihilators of
“typical” members of EL/K(Gr∗(K, f)). To describe our results, let S ⊆ G
be such that G =

⋃
s∈S(sH) (disjoint union), and let

(4.6) J =
∑

s∈S
Zs+ ZG · IH(Z) ⊆ ZG.

We shall prove that “almost all” members of EL/K(Gr∗(K, f)) have J as left
ZG-annihilator. To make the notion “almost all” precise, let ψ1, . . . , ψκ−1

be any Z-basis for EL/K(Gr∗(K, f)). Then the number of n ∈ Zκ−1 such
that maxj<κ |nj | ≤ N and

∏
j ψ

nj
j fails to have J as its left ZG-annihilator

is O(Nκ−2) as N →∞.
To prove this we first form Γ = Gr∗(L, f) ⊗ Q (where ⊗ means ⊗Z),

making Γ into a left QG-module by “extension of scalars”. By (4.5) we have

(4.7) Γ = IG(Z⊗Q) = IG(Q)

and ΓH = Gr∗(L, f)H ⊗ Q = EL/K(Gr∗(K, f))⊗ Q, where ΓH is {γ ∈ Γ :
hγ = γ for all h ∈ H}. Moreover we have ΓH = eHIG(Q), where eH =
(#H)−1∑

h∈H h ∈ QH. Since IG(Q) is a 2-sided ideal in QG, ΓH is a right
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QG-ideal. We proceed to find the left QG-annihilator of a “typical” member
of ΓH . We obtain this as a special case of the following general result.

Lemma 4.1. Let F be any field , and let A be a finite-dimensional (as-
sociative) semisimple F -algebra. Let R 6= 0 be a right ideal of A, and
let v1, . . . , vn be an F -basis for R. Then there is a non-zero polynomial
p(X) = p(X1, . . . ,Xn) in n independent (commuting) variables, with coeffi-
cients in F , such that , if f ∈ Fn and p(f) 6= 0, we have (

∑n
j=1 fjvj)R = R.

Proof. Let µ ∈ R; then µR ⊆ R. For µ ∈ R let L(µ) be the F -linear
map x 7→ µx on R. We define

p(X1, . . . ,Xn) = det
( n∑

j=1

XjL(vj)
)
∈ F [X].

Then for f ∈ Fn we have

p(f) = det
(
L
( n∑

j=1

fjvj

))
.

In particular, if p(f) 6= 0, then L(
∑n
j=1 fjvj) is an F -linear bijection on R

and so (
∑n
j=1 fjvj)R = R. Conversely if p(f) = 0, then L(

∑n
j=1 fjvj) is

singular and so is neither injective nor surjective. (Recall that dimF (R) =
n ∈ N.)

It remains to show that p(X) 6= 0 in F [X]. To prove this, we simply
note that, since A is semisimple, R is a (right) direct summand of the right
A-module A. Consequently, there is a π ∈ R with π = π2 6= 0 such that R =
πA. But then R = πR. From the above arguments we see that det L(π) 6= 0;
hence p(X) cannot be 0.

We note that if R = µR (µ ∈ R) then µ and R have the same left
A-annihilator. For ann(µ) ⊇ ann(R) = ann(µR) ⊇ ann(µ).

We apply Lemma 4.1 as follows. We take F = Q, A = QG and R =
eHIG(Q) = ΓH . (Since H 6= G, R 6= 0.)

Now let ψ1, . . . , ψκ−1 be a Z basis for EL/K(Gr∗(K, f)). Then ψ1 ⊗ 1,
. . . , ψκ−1 ⊗ 1 is a Q-basis v1, . . . , vκ−1 for ΓH . By Lemma 4.1, there is a
non-zero p(X)∈Q[X]=Q[X1, . . . ,Xκ−1] such that annQG{

∑
j<κ qj(ψj⊗1)}

= annQG(ΓH) (left QG-annihilators) unless p(q1, . . . , qκ−1) = 0; here q ∈
Qκ−1. In particular if q = n ∈ Zκ−1 then the left QG-annihilator of

∏
j ψ

nj
j

is annQG(ΓH) unless p(n) = 0. Since p(X) 6= 0, it is clear that the number
of n ∈ Zκ−1 with maxj<κ |nj | ≤ N and p(n) = 0 is O(Nκ−2) as N → ∞.
(A simple induction on κ ≥ 2 will give this.)

Finally, we note that the left QG-annihilator of eHIG(Q) is

(4.8) annQG(ΓH) = QG · (1− eH) +Q · eG.
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A simple calculation shows that the intersection of (4.8) with ZG is exactly
J of (4.6). To summarise, “almost all” ψ ∈ EL/K(Gr∗(k, f)) have left ZG-
annihilator equal to J of (4.6).

We are now ready to define generic χ ∈ Gr0(K, f) (K 6= Q). We choose
L/Q to be the Galois hull of K/Q and take f ≥ f(L).

Let a = a(f) ∈ N be the index of Gr∗(L, f) in Gr0(L, f). Then for
χ ∈ Gr0(K, f) we have χa ∈ Gr∗(K, f) and EL/K(χa) ∈ EL/K(Gr∗(K, f)).

We say that χ is generic if and only if the left ZG-annihilator ofEL/K(χa)
is J of (4.6). From the foregoing “almost all” χ ∈ Gr0(K, f) are generic.

In our proof of Theorem 2 it is important to note the relation

(4.9) J ∩
∑

s∈S
Z · s = Z ·

{∑

s∈S
s
}

with J as in (4.6); the proof of (4.9) is a simple exercise.
It is interesting to consider some further properties of generic χ. First

of all, such χ have infinite order, since J ∩ Z · 1 = 0. Secondly, if G is
cyclic of prime order p and K = L, then H = {1} and Γ = Gr∗(L, f) ⊗
Q is isomorphic to IG(Q); the latter is actually a field Q-isomorphic to
Q(exp(2πi/p)). Thus every non-trivial member of Gr∗(L, f) has left ZG-
annihilator exactly Z · {∑g∈G g}. This shows that every χ of infinite order
in Gr0(K, f) is generic, when K/Q is cyclic of prime order p. The special case
K/Q quadratic is important since the cusp-forms of Hecke mentioned in §0
derive from Grössencharaktere of imaginary quadratic fields. In particular,
because the original problem of Rankin [8] involves only normalised χ from
imaginary quadratic fields, the complete solution of his problem is a very
special case of Theorem 2.

5. Proof of Theorem 2. Let [K : Q] = κ ≥ 2 and let χ ∈ Gr0(K, f)
be generic. We assume that f ≥ f0(L) of §4, where L/Q is the Galois hull
of K/Q.

Theorem 2 will follow if we can show that, for each k ∈ N, the constants
c(χ, k) of (0.1) satisfy

(5.1) c(χ, k) =
κ∑

r=0

∂r

∞�

0

tk dDr(t),

with ∂r,Dr(t) as in the statement of Theorem 2 in §0.
By the procedure described in §3, we first regard χ as a continuous char-

acter of C0(K), lifting to a character χ∗ on W0(L/K), given by (3.12). Then
χ∗ is a degree-one representation of W0(L/K), inducing a representation
R0 of degree (G : H) = κ on W0(L/Q), which lifts to an R of degree κ on
W (L/Q). In view of (3.18) the constant c(χ, k) equals the W0(L/Q)-inner
product 〈T 0, T 0〉, where T 0 = R0⊗ . . .⊗︸ ︷︷ ︸

k

R0.
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Clearly we need a formula for tr T 0 = (trR0)k, which we proceed to
obtain.

Let G =
⋃
s∈S(sH) be our irredundant decomposition of G into right

H-cosets. For short we put B = C0(L), Γ = W0(L/K) and ∆ = W0(L/Q).
Then we have parallel decompositions

(5.2) ∆ =
⋃

s∈S
(s, 1)Γ, ∆ =

⋃

σ∈G
(σ,B).

Of course, #S = (G : H) = κ here. The representation R0 can be described
in matrix terms (with rows and columns labelled by members s, t of S) via

(5.3) R0((σ, b)) = (χ̇∗((s, 1)−1(σ, b)(t, 1))).

Here χ̇∗ is χ∗ on Γ and 0 off Γ , while σ ∈ G and b ∈ B. Hence we have

(5.4) trR0((σ, b)) =
∑

s∈S
χ̇∗((s, 1)−1(σ, b)(s, 1)).

If (s, 1)−1(σ, b)(s, 1) ∈ Γ then we can deduce from (3.4), (3.5), (3.12) that
χ∗((s, 1)−1(σ, b)(s, 1)) has the form χ(NL/K(bs))χ(θ), where θ ∈ C0(K)
depends only on s, σ. Hence we may rewrite (5.4) in the form

(5.5) trR0((σ, b)) =
∑

s∈S
ω(s, σ)χ(NL/K(bs)),

where ω(s, σ) ∈ C is independent of b ∈ B, and |ω(s, σ)| = δ(s−1σs), δ being
the characteristic function of H. The values c(χ, k) are then given by

(5.6)
�

x∈∆
|trR0(x)|2k dx = c(χ, k) (k ∈ N)

where dx is normalised Haar measure on ∆, i.e. �
∆
dx = 1.

Now, for each σ ∈ G, we have �
x∈(σ,B) dx = (#G)−1. Thus (5.6) gives

(5.7) #G · c(χ, k) =
∑

σ∈G

�

b∈B
|trR0((σ, b))|2k d̂b,

where d̂b is normalised Haar measure on B = C0(L). It remains to evaluate,
for each fixed σ ∈ G, the integral on the right of (5.7).

Let k, r ∈ N. We use the multinomial identity

(5.8) (X1 + . . .+Xr)k =
∑

m

(
k

m

)

r

Xm1
1 . . .Xmr

r

(X0
j = 1), where m runs over all m ∈ Zr with m1, . . . ,mr ≥ 0 and∑
j≤rmj = k, while (

k

m

)

r

= k!/(m1! . . .mr!).
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Let σ ∈ G, b ∈ B and r = κ; we take the kth power of (5.5), multiply by its
complex conjugate, and integrate over B (with respect to d̂b). This gives

�

b∈B
|trR0((σ, b))|2k d̂b =

∑

m

∑

n

(
k

m

)

κ

(
k

n

)

κ

∏

s∈S
ω(s, σ)m(s)ω(s, σ)n(s)(5.9)

×
�

b∈B
χ(NL/K(b

∑
s∈S(m(s)−n(s))s)) d̂b.

(Here, since #S = κ we may label the components of m,n via members
of S.)

Consider, for given m,n, the integral I(m,n) on the right of (5.9).
As χ is generic, EL/K(χa) has left ZG-annihilator J of (4.6). Hence

annZG(EL/K(χ)) ⊆ J . Since, by (4.9), J ∩∑s∈S Z · s = Z · {∑s∈S s}, the
integral I(m,n) is 0 unless

∑
s∈S(m(s)− n(s))s ∈ Z · (∑s∈S s).

For the latter to happen, there must be some d ∈ Z such that m(s) −
n(s) = d for all s ∈ S. But then κd =

∑
sm(s) −∑s n(s) = k − k = 0, so

that d = 0 and m = n. Obviously I(m,m) = 1. Hence (5.9) reduces to

(5.10)
�

b∈B
|trR0((σ, b))|2k d̂b =

∑

m

(
k

m

)2

κ

∏

s∈S
δ(s−1σs)m(s).

Let r(σ) be the number of s ∈ S with δ(s−1σs) = 1. The terms on the right
of (5.10) vanish unless m(s) = 0 whenever δ(s−1σs) = 0, so that (5.10)
collapses down to

(5.11)
�

b∈B
|trR0((σ, b))|2k d̂b =

∑

m

(
k

m

)2

r(σ)
.

By (2.4) the right-hand side here is E(Xk
r(σ)). Thus (5.7) reduces to

(5.12) #G · c(χ, k) =
∑

σ∈G
E(Xk

r(σ)).

Finally, for r = 0, . . . , κ, let ar be the number of σ ∈ G with r(σ) = r. Then
we have

(5.13) c(χ, k) =
κ∑

r=0

E(Xk
r ) · (#G)−1ar (∀k ∈ N).

But, by a simple application of Chebotarev’s density theorem [4, pp. 379–
389], ar(#G)−1 is exactly ∂r in the statement of Theorem 2, which is thus
proved.

6. Concluding remarks. There is some interest in deciding what hap-
pens to Theorem 2 when χ is not generic. If χ has finite order, there is no
real difficulty involved; the author’s method of “Frobenian functions” [7] can
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be used, not only to obtain (0.1), but even a complete asymptotic expansion
in terms of the asymptotic sequence

x(log x)c(χ,β)−n (n ∈ Z).

For other types of non-generic χ, a diversity of behaviour of c(χ, β) can be
seen by considering various special K,χ, but there is no obvious general
pattern as yet. Next, if χ is not normalised, we have

|T (n, χ)| = nr|T (n, χ̂)| (∀n ∈ N)

for some fixed r = r(χ) ∈ R and normalised χ̂. The analogue of (0.1) for
χ can then be obtained by using summation by parts on the result of χ̂.
A similar remark covers Theorem 1 with non-normalised χ1, . . . , χm.

Finally, we consider the exponents c(χ, β) in Theorem 1. To a certain
extent, we may “vectorise” the processes which led to Theorem 2. If χ =
(χ1, . . . , χm), χj a normalised Grössencharakter of Kj , we choose L/Q to
be the Galois hull of the composition K1 . . .Km over Q. It is clear how to
formulate the notion of a generic “vector” χ ∈ Gr0(K1, f)×. . .×Gr0(Km, f).

Let [Kj : Q] = κj ≥ 2, j = 1, . . . ,m, and let r = (r1, . . . , rm), rj ∈ Z,
0 ≤ rj ≤ κj . We define ∂(r) to be the Dirichlet density of the set of primes
p ∈ N having, for each j, exactly rj prime ideal factors in Kj of residual
degree 1. Then for β = (β1, . . . , βm) > 0 in Rm and χ generic, one can show
that

(6.1) c(χ,β) =
∑

r

∂(r)
�

tj∈R

m∏

j=1

t
βj
j dDrj (tj),

representing an exact analogue of Theorem 2.
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