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A theorem of Cobham for non-primitive substitutions

by

Fabien Durand (Amiens)

1. Introduction. Given a subset E of N = {0, 1, 2, . . .} can we find
an elementary algorithm (i.e., a finite state automaton) which accepts the
elements of E and rejects those that do not belong to E? In 1969 A. Cob-
ham showed that the existence of such an algorithm deeply depends on the
numeration base. He stated [Co1]: Let p and q be two multiplicatively inde-
pendent integers (i.e., pk 6= ql for all integers k, l > 0) greater than or equal
to 2. Let E ⊂ N. The set E is both p-recognizable and q-recognizable if and
only if E is a finite union of arithmetic progressions. This is now called the
theorem of Cobham. We recall that a set E ⊂ N is p-recognizable for some
integer p ≥ 2 if the language consisting of the expansions in base p of the
elements of E is recognizable by a finite state automaton (see [Ei]).

In 1972 Cobham [Co2] gave another partial answer to this question show-
ing that not all sets are p-recognizable. He gave the following characteriza-
tion: The set E ⊂ N is p-recognizable for some integer p ≥ 2 if and only
if the characteristic sequence (xn; n ∈ N) of E (xn = 1 if n ∈ E and 0
otherwise) is generated by a substitution of length p, where “generated by
a substitution of length p” means that it is the image by a letter-to-letter
morphism of a fixed point of a substitution of length p.

We remark thatE is a finite union of arithmetic progressions if and only if
its characteristic sequence is ultimately periodic. Consequently, the theorem
of Cobham can be formulated as follows (this is an equivalent statement):
Let p and q be two multiplicatively independent integers greater than or equal
to 2. Let A be a finite alphabet and x ∈ AN. The sequence x is generated by
both a substitution of length p and a substitution of length q if and only if
x is ultimately periodic.

To a substitution σ is associated an integer square matrix M 6= 0 which
has non-negative entries. It is known (see [LM] for instance) that such a
matrix has a real eigenvalue α which is greater than or equal to the modulus
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of all other eigenvalues. It is usually called the dominant eigenvalue of M .
Let S be a set of substitutions. If x is the image by a letter-to-letter morphism
of a fixed point of σ ∈ S then we will say that x is α-substitutive in S. If S
is the set of all substitutions we will say that x is α-substitutive. An easy
computation shows that if σ is of length p then α = p. Furthermore if a
sequence is generated by a substitution of length p then it is p-substitutive.
Note that the converse is not true. This suggests the following conjecture
formulated by G. Hansel.

Conjecture. Let α and β be two multiplicatively independent Perron
numbers. Let A be a finite alphabet. Let x be a sequence in AN. The following
are equivalent :

(1) x is both α-substitutive and β-substitutive;
(2) x is ultimately periodic.

In this paper we prove that (2) implies (1) and, what is the main result
of this paper, that this conjecture holds for a very large set of substitu-
tions containing all known cases; we call it Sgood. This set contains some
non-primitive substitutions of non-constant length. More precisely for some
sets S of substitutions, we prove

Theorem 1. Let α and β be two multiplicatively independent Perron
numbers. Let A be a finite alphabet. A sequence x ∈ AN is α-substitutive
in S and β-substitutive in S if and only if it is ultimately periodic.

This result is true for Sconst, the family of substitutions with constant
length (this is the theorem of Cobham), and for Sprim, the family of primitive
substitutions [Du2]. In [Fa] and [Du3] this result was proved for families of
substitutions related to numeration systems. These families contain some
non-primitive substitutions of non-constant length.

Much more results have been proved concerning generalizations of Cob-
ham’s theorem to non-standard numeration systems [BHMV1, BHMV2].

Most of the proofs of Cobham’s type results are divided into two parts.
In the first part it is proven that the set E ⊂ N is syndetic (the difference be-
tween two consecutive elements of E is bounded), which corresponds to the
fact that the letters of the characteristic sequence of E appear with bounded
gaps. In the second part the result is proven for such E. We will do the same.

In Section 2 we recall some results concerning the length of the words
σn(a) where σ is a substitution on the alphabet A and a ∈ A. These results
have a key role in this paper. In Section 3 we prove that (2) implies (1). To
prove the syndeticity of E all proofs use the well known fact that, if α and β
are multiplicatively independent numbers strictly greater than 1 then the set
{αn/βm; n,m ∈ Z} is dense in R+. Here we need more: the density in R+ of
the set {ndαn/(meβm); n,m ∈ Z}, where d and e are non-negative integers.
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We prove this result in Section 4 because we did not find it in the literature.
We prove in Section 5 that the letters with infinitely many occurrences in
x ∈ AN appear with bounded gaps. This implies the same result for words.
In the last section we restrict ourselves to Sgood, we recall some results of
[Du3] and, using return words, we conclude that x is ultimately periodic.
More precisely we prove that the conjecture is true for Sgood.

Words and sequences. An alphabet A is a finite set of elements called
letters. A word on A is an element of the free monoid generated by A,
denoted by A∗. Let x = x0x1 . . . xn−1 (with xi ∈ A, 0 ≤ i ≤ n − 1) be a
word, its length is n and is denoted by |x|. The empty word is denoted by ε,
|ε| = 0. The set of non-empty words on A is denoted by A+. The elements
of AN are called sequences. If x = x0x1 . . . is a sequence (with xi ∈ A, i ∈ N),
and I = [k, l] an interval of N we set xI = xkxk+1 . . . xl and we say that xI
is a factor of x. If k = 0, we say that xI is a prefix of x. The set of factors
of length n of x is denoted by Ln(x), and the set of factors of x, or language
of x, by L(x). The occurrences in x of a word u are the integers i such that
x[i,i+|u|−1] = u. When x is a word, we use the same terminology with similar
definitions.

The sequence x is ultimately periodic if there exist a word u and a non-
empty word v such that x = uvω, where vω = vvv . . . Otherwise we say
that x is non-periodic. It is periodic if u is the empty word. A sequence
x is uniformly recurrent if for each factor u the greatest difference of two
successive occurrences of u is bounded.

Morphisms and matrices. Let A and B be two alphabets. A morphism
τ is a map from A to B∗. Such a map induces by concatenation a morphism
from A∗ to B∗. If τ(A) is included in B+, it induces a map from AN to BN.
These two maps are also called τ .

To a morphism τ , from A to B∗, there is naturally associated the matrix
Mτ = (mi,j)i∈B,j∈A where mi,j is the number of occurrences of i in the
word τ(j). Let M be a square matrix. A dominant eigenvalue of M is an
eigenvalue r such that no other eigenvalue exceeds it in modulus. A square
matrix is called primitive if it has a power with positive coefficients. In this
case the dominant eigenvalue is unique, positive and it is a simple root of
the characteristic polynomial. This is Perron’s theorem.

A real number is a Perron number if it is an algebraic integer that
strictly dominates all its other algebraic conjugates. The following result is
well known (see [LM] for instance).

Theorem 2. Let λ be a real number. Then

(1) λ is a Perron number if and only if it is the dominant eigenvalue of
a primitive non-negative integral matrix.
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(2) λ is the spectral radius of a non-negative integral matrix if and only
if λp is a Perron number for some positive integer p.

Substitutions and substitutive sequences. In this paper a substitution is a
morphism τ : A→ A∗ such that for all letters of A we have limn→∞ |τn(a)|
= ∞. Whenever the matrix associated to τ is primitive we say that τ is a
primitive substitution.

A fixed point of τ is a sequence x = (xn; n ∈ N) such that τ(x) = x. We
say it is a proper fixed point if all letters of A have an occurrence in x. We
remark that all proper fixed points of τ have the same language.

Example. The substitution τ defined by τ(a) = aaab, τ(b) = bc and
τ(c) = b has two fixed points; one starts with a and is proper and the other
stars with b and is not proper.

If τ is a primitive substitution then all its fixed points are proper and
uniformly recurrent (for details see [Qu] for example).

Let B be another alphabet. We say that a morphism φ from A to B∗ is a
letter-to-letter morphism when φ(A) is a subset of B. Let S be a set of sub-
stitutions and suppose that τ belongs to S. Then the sequence φ(x) is called
substitutive in S. We say φ(x) is substitutive (resp. primitive substitutive) if
S is the set of all substitutions (resp. the set of primitive substitutions). If x
is a proper fixed point of τ and θ is the dominant eigenvalue of τ ∈ S (i.e.,
the dominant eigenvalue of the matrix associated to τ) then φ(x) is called
θ-substitutive in S; and we say θ-substitutive (resp. primitive substitutive) if
S is the set of all substitutions (resp. the set of primitive substitutions).

We point out that in the last example the fixed point y of τ starting with
the letter b is also the fixed point of the substitution σ defined by σ(b) = bc
and σ(c) = b. Moreover the dominant eigenvalue of τ is 3 and the dominant
eigenvalue of σ is (1 +

√
5)/2. Hence in the definition of “θ-substitutive” it

is very important for x to be a proper fixed point, otherwise the conjecture
presented in the introduction would not be true.

Clearly, if φ(x) is θ-substitutive then it is θp-substitutive for all p ∈ N.
Consequently, from Theorem 2 we can always suppose θ is a Perron number.
We define

L(τ) = {τn(a)[i,j]; i, j ∈ N, i ≤ j, n ∈ N, a ∈ A}.
Let x be a fixed point of τ . Then L(τ) = L(x) if and only if x is proper. If τ
is primitive then all its fixed points x have the same language L = L(τ).

2. Some preliminary lemmata. This section and the first case of the
proof of Proposition 13 is prompted by the ideas in [Ha]. In this section σ
will denote a substitution defined on the finite alphabet A, x one of its fixed
points and Θ its dominant eigenvalue.
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Lemma 3. There exists a unique partition A1, . . . , Al of A such that for
all 1 ≤ i ≤ l and all a ∈ Ai,

lim
n→∞

|σn(a)|
c(a)nd(a)θ(a)n

= 1

where θ(a) is the dominant eigenvalue of M restricted to Ai, d(a) its Jordan
order and c(a) ∈ R.

Proof. See Theorem II.10.2 in [SS].

For all a ∈ A we will call the couple (d(a), θ(a)) the growth type of a. If
(d, α) and (e, β) are two growth types we say that (d, α) is less than (e, β)
(written (d, α) < (e, β)) whenever either α < β, or α = β and d < e. Con-
sequently, if the growth type of a ∈ A is less than the growth type of b ∈ A
then limn→∞ |σn(a)|/|σn(b)| = 0. If the growth type of a ∈ A is (i, θ) then
there exists a letter b with growth type (i, θ) having an occurrence in σ(a).

We have Θ = max{θ(a); a ∈ A}. We set D = max{d(a); θ(a) = Θ,
a ∈ A} and Amax = {a ∈ A; θ(a) = Θ, d(a) = D}. We will say that the
letters of Amax are of maximal growth and that (D,Θ) is the growth type of σ.

For all letters a ∈ A, as limn→∞ |σn(a)| = ∞, we have either θ(a) > 1,
or θ(a) = 1 and d(a) > 0. Hence Lemma 3 implies that there is no letter
with growth type (0, 1). An important consequence of the following lemma
is that in fact θ(a) > 1 for all a ∈ A.

Lemma 4. If (d, θ) is the growth type of some letter then for all i be-
longing to {0, . . . , d} there exists a letter of growth type (i, θ) which appears
infinitely often in x.

Proof. See Lemma III.7.10 in [SS].

We define

λσ : A∗ → R, u0 . . . un−1 7→
n−1∑

i=0

c(ui)1Amax(ui).

From Lemma 3 we deduce the following lemma.

Lemma 5. For all u ∈ A∗ we have limn→∞ |σn(u)|/(nDΘn) = λσ(u).

We say that u ∈ A∗ is of maximal growth if λσ(u) 6= 0.

Lemma 6. Suppose a ∈ A has infinitely many occurrences in x. There
exist a positive integer p, a word u ∈ A∗ of maximal growth and v, w ∈ A∗
such that for all n ∈ N the word

σpn(u)σp(n−1)(v)σp(n−2)(v) . . . σp(v)vwa

is a prefix of x. Moreover ,

lim
n→∞

|σpn(u)σp(n−1)(v)σp(n−2)(v) . . . σp(v)vwa|
λσ(u)(pn)DΘpn + λσ(v)

∑n−1
k=0(pk)DΘpk

= 1.
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Proof. Let a ∈ A be a letter that has infinitely many occurrences in x.
We set a0 = a. There exists a1 ∈ A which has infinitely many occurrences in
x and such that a0 has an occurrence in σ(a1). In this way we can construct
a sequence (ai; i ∈ N) such that a0 = a and ai occurs in σ(ai+1), for all
i ∈ N. There exist i, j with i < j such that ai = aj = b. It comes that a
occurs in σi(b) and b occurs in σj−i(b). Hence there exist u1, u2, v1, v2 ∈ A∗
such that σi(b) = u1au2 and σj−i(b) = v1bv2. We set p = j − i, v = σi(v1)
and w = u1. There exists u′ such that u′b is a prefix of x. We remark that
for all n ∈ N the word σn(u′b) is also a prefix of x. We set u = σi(u′). We
have σp(u′b) = σp(u′)v1bv2. Consequently, for all n ∈ N,

σpn(u′)σp(n−1)(v1)σp(n−2)(v1) . . . σp(v1)v1b

is a prefix of σnp(u′b). Then

σpn(u)σp(n−1)(v)σp(n−2)(v) . . . σp(v)vwa

is a prefix of σnp+i(u′b) and consequently of x, for all n ∈ N. The last part
of the lemma follows from Lemma 5.

3. Assertion (2) implies assertion (1) in the Conjecture. In this
section we prove the following proposition. It is the “easy” part of the Con-
jecture, namely assertion (2) implies assertion (1). The first part of the proof
is an adaptation of the proof of Proposition 3.1 in [Du1] and the second part
is inspired by the substitutions introduced in Sections V.4 and V.5 of [Qu].

Proposition 7. Let x be a sequence on a finite alphabet and α a Perron
number. If x is periodic (resp. ultimately periodic) then it is α-substitutive
primitive (resp. α-substitutive).

Proof. Let x be a periodic sequence with period p. Hence we can suppose
that A = {1, . . . , p} and x = (1 . . . p)ω. Let M be a primitive matrix whose
dominant eigenvalue is α and σ : B → B∗ a primitive substitution whose
matrix is M . Let y be one of its fixed points. In what follows we construct,
using σ, a new substitution τ with dominant eigenvalue α, together with a
fixed point z = τ(z), and a letter-to-letter morphism φ such that φ(z) = x.
We define the alphabet

D = {(b, i); b ∈ B, 1 ≤ i ≤ p},
the morphism ψ : B → D∗ and the substitution τ : D → D∗ by

ψ(b) = (b, 1) . . . (b, p) and τ((b, i)) = (ψ(σ(b)))[(i−1)|σ(b)|,i|σ(b)|−1]

for all (b, i) ∈ D. The substitution τ is well defined because |ψ(σ(b))| =
p|σ(b)|. Moreover, these morphisms are such that τ ◦ ψ = ψ ◦ σ. Hence the
substitution τ is primitive. The sequence z = ψ(y) is a fixed point of τ and
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(using the Perron theorem and the fact that MτMψ = MψMσ) its dominant
eigenvalue is α.

Let φ : D → A be the letter-to-letter morphism defined by φ((b, i)) = i.
It is easy to see that φ(z) = x. It follows that x is α-substitutive.

Suppose now that x is ultimately periodic. Then there exist two non-
empty words u and v such that x = uvω. From what precedes we know that
there exist a substitution τ : D → D∗, a fixed point z = τ(z) and a letter-
to-letter morphism φ : D → A such that φ(z) = vω. Let E′ = {a1, . . . , a|u|}
be an alphabet, with |u| letters, disjoint from D and consider the sequence
t = a1 . . . a|u|z ∈ (E′∪D)N = FN. It suffices to prove that t is α-substitutive.
We extend τ to F setting τ(ai) = ai for 1 ≤ i ≤ |u|. Let G be the alphabet
of the words of length |u|+ 1 of t, that is to say,

G = {(tntn+1 . . . tn+|u|); n ∈ N} where t = t0t1 . . .

The sequence t̄ = (t0t1 . . . t|u|)(t1t2 . . . t|u|+1) . . . (tntn+1 . . . tn+|u|) . . . ∈ GN is
a fixed point of the substitution ζ : G → G∗ that we define as follows. Let
(l0l1 . . . l|u|−1a) be an element of G. Let s0s1 . . . s|u|−1 be the suffix of length
|u| of the word τ(l0l1 . . . l|u|−1).

If |τ(a)| ≤ |u|, we set

ζ((l0l1 . . . l|u|−1a))

= (s[0,|u|−1]τ(a)0)(s[1,|u|−1]τ(a)[0,1]) . . . (s[|τ(a)|−1,|u|−1]τ(a)[0,|τ(a)|−1]),

otherwise

ζ((l0l1 ...l|u|−1a))

=(s[0,|u|−1]τ(a)0)...(s|u|−1τ(a)[0,|u|−1])(τ(a)[0,|u|])...(τ(a)[|τ(a)|−|u|−1,|τ(a)|−1]).

By induction we can prove that for all n∈N we have

ζn((t0t1 . . . t|u|))

= (t0t1 . . . t|u|)(t1t2 . . . t|u|+1) . . . (t|τn(t|u|)|−1 . . . t|τn(t|u|)|+|u|−1).

Consequently, t̄ is a fixed point of ζ and %(̄t) = t where % : G→ F is defined
by

%((r0r1 . . . r|u|)) = r0.

Moreover we remark that for all n ∈ N we have

|ζn((r0r1 . . . r|u|))| = |τn(r|u|)|.
From this and Lemma 3 it follows that for all (r0r1 . . . r|u|) ∈ D we have

lim
n→∞

|ζn+1((r0r1 . . . r|u|))|
|ζn((r0r1 . . . r|u|))|

= α.

Hence α is the dominant eigenvalue of ζ and t is α-substitutive.
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Example. Let x = (12)ω and α = (1 +
√

5)/2. It is the dominant eigen-
value of the substitution σ : A = {a, b} → A∗ given by σ(a) = ab and
σ(b) = a. We have D = {(a, 1), (a, 2), (b, 1), (b, 2)} and the substitution
τ : D → D∗ defined in the previous proof is given by

τ((a, 1)) = (a, 1)(a, 2), τ((a, 2)) = (b, 1)(b, 2),

τ((b, 1)) = (a, 1), τ((b, 2)) = (a, 2).

Example. Let c be a letter and x = c(12)ω. We adopt the notations
of the previous example and for convenience we set A = (a, 1), B = (a, 2),
C = (b, 1) and D = (b, 2). The substitution ζ : G → G∗, where G =
{(cA), (AB), (BC), (CD), (DA), (BA)}, defined in the previous proof is
given by

ζ((cA)) = ((cA))((AB)), ζ((AB)) = ((BC))((CD)),

ζ((BC)) = ((DA)), ζ((CD)) = ((AB)),

ζ((DA)) = ((BA))((AB)), ζ((BA)) = ((DA))((AB)).

Let t̄ be the fixed point of ζ whose first letter is (cA). Let φ : G→ {c, 1, 2}
be the letter-to-letter morphism given by

φ((cA)) = c, φ((AB)) = 1, φ((BC)) = 2,

φ((CD)) = 1, φ((DA)) = 2, φ((BA)) = 2.

We have φ(̄t) = c(12)ω = x.

Using Proposition 7 we obtain a slight improvement of the main results
of respectively [Du2] and [Du3]. More precisely:

Theorem 8. Let α and β be two multiplicatively independent Perron
numbers. Let x be a sequence on a finite alphabet. The sequence x is both α-
substitutive primitive and β-substitutive primitive if and only if it is periodic.

Theorem 9. Let U and V be two Bertrand numeration systems, and
let α and β be multiplicatively independent β-numbers such that L(U) =
L(α) and L(V ) = L(β). Let E be a subset of N. The set E is both U -
recognizable and V -recognizable if and only if it is a finite union of arithmetic
progressions. (See [Du3] for the terminology.)

4. Multiplicative independence and density. This section is de-
voted to the proof of the following proposition.

Proposition 10. Let α and β be two rationally independent positive
numbers (i.e., α/β 6∈ Q). Let d and e be non-negative integers. Then the set

{nα+ d logn−mβ − e logm; n,m ∈ N}
is dense in R.
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The following straightforward corollary will be essential in the next sec-
tion.

Corollary 11. Let α and β be multiplicatively independent positive
numbers. Let d and e be non-negative integers. Then the set

{
ndαn

meβm
; n,m ∈ N

}

is dense in R+.

These two results are well known for d = e = 0 (see [HW] for example).
We need the following lemma to prove Proposition 10.

Lemma 12. Let β < α be two rationally independent numbers. Then for
all ε > 0 and all N ∈ N there exist m,n, with m ≥ n ≥ N , such that
0 < nα−mβ < ε.

Proof. The proof is left to the reader.

Proof of Proposition 10. Let l ∈ R and ε > 0. We have to find N,M ∈ N
such that |Nα+ d logN −Mβ − e logM − l| < ε. The proof is divided into
several cases.

Case 1: α > β, e = d and l ≥ d log(β/α). From Lemma 12 there exist
integers 0 < n < m such that 0 < nα−mβ < ε/2 and d log(1 + ε/(mβ)) ≤
ε/2. Hence

d log
(
β

α

)
< d logn− e logm < d log

(
β

α

)
+ d log

(
1 +

ε

mβ

)
.(1)

Then nα−mβ + d(logn− logm) < l + ε. Define f : N→ R by

f(k) = k(nα−mβ)− d(log(km)− log(kn)).

We have f(1) < l+ε, limk→∞ f(k) =∞ and 0 < f(k+1)−f(k) = nα−mβ
< ε. Hence there exists k0 ∈ N such that |f(k0)− l| < ε, that is to say,

|Nα+ d logN −Mβ − e logM − l| < ε

where N = nk0 and M = mk0.

Case 2: α > β, e = d and l < d log(β/α). It suffices to take n,m with
0 < n < m such that −ε/2 < nα −mβ < 0 and d log(1 + ε/(mβ)) ≤ ε/2,
and the same method will give the result.

Case 3: α > β, e > d. Let k0 ∈ N be such that −ε < (d−e) log(1+1/k0)
< 0. If integers n,m with 0 < n < m are such that 0 < nα−mβ < ε then

(d− e) logm+ d log
(
β

α

)
< d logn− e logm

< (d− e) logm+ d log
(
β

α

)
+ d log

(
1 +

ε

mβ

)
,
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which is negative for m large enough. Hence from Lemma 12 it follows that
there exist integers n,m with 0 < n < m such that 0 < nα−mβ < ε and

d logn− e logm ≤ l − (k0)ε− (d− e) log k0.(2)

Define f : N→ R by

f(k) = k(nα−mβ) + d log(kn)− e log(km).

We have

f(k0) ≤ k0ε+ (d− e) log k0 + d logn− e logm ≤ l.
Moreover limk→∞ f(k) =∞ and for all k ≥ k0,

−ε < f(k + 1)− f(k) = nα−mβ + (d− e) log
(

1 +
1
k

)
< ε.

Hence there exists an integer k1 ≥ k0 such that |f(k1) − l| < ε, that is to
say,

|Nα+ d logN −Mβ − e logM − l| < ε

where N = nk1 and M = mk1.

Remaining cases: The same ideas complete the proof.

5. The letters appear with bounded gaps. Let α and β be two
multiplicatively independent Perron numbers. Let σ and τ be substitutions
on the alphabets A and B, with fixed points y and z and with growth types
(d, α) and (e, β) respectively. Let φ : A → C and ψ : B → C be letter-to-
letter morphisms such that φ(y) = ψ(z) = x. This section is devoted to the
proof of the following proposition.

Proposition 13. The letters of C which have infinitely many occur-
rences appear in x with bounded gaps in x.

Proof. We prove this proposition considering two cases. Let c ∈ C which
has infinitely many occurrences. Let X = {n ∈ N; xn = c} and A′ = {a ∈ A;
φ(a) = c}. Assume that the letter c does not appear with bounded gaps.
Then there exist a ∈ A with infinitely many occurrences in y and a strictly
increasing sequence (pn; n ∈ N) of positive integers such that the letter c
does not appear in φ(σpn(a)). Let A′′ be the set of such letters. We consider
two cases.

Case 1: There exists a ∈ A′′ of maximal growth. Let u ∈ A∗ be such
that ua is a prefix of y. Of course we can suppose that u is non-empty. For
all n ∈ N we call Ωn ⊂ A the set of letters appearing in σpn(a). There
exist distinct integers n1 < n2 such that Ωn1 = Ωn2 . Let Ω be the set of
letters appearing in σpn2−pn1 (Ωn1). It is easy to show that Ω = Ωn1 = Ωn2 .
Consequently, the set of letters appearing in σpn2−pn1 (Ω) is equal to Ω and
for all k ∈ N the set of letters appearing in σpn1+k(pn2−pn1)(A) is equal to
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Ω. We set p = pn1 and g = pn2 − pn1 . We remark that the letter c does not
appear in the word φ(σp+kg(a)) and that [|σp+kg(u)|, |σp+kg(ua)|[ ∩X = ∅
for all k ∈ N.

There exists a letter a′ of maximal growth having an occurrence in σp(a).
We set σp(a) = wa′w′. For all k ∈ N we have |σp+kg(ua)| ≥ |σkg(σp(u)wa′)|
and

[|σkg(v)|, |σkg(vwa′)|[ ∩X = ∅(3)

where v = σp(u). Because a′ is of maximal growth we have λσ(v)<λσ(vwa′).
Consequently, there exists an ε > 0 such that

λσ(v)(1 + ε) < λσ(vwa′)(1− ε).
From Lemma 5 we deduce that there exists k0 such that for all k ≥ k0,

|σkg(v)|
(kg)dαkg

< λσ(v)(1 + ε) < λσ(vwa′)(1− ε) < |σ
kg(vwa′)|

(kg)dαkg
.(4)

From Lemma 6 applied to τ we find that there exist s ∈ B∗ of maximal
growth, t, t′ ∈ B∗ and h ∈ N∗ such that for all n ∈ N,

ψ(y[τhn(s)τh(n−1)(t)...τh(t)tt′]) = c.

From the second part of Lemma 6 it follows that there exists γ ∈ R such
that

lim
n→∞

|τhn(s)τh(n−1)(t) . . . τh(t)tt′|
(nh)eβhn

= γ.

From Corollary 11 it comes that there exist two strictly increasing sequences
of integers, (mi; i ∈ N) and (ni; i ∈ N), and l ∈ R such that

γ(mih)eβmih

(nig)dαnig
−→
i→∞

l ∈ ]λσ(v)(1 + ε), λσ(vwa′)(1− ε)[.

Hence from Lemma 5 we also have

(5)
|τhmi(s)τh(mi−1)(t) . . . τh(t)tt′|

(nig)dαnig

=
|τhmi(s)τh(mi−1)(t) . . . τh(t)tt′|

γ(mih)eβmih
· γ(mih)eβmih

(nig)dαnig
−→
i→∞

l.

From (4) and (5) there exists i ∈ N such that

|σnig(v)| < |τhmi(s)τh(mi−1)(t) . . . τh(t)tt′| < |σnig(vwa′)|,
which means that |τhmi(s)τh(mi−1)(t) . . . τh(t)tt′| belongs to X. This gives
a contradiction with (3).

Case 2: No letter in A′′ has maximal growth. We define B′′ as A′′ but
with respect to τ and B. We can suppose that no letter of B ′′ has maximal
growth. There exists a letter a ∈ A′′ (resp. b ∈ B′′) which has infinitely
many occurrences in y (resp. z) and with growth type (d′, α′) < (d, α) (resp.
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(e′, β′) < (e, β)). We recall that α′ and β′ are greater than 1. Furthermore
we can suppose that (d′, α′) (resp. (e′, β′)) is maximal with respect to A′′

(resp. B′′).
Let w = w0 . . . wn be a word belonging to L(y) (resp. L(z)). Denote by

gap(w) the largest integer k such that there exists 0 ≤ i ≤ n−k+1 for which
the letter c does not appear in φ(wi . . . wi+k−1) (resp. in ψ(wi . . . wi+k−1)).

There exist infinitely many prefixes of y (resp. z) of the type u1au2a
′

(resp. v1bv2b
′) fulfilling conditions (i) and (ii) below:

(i) The growth type of u1 ∈ A∗ and a′ ∈ A (resp. v1 ∈ B∗ and b′ ∈ B)
is maximal.

(ii) The words u2 and v2 do not contain a letter of maximal growth.

It is easy to prove that there exists a constant K ′ such that gap(τn(b′)) ≤
K ′ne

′
β′n and gap(σn(a′)) ≤ K ′nd

′
α′n for all n ∈ N. Due to Lemma 3,

limn→∞ |σn(a)|/nd′α′n and limn→∞ |τn(b)|/ne′β′n exist and are finite; we
call them µ(a) and µ(b) respectively.

Let u1au2a
′ be a prefix of y fulfilling conditions (i) and (ii). Then choose

v1bv2b
′ fulfilling the same conditions and so that

K ′

µ(a)

(
2λσ(u1)

2λτ (v1) + λτ (b′)

) logα′
logα

(
log β
logα

)e log β′
log β −e′

≤ 1
3
.(6)

From Corollary 11 there exist four strictly increasing sequences of inte-
gers (mi; i ∈ N), (ni; i ∈ N), (pi; i ∈ N) and (qi; i ∈ N) such that

lim
i→∞

ndiα
ni

me
iβ

mi
=

2λτ (v1)
2λσ(u1) + λσ(a′)

, lim
i→∞

peiβ
pi

qdi α
qi

=
2λσ(u1)

2λτ (v1) + λτ (b′)
.(7)

As a consequence of (7) we have

lim
i→∞

ni/mi = log β/logα and lim
i→∞

pi/qi = logα/log β,(8)

and there exists i0 such that for all i ≥ i0 we have
|σni(u1au2)|
|τmi(v1)| ≤ 1 ≤ |σ

ni(u1au2a
′)|

|τmi(v1b)|
,
|τpi(v1bv2)|
|σqi(u1)| ≤ 1 ≤ |τ

pi(v1bv2b
′)|

|σqi(u1a)| .

It follows that ψ(τmi(b)) (resp. φ(σqi(a))) has an occurrence in φ(σni(a′))
(resp. ψ(τ pi(b′))).

To obtain a contradiction it suffices to prove that there exists j ≥ i0
such that

gap(σnj(a′))/|τmj(b)| ≤ 1/2 or gap(τ pj (b′))/|σqj(a)| ≤ 1/2.

We will consider several cases. First we define K to be the maximum of
the set {

K ′, 2
log β
logα

, 2
logα
log β

,
4λτ (v1)

2λσ(u1) + λσ(a′)
,

4λσ(u1)
2λτ (v1) + λτ (b′)

}
.
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We remark that K ≥ 2. There exists j0 such that for all i ≥ j0 the quantities

ni
mi

,
pi
qi
,
ndiα

ni

me
iβ

mi
,
peiβ

pi

qdi α
qi
,
µ(a)qd

′
i α
′qi

|σqi(a)| ,
µ(b)me′

i β
′mi

|τmi(b)| ,
gap(σni(a′))
nd
′
i α
′ni

are less than K. Let i ≥ j0. To find j we will consider five cases.

Case 2.1: logα/log β < logα′/log β′. As β′ > 1 we have

gap(τ pi(b′))/|σqi(a)| ≤ Kpe
′
i β
′pi

µ(a)qd′i α
′qi ·

µ(a)qd
′
i α
′qi

|σqi(a)|

≤ K2

µ(a)
· p

e′
i

qd
′
i

exp
{(

pi
qi
− logα′

log β′

)
qi log β′

}
,

which tends to 0 as i tends to ∞ (this follows from (8)).

Case 2.2: logα′/log β′ < logα/log β. As in the first case we obtain

lim
i→∞

gap(σni(a′))/|τmi(b)| = 0.

Case 2.3: logα′/logα = log β′/log β and (e′ − d′) log β < (e− d) log β′.
We have

gap(τ pi(b′))/|σqi(a)| ≤ K2

µ(a)
· p

e′
i

qd
′
i

· β
′pi

α′qi
=

K2

µ(a)
· p

e′
i

qd
′
i

(
βpi

αqi

) log β′
log β

=
K2

µ(a)
· p

e′
i

qd
′
i

(
qdi
pei

) log β′
log β

(
peiβ

pi

qdi α
qi

) log β′
log β

≤ K2

µ(a)

(
pi
qi

)e′−e log β′
log β

K
log β′
log β q

(e′−d′)−(e−d) log β′
log β

i

≤ K2

µ(a)
K
e′+(1−e) log β′

log β q
(e′−d′)−(e−d) log β′

log β
i ,

which tends to 0 as i tends to ∞.

Case 2.4: logα′/logα=log β′/log β and (e′−d′) log β>(e−d) log β′. As
in the previous case we obtain

lim
i→∞

gap(σni(a′))/|τmi(b)| = 0.

Case 2.5: logα′/logα = log β′/log β and (e′ − d′) log β = (e− d) log β′.
From (6)–(8) we obtain, for all large enough i,

gap(τ pi(b′))/|σqi(a)| ≤ K ′

µ(a)
· p

e′
i β
′pi

qd
′
i α
′qi
· µ(a)qd

′
i α
′qi

|σqi(a)|

≤ K ′

µ(a)

(
peiβ

pi

qdi α
qi

) logα′
logα

(
qi
pi

)e log β′
log β −e′ µ(a)qd

′
i α
′qi

|σqi(a)| ≤
1
2
.
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Corollary 14. The words having infinitely many occurrences in x ap-
pear in x with bounded gaps.

Proof. Let u be such a word. We set |u| = n. It suffices to prove that the
letter 1 appears with bounded gaps in the sequence t ∈ {0, 1}N defined by

ti = 1 if x[i,i+n−1] = u

and 0 otherwise. Below we prove that t is α and β-substitutive.
The sequence y(n) = ((yi . . . yi+n−1); i ∈ N) is a fixed point of the substi-

tution σn : An → A∗n where An is the alphabet An, defined for all (a1 . . . an)
in An by

σn((a1 . . . an)) = (b1 . . . bn)(b2 . . . bn+1) . . . (b|σ(a1)| . . . b|σ(a1)|+n−1)

where σ(a1 . . . an) = b1 . . . bk (for more details see Section V.4 of [Qu] for
example).

Let % : An → A∗ be the letter-to-letter morphism defined by %((b1 . . . bn))
= b1 for all (b1 . . . bn) ∈ An. We have % ◦ σn = σ ◦ %, and then M%Mσn =
MσM%. Consequently, the dominant eigenvalue of σn is α and y(n) is α-
substitutive. Let f : An → {0, 1} be the letter-to-letter morphism defined
by

f((b1 . . . bn)) = 1 if b1 . . . bn = u and 0 otherwise.

It is easy to see that f(y(n)) = t hence t is α-substitutive. In the same way
we show that t is β-substitutive and Theorem 13 concludes the proof.

6. Proof of Theorem 1

6.1. Decomposition of a substitution into sub-substitutions. The follow-
ing proposition is a consequence of Section 4.4 and Proposition 4.5.6 of
[LM].

Proposition 15. Let M = (mi,j)i,j∈A be a matrix with non-negative
coefficients and no zero column. There exist positive integers p 6= 0, q, l,
where q ≤ l − 1, and a partition {Ai; 1 ≤ i ≤ l} of A such that the matrix
Mp is equal to




A1 A2 . . . Aq Aq+1 Aq+2 . . . Al
A1 M1 0 . . . 0 0 0 . . . 0
A2 M1,2 M2 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
...

Aq M1,q M2,q . . . Mq 0 0 . . . 0
Aq+1 M1,q+1 M2,q+1 . . . Mq,q+1 Mq+1 0 . . . 0
Aq+2 M1,q+2 M2,q+2 . . . Mq,q+2 0 Mq+2 . . . 0
...

...
...

. . .
...

...
...

. . .
...

Al M1,l M2,l . . . Mq,l 0 0 . . . Ml




,(9)
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where the matrices Mi, 1 ≤ i ≤ q (resp. q+ 1 ≤ i ≤ l), are primitive or zero
(resp. primitive), and such that for all 1 ≤ i ≤ q there exists i + 1 ≤ j ≤ l
such that the matrix Mi,j is different from 0.

In what follows we keep the notations of Proposition 15. We will say
that {Ai; 1 ≤ i ≤ l} is a primitive component partition of A (with respect to
M). If i belongs to {q+ 1, . . . , l} we will say that Ai is a principal primitive
component of A (with respect to M).

Let τ : A → A∗ be a substitution and M = (mi,j)i,j∈A its matrix. Let
i ∈ {q+ 1, . . . , l}. We denote by τi the restriction (τ p)|Ai : Ai → A∗ of τp to
Ai. Because τi(Ai) is included in A∗i we can view τi as a morphism from Ai
to A∗i with matrix Mi. Let i ∈ {1, . . . , q} be such that Mi is not equal to 0.
Let ϕi be the morphism from A to A∗i defined by ϕ(b) = b if b belongs to
Ai and the empty word otherwise. Consider the map τi : Ai → A∗ defined
by τi(b) = ϕi(τp(b)) for all a ∈ Ai. We remark as previously that τi(Ai) is
included in A∗i , and consequently τi defines a morphism from Ai to A∗i with
matrix Mi.

We will say that the substitution τ : A→ A∗ satisfies Condition (C) if:

C1. The matrix M is of the type (9) (i.e., p = 1);
C2. The matrices Mi are 0 or have positive entries if 1 ≤ i ≤ q, and have

positive entries otherwise;
C3. For all matrices Mi different from 0, with i ∈ {1, . . . , l}, there exists

ai ∈ Ai such that τi(ai) = aiui where ui is a non-empty word of A∗ if Mi is
different from the 1× 1 matrix [1] and empty otherwise.

From Proposition 15 every substitution τ : A → A∗ has a power τk

satisfying condition (C). The definition of substitutions implies thatMi 6= [1]
for all q + 1 ≤ i ≤ l.

Let τ : A → A∗ be a substitution satisfying condition (C) (we keep the
previous notations). For all 1 ≤ i ≤ l such that Mi is different from 0 and
from the 1 × 1 matrix [1], the map τi : Ai → A∗i defines a substitution
which we will call a main sub-substitution of τ if i ∈ {q + 1, . . . , l} and
a non-main sub-substitution of τ otherwise. Moreover the matrix Mi has
positive coefficients, which implies that the substitution τi is primitive. We
remark that there exists at least one main sub-substitution.

In [Du3] the following results were obtained:

Lemma 16. Let x be a proper fixed point of the substitution σ. Let σ :
A→ A

∗
be a main sub-substitution of σ. Then for all n ∈ N and all a ∈ A

the word σn(a) appears infinitely many times in x.

Theorem 17. Let x and y be respectively a primitive α-substitutive se-
quence and a primitive β-substitutive sequence such that L(x) = L(y). Suppose
that α and β are multiplicatively independent. Then x and y are periodic.
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6.2. The conjecture for “good” substitutions. We have not yet succeeded
in proving the conjecture given in the introduction but we are able to prove it
for a very large family of substitutions. We call them “good” substitutions.
More precisely, let σ : A → A∗ be a substitution whose dominant eigen-
value is α. The substitution σ is said to be a “good” substitution if there
exists a main sub-substitution whose dominant eigenvalue is α. For exam-
ple primitive substitutions and substitutions of constant length are “good”
substitutions.

Now consider the following substitution.

σ : {a, 0, 1} → {a, 0, 1}∗, a 7→ aa0, 0 7→ 01, 1 7→ 0.

Its dominant eigenvalue is 2 and it has only one main sub-substitution (0 7→
01, 1 7→ 0) whose dominant eigenvalue is (1+

√
5)/2, hence it is not a “good”

substitution.

Theorem 18. Suppose that we only consider “good” substitutions. Then
the conjecture is true.

Proof. We adopt the notations of the first lines of Section 5. Let σ : A→
A
∗

be a main sub-substitution of σ. The words of x appearing infinitely many
times in x appear with bounded gaps (Corollary 14). Hence using Lemma
16 we deduce that for all main sub-substitutions σ of σ and τ of τ we have
φ(L(σ)) = ψ(L(τ)) = L. From Theorem 17 it follows that L is periodic, i.e.,
there exists a word u such that L = L(uω) where |u| is the least period.

The word u appears infinitely many times, hence it appears with bounded
gaps. Let Ru be the set of return words to u (a word w is a return word
to u if wu ∈ L(x), u is a prefix of wu and u has exactly two occurrences
in wu). This set is finite. There exists an integer N such that all the words
w ∈ Ru ∩ L(xNxN+1 . . .) appear infinitely many times in x. Hence these
words appear with bounded gaps in x.

We can suppose that u is a prefix of t = xNxN+1 . . . Then t is a concate-
nation of return words to u. Let w be such a word. It appears with bounded
gaps hence it appears in some φ(σn(a)) and there exist two words, p and
q, and an integer i such that wu = puiq. As |u| is the least period of L it
follows that wu = ui. Hence t = uω.

The case of fixed points. This part is devoted to the proof of Theorem 1
restricted to fixed points. More precisely we prove:

Corollary 19. Let x be a fixed point of the substitution σ : A → A∗

whose dominant eigenvalue is α. Suppose that x is also a fixed point of the
substitution τ : A → A∗ whose dominant eigenvalue is β. Suppose that α
and β are multiplicatively independent. Then x is ultimately periodic.

Proof. The letters appearing infinitely often in x appear with bounded
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gaps (Proposition 13). Let σ : A→ A
∗

be a main sub-substitution of σ. Let
a ∈ A. Suppose that there exists a letter b, appearing infinitely many times
in x, which does not belong to A. Then the word σn(a) does not contain b
and b could not appear with bounded gaps. Consequently, there exists only
one main sub-substitution and the letters which appear with bounded gaps
belong to A. Hence σ is a “good” substitution. In the same way τ is a good
substitution. Theorem 18 concludes the proof.
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put. Sci. 204 (1998), 119–130.
[HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,

5th ed., Oxford Univ. Press, 1979.
[LM] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding ,

Cambridge Univ. Press, 1995.
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