Comparison of L^{1} - and L^{∞}-norms of squares of polynomials

by

A. Schinzel (Warszawa) and W. M. Schmidt (Boulder, CO)

1. Introduction. Let $\mathcal{P}(n)$ be the set of polynomials $P(X)=Q(X)^{2}$ where Q is a nonzero polynomial of degree $<n$ with nonnegative real coefficients. We are interested in

$$
A(n)=n^{-1} \sup _{P \in \mathcal{P}(n)}|P|_{1} /|P|_{\infty}
$$

where $|P|_{1}$ is the sum, and $|P|_{\infty}$ the maximum of the coefficients of P. Let \mathcal{F} be the set of functions $f=g * g$ where $*$ denotes convolution and g runs through nonnegative, not identically zero, integrable functions with support in $[0,1]$. Functions in \mathcal{F} have support in $[0,2]$. We set

$$
B=\sup _{f \in \mathcal{F}}|f|_{1} /|f|_{\infty}
$$

where $|f|_{1}$ is the L^{1}-norm and $|f|_{\infty}$ the sup norm of f.
It is fairly obvious that

$$
1 \leq A(n) \leq 2-1 / n
$$

Indeed, the left inequality follows on taking $P=Q^{2}$ with $Q(X)=1+X+$ $\ldots+X^{n-1}$, the right inequality is obtained by noting that $P \in \mathcal{P}(n)$ has at most $2 n-1$ nonzero coefficients, so that $|P|_{1} /|P|_{\infty} \leq 2 n-1$. In a similar way one sees that

$$
1 \leq B \leq 2
$$

Theorem 1. For natural n, l,
(i) $A(n) \leq A(n l)$,
(ii) $A(n) \leq B$,
(iii) $A(n)>B\left(1-6 n^{-1 / 3}\right)$.

[^0]It follows that

$$
B=\lim _{n \rightarrow \infty} A(n)=\sup _{n} A(n)
$$

The determination of B appears to be difficult.
Theorem 2. $4 / \pi \leq B<1.7373$.
A slightly better upper bound will in fact be proved. We should mention that Ben Green [1] showed in effect that

$$
\left(|f|_{1} /|f|_{2}\right)^{2}<7 / 4
$$

for $f \in \mathcal{F}$, where $|f|_{2}$ denotes the L^{2}-norm. In fact he has the slightly better bound 1.74998... Since $|f|_{2}^{2} \leq|f|_{1}|f|_{\infty}$, this yields $B<1.74998 \ldots$, which is only slightly weaker than the upper bound in Theorem 2. However, Green's result is valid without the assumption $g \geq 0$.

On the other hand, Prof. Stanisław Kwapień (private communication) proved that

$$
A(n) \geq B\left(1-3(B / 4)^{1 / 3} n^{-1 / 3}\right)
$$

2. Assertions (i), (ii) of Theorem 1. When R is a polynomial or power series $a_{0}+a_{1} X+\ldots$, set $|R|_{\infty}$ for the maximum modulus of its coefficients. For such R, and for a polynomial S,

$$
\begin{equation*}
|R S|_{\infty} \leq|R|_{\infty}|S|_{1} \tag{2.1}
\end{equation*}
$$

When $P \in \mathcal{P}(n)$, say $P=Q^{2}$, set

$$
\widetilde{Q}=\left(1+X+\ldots+X^{l-1}\right) Q\left(X^{l}\right) \quad \text { and } \quad \widetilde{P}=\widetilde{Q}^{2}
$$

Then $\operatorname{deg} \widetilde{Q} \leq l-1+l(n-1)=l n-1$, so that $\widetilde{P} \in \mathcal{P}(\ln)$. Further $|\widetilde{Q}|_{1}=l|Q|_{1}$, yielding

$$
\begin{equation*}
|\widetilde{P}|_{1}=|\widetilde{Q}|_{1}^{2}=l^{2}|Q|_{1}^{2}=l^{2}|P|_{1} \tag{2.2}
\end{equation*}
$$

For polynomials or series $R=a_{0}+a_{1} X+\ldots, S=b_{0}+b_{1} X+\ldots$ with nonnegative coefficients, write $R \preceq S$ if $a_{i} \leq b_{i}(i=0,1, \ldots)$. Then

$$
Q\left(X^{l}\right)^{2} \preceq\left|Q^{2}\right|_{\infty}\left(1+X^{l}+X^{2 l}+\ldots\right)=|P|_{\infty}\left(1+X^{l}+X^{2 l}+\ldots\right)
$$

Therefore

$$
\begin{aligned}
\widetilde{P} & =\left(1+X+\ldots+X^{l-1}\right)^{2} Q\left(X^{l}\right)^{2} \\
& \preceq|P|_{\infty}\left(1+X^{l}+X^{2 l}+\ldots\right)\left(1+X+\ldots+X^{l-1}\right)^{2} \\
& =|P|_{\infty}\left(1+X+X^{2}+\ldots\right)\left(1+X+\ldots+X^{l-1}\right)
\end{aligned}
$$

Now (2.1) gives $|\widetilde{P}|_{\infty} \leq|P|_{\infty} l$. Together with (2.2) this yields $n^{-1}|P|_{1} /|P|_{\infty}$ $\leq(l n)^{-1}|\widetilde{P}|_{1} /|\widetilde{P}|_{\infty} \leq A(n l)$. Assertion (i) follows.

We now turn to (ii). Let $P \in \mathcal{P}(n)$ be given, say $P=Q^{2}$ with $Q=$ $a_{0}+a_{1} X+\ldots+a_{n-1} X^{n-1}$. Let g be the function with support in $[0,1)$ having

$$
g(x)=a_{i} \quad \text { for } i / n \leq x<(i+1) / n \quad(i=0,1, \ldots, n-1)
$$

i.e., for $\lfloor n x\rfloor=i$. Then $|g|_{1}=n^{-1}|Q|_{1}$, so that $f=g * g$ has

$$
\begin{equation*}
|f|_{1}=n^{-2}\left|Q^{2}\right|_{1}=n^{-2}|P|_{1} \tag{2.3}
\end{equation*}
$$

Let x be given. The interval $I=[0,1)$ is the disjoint union of the intervals (possibly empty) $I_{i, j}(x)(i=0,1, \ldots, n-1 ; j \in \mathbb{Z})$ consisting of numbers y with

$$
\lfloor n y\rfloor=i, \quad\lfloor n(x-y)\rfloor=j-i .
$$

When $y \in I_{i, j}(x)$ and $0 \leq i^{\prime}<n$, then $y+\left(i^{\prime}-i\right) / n \in I_{i^{\prime}, j}(x)$. Therefore $I_{i, j}(x)$ has length independent of i; denote this length by $L_{j}(x)$. Clearly $L_{j}(x)=0$ unless $j=\lfloor n x\rfloor$ or $\lfloor n x-1\rfloor$. We have

$$
\begin{equation*}
1=\sum_{i=0}^{n-1} \sum_{j} L_{j}(x)=n \sum_{j} L_{j}(x) \tag{2.4}
\end{equation*}
$$

For $y \in I_{i, j}(x)$ with $0 \leq i<n$,

$$
g(y) g(x-y)= \begin{cases}a_{i} a_{j-i} & \text { when } j-n<i \leq j \\ 0 & \text { otherwise }\end{cases}
$$

Therefore

$$
\int_{I_{i, j}(x)} g(y) g(x-y) d y= \begin{cases}a_{i} a_{j-i} & \text { when } j-n<i \leq j \tag{2.5}\\ 0 & \text { otherwise }\end{cases}
$$

Now

$$
\sum_{i=0}^{j} a_{i} a_{j-i}=b_{j} \leq|P|_{\infty}
$$

where b_{j} is the coefficient of X^{j} in P. Taking the sum of (2.5) over $i=$ $0,1, \ldots, n-1$ and $j \in \mathbb{Z}$, and observing (2.4), we obtain

$$
f(x)=\int g(y) g(x-y) d y \leq|P|_{\infty} \sum_{j} L_{j}(x)=|P|_{\infty} / n
$$

Therefore $|f|_{\infty} \leq|P|_{\infty} / n$, so that in conjunction with (2.3),

$$
n^{-1}|P|_{1} /|P|_{\infty} \leq|f|_{1} /|f|_{\infty} \leq B
$$

Assertion (ii) follows.
3. Assertion (iii) of Theorem 1. Pick $f \in \mathcal{F}$ with $|f|_{1} /|f|_{\infty}$ close to B. We may suppose that $|f|_{\infty}=1$ and $|f|_{1}$ is close to B, in particular that $|f|_{1} \geq 1$. Say $f=g * g$. Then for $r<s$,

$$
\begin{align*}
\left(\int_{r}^{s} g(x) d x\right)^{2} & \leq \iint_{2 r \leq x+y \leq 2 s} g(x) g(y) d x d y \tag{3.1}\\
& =\int_{2 r}^{2 s} d z \int g(x) g(z-y) d y=\int_{2 r}^{2 s} f(z) d z \leq 2(s-r) .
\end{align*}
$$

Setting $G(y)=\int_{0}^{y} g(y) d y$, so that $G(y) \leq \sqrt{2 y}$, and using partial integration, we obtain

$$
\begin{equation*}
\int_{0}^{\delta}(\delta-x) g(x) d x=\int_{0}^{\delta} G(y) d y \leq \int_{0}^{\delta}(2 y)^{1 / 2} d y<\delta^{3 / 2} \tag{3.2}
\end{equation*}
$$

Similarly,

$$
\int_{1-\delta}^{1}(\delta-(1-x)) g(x) d x<\delta^{3 / 2}
$$

With $c \in \frac{1}{2} \mathbb{Z}$ in $1 \leq c \leq(n-1) / 2$ to be determined later, set

$$
a_{i}=\frac{n}{2 c} \int_{(i+1 / 2-c) / n}^{(i+1 / 2+c) / n} g(x) d x \quad(0 \leq i<n)
$$

and

$$
Q(X)=\sum_{i=0}^{n-1} a_{i} X^{i}
$$

Then

$$
|Q|_{1}=\sum_{i=0}^{n-1} a_{i}=\frac{n}{2 c} \int_{0}^{1} \nu(x) g(x) d x
$$

where $\nu(x)$ is the number of integers $i, 0 \leq i<n$, having $(i+1 / 2-c) / n \leq$ $x \leq(i+1 / 2+c) / n$. Then $\nu(x)$ is the number of integers i having

$$
\max (0, n x-1 / 2-c) \leq i \leq \min (n-1, n x-1 / 2+c) .
$$

When $(c+1 / 2) / n \leq x \leq 1-(c+1 / 2) / n$, this becomes the interval $n x-1 / 2$ $-c \leq i \leq n x-1 / 2+c$, so that $\nu(x) \geq 2 c$, as $c \in \frac{1}{2} \mathbb{Z}$. When $x<(c+1 / 2) / n$, the interval becomes $0 \leq i \leq n x-1 / 2+c$, and $\nu(x) \geq n x+c-1 / 2=$ $2 c-(c+1 / 2-n x)$. On the other hand when $x>1-(c+1 / 2) / n$, then $\nu(x) \geq 2 c-(c+1 / 2-n(1-x))$. Therefore

$$
\begin{align*}
|Q|_{1} \geq & n \int_{0}^{1} g(x) d x-\frac{n}{2 c} \int_{0}^{(c+1 / 2) / n}(c+1 / 2-n x) g(x) d x \tag{3.3}\\
& -\frac{n}{2 c} \int_{1-(c+1 / 2) / n}^{1}(c+1 / 2-n(1-x)) g(x) d x
\end{align*}
$$

Applying (3.2) with $\delta=(c+1 / 2) / n$ we obtain

$$
\begin{aligned}
\frac{n}{2 c} \int_{0}^{(c+1 / 2) / n}(c+1 / 2-n x) & g(x) d x \\
& <\frac{n^{2}}{2 c}((c+1 / 2) / n)^{3 / 2}<n((c+1 / 2) / n)^{1 / 2}
\end{aligned}
$$

The same bound applies to the last term on the right hand side of (3.3), so that

$$
|Q|_{1} \geq n|g|_{1}\left(1-2((c+1 / 2) / n)^{1 / 2} /|g|_{1}\right)
$$

Here $|g|_{1} \geq 1$ since $|f|_{1} \geq 1$.
The polynomial $P=Q^{2}$ lies in $\mathcal{P}(n)$ and has

$$
\begin{equation*}
|P|_{1} \geq n^{2}|f|_{1}\left(1-4((c+1 / 2) / n)^{1 / 2}\right) \tag{3.4}
\end{equation*}
$$

The coefficients of P are

$$
\begin{aligned}
b_{l} & =\sum_{i+j=l} a_{i} a_{j} \\
& =\left(\frac{n}{2 c}\right)^{2} \sum_{i+j=l} \int_{(i+1 / 2-c) / n}^{(i+1 / 2+c) / n} \int_{(j+1 / 2-c) / n}^{(j+1 / 2+c) / n} g(x) g(y) d x d y
\end{aligned}
$$

Setting $z=x+y$, so that $(l+1-2 c) / n \leq z \leq(l+1+2 c) / n$, we obtain

$$
b_{l}=\left(\frac{n}{2 c}\right)^{2} \int_{(l+1-2 c) / n}^{(l+1+2 c) / n} d z \int \mu(z, x) g(x) g(z-x) d x
$$

where $\mu(z, x)$ is the number of integers i in $0 \leq i \leq n-1$ with $(i+1 / 2-c) / n \leq$ $x \leq(i+1 / 2+c) / n$ and $(l-i+1 / 2-c) / n \leq z-x \leq(l-i+1 / 2+c) / n$. Thus $h=i-n x+1 / 2$ lies in the range

$$
\max (-c,-c+l+1-n z) \leq h \leq \min (c, c+l+1-n z)
$$

and $\mu(z, x) \leq \lambda(z)$, which is the length of the "interval" (possibly empty)

$$
\begin{equation*}
-c-1 / 2+\max (0, l+1-n z) \leq h \leq c+1 / 2+\min (0, l+1-n z) \tag{3.5}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
b_{l} & \leq\left(\frac{n}{2 c}\right)^{2} \int d z \lambda(z) \int g(x) g(z-x) d x \\
& =\left(\frac{n}{2 c}\right)^{2} \int \lambda(z) f(z) d z \leq\left(\frac{n}{2 c}\right)^{2} \int \lambda(z) d z
\end{aligned}
$$

But $\int \lambda(z) d z$ is the area of the domain in the (h, z)-plane given by (3.5). Here h is contained in an interval of length $2 c+1$, and given h, the variable z lies in an interval of length $\leq(2 c+1) / n$, so that

$$
b_{l} \leq\left(\frac{n}{2 c}\right)^{2} \frac{(2 c+1)^{2}}{n}=n\left(1+\frac{1}{2 c}\right)^{2}
$$

Therefore $|P|_{\infty} \leq n(1+1 /(2 c))^{2}$, and by (3.4),

$$
A(n) \geq \frac{1}{n}|P|_{1} /|P|_{\infty} \geq|f|_{1}\left(1-4\left(\left(c+\frac{1}{2}\right) / n\right)^{1 / 2}\right) /\left(1+\frac{1}{2 c}\right)^{2}
$$

We now pick $c \in \frac{1}{2} \mathbb{Z}$ with $n^{1 / 3}-1 \leq c<n^{1 / 3}-1 / 2$. When $n \geq 8$, which we may clearly suppose in proving assertion (iii), then $1 \leq n^{1 / 3} / 2 \leq c<$ $(n-1) / 2$. Since f may be chosen with $|f|_{1}$ arbitrarily close to B,

$$
A(n) \geq B\left(1-4 n^{-1 / 3}\right) /\left(1+n^{-1 / 3}\right)^{2}>B\left(1-6 n^{-1 / 3}\right) .
$$

4. The lower bound in Theorem 2. Set $f=g * g$ where $g(x)=x^{-1 / 2}$ in $0<x<1$, and $g(x)=0$ otherwise. Then $f \in \mathcal{F}$, and $|f|_{1}=|g|_{1}^{2}=4$. For $0<z \leq 2$,

$$
f(z)=\int(z-x)^{-1 / 2} x^{-1 / 2} d x
$$

with the range of integration $\max (0, z-1) \leq x \leq \min (1, z)$. Setting $x=y^{2} z$ we obtain

$$
f(z)=2 \int \frac{d y}{\left(1-y^{2}\right)^{1 / 2}}
$$

the integration being over $y \geq 0$ with $1-1 / z \leq y^{2} \leq \min (1 / z, 1)$. When $0<z \leq 1$, this range is $0 \leq y \leq 1$, so that $f(z)=\pi$, whereas in $1<z \leq 2$ the range is smaller, and $f(z)<\pi$. We may conclude that $|f|_{\infty}=\pi$, and $B \geq|f|_{1} /|f|_{\infty}=4 / \pi$.
5. The upper bound $B \leq 7 / 4$. The upper bound of Theorem 2 will be established in three stages. Here we will show that $B \leq 7 / 4=1.75$, and in the following stages we will prove that $B \leq 7 / 4-1 / 80=1.7375$, then that $B \leq 1.7373$.

Our problem is invariant under translations. To exhibit symmetry, we therefore redefine \mathcal{F} to consist of functions $f=g * g$ with g nonzero, nonnegative and integrable, with support in $[-1 / 2,1 / 2]$, so that f has support
in $[-1,1]$. We will suppose throughout that $f \in \mathcal{F}$ with $|f|_{\infty}=1$, and we will give upper bounds for $|f|_{1}$.

Lemma 1.

$$
\int_{1 / 2}^{1} f(z) f(-z) d z \leq 1 / 4
$$

As a consequence of this lemma,

$$
\begin{aligned}
|f|_{1} & =\int_{-1}^{1} f(z) d z=\int_{0}^{1}(f(z)+f(-z)) d z \leq 1+\int_{1 / 2}^{1}(f(z)+f(-z)) d z \\
& \leq 1+\int_{1 / 2}^{1}(1+f(z) f(-z)) d z \leq \frac{3}{2}+\frac{1}{4}=\frac{7}{4}
\end{aligned}
$$

so that indeed $B \leq 7 / 4$.

Proof of Lemma 1.

$$
\begin{equation*}
f(z)=(g * g)(z)=\int g(x) g(z-x) d x=2 \int_{\substack{x+y=z \\ x \leq y}} g(x) g(y) d x \tag{5.1}
\end{equation*}
$$

(It is to exhibit symmetry that we write y for $z-x$.) Similarly

$$
\begin{equation*}
f(-z)=2 \int_{\substack{u+v=-z \\ u \leq v}} g(u) g(v) d u \tag{5.2}
\end{equation*}
$$

Here x, y, u, v may be restricted to lie in $[1 / 2,-1 / 2]$. When $\delta \geq 0$ and $z \geq 1 / 2-\delta$, then $x=z-y \geq 1 / 2-\delta-1 / 2=-\delta$, also $v=-u-z \leq$ $1 / 2-1 / 2+\delta=\delta$, so that

$$
u \leq v \leq \delta, \quad-\delta \leq x \leq y
$$

We obtain

$$
\int_{1 / 2-\delta}^{1} f(z) f(-z) d z \leq 4 \int_{1 / 2-\delta}^{1} d z \int_{\substack{u \leq v \leq \delta \\-\delta \leq x \leq y \\ x+y=z \\ u+v=-z}} g(x) g(y) g(u) g(v) d x d u
$$

In this integral $u \leq-z / 2 \leq-1 / 4+\delta / 2$, and $y \geq z / 2 \geq 1 / 4-\delta / 2$. Setting $w=u+y=-x-v$ we have $w \leq u+1 / 2 \leq 1 / 4+\delta / 2$, and in fact $|w| \leq 1 / 4+\delta / 2$. Replacing the variables x, u, z in the above integral by
$x, y=z-x, w=u+z-x$, we obtain the bound

$$
4 \int_{-1 / 4-\delta / 2}^{1 / 4+\delta / 2} d w \int_{\substack{y+u=w \\ x+v=-w \\-\delta \leq x \leq y \\ u \leq v \leq \delta \\ x+y \geq 1 / 2-\delta}} g(x) g(y) g(u) g(v) d x d y
$$

Let us now take $\delta=0$. In this case

$$
\int_{1 / 2}^{1} f(z) f(-z) d z \leq 4 \int_{-1 / 4}^{1 / 4} d w \int_{\substack{x+v=-w \\ y+u=w \\ u \leq v \leq 0 \leq x \leq y}} g(x) g(y) g(u) g(v) d x d y
$$

Interchanging the rôles of the variables x, y, and as a result those of u, v, and replacing w by $-w$, we get an integral as before, except that the region $u \leq v \leq 0 \leq x \leq y$ is replaced by the region $v \leq u \leq 0 \leq y \leq x$. These regions are essentially disjoint, and are contained in $u \leq 0 \leq y, v \leq 0 \leq x$. We therefore obtain

$$
\begin{aligned}
& \leq 2 \int_{-1 / 4}^{1 / 4} d w\left(\int_{\substack{x+v=-w \\
v \leq 0 \leq x}} g(x) g(v) d x\right)\left(\int_{\substack{y+u=w \\
u \leq 0 \leq y}} g(y) g(u) d y\right) \\
& =2 \int_{-1 / 4}^{1 / 4} d w \widetilde{f}(w) \widetilde{f}(-w)
\end{aligned}
$$

with

$$
\begin{equation*}
\widetilde{f}(w)=\int_{\substack{y+u=w \\ u \leq 0 \leq y}} g(y) g(u) d y \tag{5.4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{1 / 2}^{1} f(z) f(-z) d z \leq 4 \int_{0}^{1 / 4} \widetilde{f}(w) \widetilde{f}(-w) d w \tag{5.5}
\end{equation*}
$$

It is clear from (5.1) and (5.4) that $\widetilde{f}(w) \leq f(w) / 2 \leq 1 / 2$, so that we obtain $\leq 1 / 4$, and Lemma 1 follows.
6. The upper bound $B \leq 1.7375$. With $f=g * g$ as above, and $\varepsilon= \pm 1$, set

$$
I_{\varepsilon}=\int_{0}^{1 / 8} g(\varepsilon x) d x, \quad J_{\varepsilon}=\iint_{\substack{\varepsilon y>0, \varepsilon u>0 \\ \varepsilon(y+u) \leq 1 / 4}} g(y) g(u) d y d u
$$

Lemma 2. (i) $\int_{1 / 2}^{1} f(z) f(-z) d z \leq 1 / 4-J_{\varepsilon}$.
(ii) For $0 \leq \delta \leq 1 / 6$,

$$
\int_{1 / 2-\delta}^{1} f(z) f(-z) d z \leq \frac{1}{4}+\frac{\delta}{2}+\left(\int_{-\delta}^{\delta} g(x) d x\right)^{2}
$$

As a consequence,

$$
\begin{align*}
|f|_{1} & =\int_{0}^{1}(f(z)+f(-z)) d z=\int_{0}^{1 / 2-\delta}+\int_{1 / 2-\delta}^{1} \tag{6.1}\\
& \leq 1-2 \delta+\int_{1 / 2-\delta}^{1}(1+f(z) f(-z)) d z \\
& \leq \frac{3}{2}-\delta+\int_{1 / 2-\delta}^{1} f(z) f(-z) d z \leq \frac{7}{4}-\frac{\delta}{2}+\left(\int_{-\delta}^{\delta} g(x) d x\right)^{2}
\end{align*}
$$

Setting $\delta=1 / 8$ we obtain

$$
\begin{equation*}
|f|_{1} \leq \frac{27}{16}+\left(I_{1}+I_{-1}\right)^{2} \leq \frac{27}{16}+4 M^{2} \tag{6.2}
\end{equation*}
$$

with $M=\max \left(I_{1}, I_{-1}\right)$. On the other hand by (i),

$$
\begin{equation*}
|f|_{1} \leq \frac{3}{2}+\int_{1 / 2}^{1} f(z) f(-z) d z \leq \frac{7}{4}-\max _{\varepsilon= \pm 1} J_{\varepsilon} \leq \frac{7}{4}-M^{2} \tag{6.3}
\end{equation*}
$$

In conjunction with (6.2) this gives $|f|_{1} \leq 7 / 4-1 / 80=1.7375$, so that indeed $B \leq 1.7375$.

Proof of Lemma 2. When $w>0$, we cannot have $y+u=w$ and $u \leq$ $y<0$. Therefore $\widetilde{f}(w)$ as given by (5.4) is

$$
\widetilde{f}(w)=\int_{\substack{y+u=w \\ u \leq y}} g(y) g(u) d y-\int_{\substack{y+u=w \\ 0 \leq u \leq y}} g(y) g(u) d y=\frac{1}{2} f(w)-\frac{1}{2} \widehat{f}(w)
$$

with

$$
\widehat{f}(w)=\int_{\substack{y+u=w \\ y, u \geq 0}} g(y) g(u) d y
$$

Now (5.5) yields

$$
\int_{1 / 2}^{1} f(z) f(-z) d z \leq \int_{0}^{1 / 4}(f(w)-\widehat{f}(w)) f(-w) d w \leq \int_{0}^{1 / 4}(1-\widehat{f}(w)) d w
$$

$$
\begin{aligned}
& =\frac{1}{4}-\int_{0}^{1 / 4} d w \int_{\substack{y+u=w \\
y, u \geq 0}} g(y) g(u) d y \\
& =\frac{1}{4}-\int_{\substack{y, u \geq 0 \\
y+u \leq 1 / 4}} g(y) g(u) d y d u=\frac{1}{4}-J_{1} .
\end{aligned}
$$

The bound $1 / 4-J_{-1}$ is obtained similarly, so that assertion (i) is established.
We will now suppose $\delta>0$, and we return to the bound (5.3). We first deal with the part where $v \leq x$ in the integral, so that

$$
\begin{equation*}
u \leq v \leq x \leq y \tag{6.4}
\end{equation*}
$$

After interchanging the rôles of x and y, and of u and v, and replacing w by $-w$, the integrand will be the same, but now

$$
\begin{equation*}
v \leq u \leq y \leq x \tag{6.5}
\end{equation*}
$$

The interiors of the domains (6.4), (6.5) are disjoint, and are contained in the region with $v \leq x$ and $u \leq y$, so that this part of (5.3) is

$$
\begin{aligned}
(6.6) & \leq 2 \int_{-1 / 4-\delta / 2}^{1 / 4+\delta / 2} d w\left(\int_{\substack{x+v=-w \\
v \leq x}} g(x) g(v) d x\right)\left(\int_{\substack{y+u=w \\
u \leq y}} g(y) g(u) d y\right) \\
& =\frac{1}{2} \int_{-1 / 4-\delta / 2}^{1 / 4+\delta / 2} d w f(-w) f(w)=\int_{0}^{1 / 4+\delta / 2} f(w) f(-w) d w \leq 1 / 4+\delta / 2
\end{aligned}
$$

It remains for us to deal with the part of (5.3) where $x \leq v$ in the integral, so that $-\delta \leq x \leq v \leq \delta$. This part is

$$
\leq 4 \int d w \int_{\substack{x+v=-w \\-\delta \leq x \leq v \leq \delta}} g(x) g(v) d x \int_{\substack{y+u=w \\ y \geq 1 / 2-\delta-x \\ u \leq \delta}} g(y) g(u) d y
$$

When $0<\delta \leq 1 / 6$, then $y \geq 1 / 2-2 \delta \geq \delta \geq u$, and the last integral is

$$
\leq \int_{\substack{y+u=w \\ u \leq y}} g(y) g(u) d y=f(w) / 2 \leq 1 / 2
$$

Therefore the part in question of (5.3) becomes

$$
\leq 2 \int d w \int_{\substack{x+v=-w \\-\delta \leq x \leq v \leq \delta}} g(x) g(v) d x=\int d w \int_{\substack{x+v=-w \\-\delta \leq x, v \leq \delta}} g(x) g(v) d x=\left(\int_{-\delta}^{\delta} g(x) d x\right)^{2}
$$

Together with (6.6) this gives the asserted bound for $\int_{1 / 2-\delta}^{1} f(z) f(-z) d z$.
7. The upper bound 1.7373. In fact we will show that

$$
\begin{equation*}
B \leq 7 / 4-1 / 80-\xi<1.7373 \tag{7.1}
\end{equation*}
$$

where $\xi=0.000200513 \ldots$ is a root of the transcendental equation

$$
F(b(x) / a(x))=1 / 2
$$

where $a(x)=1 / 10-2 x, b(x)=(\sqrt{1 / 20-x}-\sqrt{1 / 80+x})^{2} / 2$, and

$$
F(x)=\sqrt{x^{2}+x}+\log \left(\sqrt{x^{2}+x}+\sqrt{x}\right)
$$

The calculation of ξ has kindly been performed by Dr. A. Pokrzywa.
We will suppose that $f \in \mathcal{F},|f|_{\infty}=1$ and

$$
\begin{equation*}
|f|_{1}>7 / 4-1 / 80-\xi \tag{7.2}
\end{equation*}
$$

and we will reach a contradiction, thereby establishing the truth of (7.1), and hence of Theorem 2.

Retaining earlier notation we now set $a=a(\xi)$,

$$
u=I_{1}+I_{-1}, \quad v=\left|I_{1}-I_{-1}\right|, \quad m=\min \left(I_{1}, I_{-1}\right)=(u-v) / 2
$$

and observe that $M=\max \left(I_{1}, I_{-1}\right)=(u+v) / 2$. Also, u_{0}, u_{1} will be the positive numbers with

$$
u_{0}^{2}=1 / 20-\xi=a / 2, \quad u_{1}^{2}=1 / 20+4 \xi
$$

We may suppose that

$$
\begin{equation*}
u \geq u_{0} \tag{7.3}
\end{equation*}
$$

for otherwise (6.2) yields $|f|_{1} \leq 27 / 16+u_{0}^{2}=7 / 4-1 / 80-\xi$, against (7.2). We further may suppose that

$$
\begin{equation*}
u+v \leq u_{1} \tag{7.4}
\end{equation*}
$$

for otherwise (6.3) yields $|f|_{1} \leq 7 / 4-u_{1}^{2} / 4=7 / 4-1 / 80-\xi$, contradicting (7.2). As a consequence,

$$
\begin{aligned}
2 u^{2}-m^{2} / 2 & =2 u^{2}-(u-v)^{2} / 8=3 u^{2} / 2+u(u+v) / 2-(u+v)^{2} / 8 \\
& \leq 3 u^{2} / 2+3 u(u+v) / 8 \leq 15 u_{1}^{2} / 8<1 / 10-2 \xi=a
\end{aligned}
$$

so that

$$
\begin{equation*}
0=2 u_{0}^{2}-a \leq 2 u^{2}-a<m^{2} / 2 \tag{7.5}
\end{equation*}
$$

Lemma 3.

$$
\frac{7}{4}-|f|_{1} \geq \frac{1}{4}\left(u^{2}+v^{2}\right)+\int_{2 u^{2}-a}^{m^{2} / 2}(\sqrt{(\eta+a) / 2}-u) \frac{d \eta}{\sqrt{2 \eta}}
$$

Proof. By (6.1) and (7.2),

$$
1 / 80+\xi>\delta / 2-\left(\int_{-\delta}^{\delta} g(x) d x\right)^{2}
$$

for δ in $0<\delta<1 / 6$. Setting $\delta=1 / 8+\eta$ with $0<\eta<1 / 24$, this gives

$$
\left(\int_{-1 / 8-\eta}^{1 / 8+\eta} g(x) d x\right)^{2}>\eta / 2+1 / 20-\xi=(\eta+a) / 2,
$$

and

$$
\begin{equation*}
G(\eta):=\int_{1 / 8}^{1 / 8+\eta}(g(x)+g(-x)) d x>\sqrt{(\eta+a) / 2}-u . \tag{7.6}
\end{equation*}
$$

On the other hand by (6.3) and (7.2), and since $m^{2} / 2 \leq u^{2} / 8 \leq u_{1}^{2} / 8<$ $1 / 24<1 / 8$,

$$
\begin{aligned}
\frac{1}{80}+\xi & >\frac{1}{2} \sum_{\varepsilon= \pm 1} J_{\varepsilon}=\frac{1}{2}\left(I_{1}^{2}+I_{-1}^{2}+2 \sum_{\varepsilon= \pm 1} \int_{1 / 8}^{1 / 4} g(\varepsilon x) d x \int_{0}^{1 / 4-x} g(\varepsilon y) d y\right) \\
& \geq \frac{1}{2}\left(\frac{u^{2}+v^{2}}{2}+2 \sum_{\varepsilon= \pm 1} \int_{1 / 8}^{1 / 8+m^{2} / 2} g(\varepsilon x) d x \int_{0}^{1 / 4-x} g(\varepsilon y) d y\right) \\
& =\frac{1}{4}\left(u^{2}+v^{2}\right)+\sum_{\varepsilon= \pm 1} \int_{0}^{m^{2} / 2} g(\varepsilon / 8+\varepsilon \eta) d \eta \int_{0}^{1 / 8-\eta} g(\varepsilon y) d y .
\end{aligned}
$$

By (3.1) with $r=1 / 8-\eta, s=1 / 8$,

$$
\int_{0}^{1 / 8-\eta} g(\varepsilon y) d y=I_{\varepsilon}-\int_{1 / 8-\eta}^{1 / 8} g(\varepsilon y) d y \geq I_{\varepsilon}-\sqrt{2 \eta} \geq m-\sqrt{2 \eta} .
$$

Thus

$$
\begin{aligned}
\frac{1}{80}+\xi & >\frac{1}{4}\left(u^{2}+v^{2}\right)+\sum_{\varepsilon= \pm 1} \int_{0}^{m^{2} / 2} g(\varepsilon / 8+\varepsilon \eta)(m-\sqrt{2 \eta}) d \eta \\
& =\frac{1}{4}\left(u^{2}+v^{2}\right)+\int_{0}^{m^{2} / 2}(g(1 / 8+\eta)+g(-1 / 8-\eta))(m-\sqrt{2 \eta}) d \eta .
\end{aligned}
$$

Integrating by parts we represent the last integral as

$$
\int_{0}^{m^{2} / 2} G(\eta) \frac{d \eta}{\sqrt{2 \eta}} \geq \int_{2 u^{2}-a}^{m^{2} / 2} G(\eta) \frac{d \eta}{\sqrt{2 \eta}} .
$$

Since $m^{2} / 2<1 / 24$ we may apply (7.6) to obtain the lemma.

Lemma 4. In the domain of points (u, v) with (7.3), (7.4), $v \geq 0$, the function

$$
H(u, v)=\frac{1}{4}\left(u^{2}+v^{2}\right)+\int_{2 u^{2}-a}^{\frac{1}{2}\left(\frac{u-v)}{2}\right)^{2}}(\sqrt{(\eta+a) / 2}-u) \frac{d \eta}{\sqrt{2 \eta}}
$$

satisfies $H(u, v) \geq H\left(u_{0}, u_{1}-u_{0}\right)$.
Proof.

$$
2 H(u, v)=\frac{1}{2}\left(u^{2}+v^{2}\right)+\int_{2 u^{2}-a}^{\frac{1}{2}\left(\frac{u-v}{2}\right)^{2}} \sqrt{\frac{\eta+a}{\eta}} d \eta-u(u-v)+2 u \sqrt{4 u^{2}-2 a}
$$

Hence

$$
\begin{aligned}
2 \frac{\partial H(u, v)}{\partial v} & =v+u+\left(\frac{(u-v)^{2}+8 a}{(u-v)^{2}}\right)^{1 / 2} \cdot \frac{v-u}{4} \\
& =v+u-\frac{1}{4}\left((u-v)^{2}+8 a\right)^{1 / 2}
\end{aligned}
$$

We claim that this partial derivative is ≤ 0 in our domain. For otherwise $16(u+v)^{2}-\left((u-v)^{2}+8 a\right)>0$, or $15(u+v)^{2}+4 u v-8 a>0$. But $u+v \leq u_{1}$ and $4 u v \leq 4 u\left(u_{1}-u\right) \leq 4 u_{0}\left(u_{1}-u_{0}\right)$ since $u \geq u_{0}>u_{1} / 2$. Therefore $15 u_{1}^{2}+4 u_{0} u_{1}-4 u_{0}^{2}-8 a>0$. Substituting the values for a, u_{0}, u_{1} gives

$$
4 u_{0} u_{1} \geq 1 / 4-80 \xi
$$

Squaring, we get

$$
16(1 / 20+4 \xi)(1 / 20-\xi)>(1 / 4-80 \xi)^{2}
$$

which is not true. Thus our claim is proven, and

$$
\begin{equation*}
H(u, v) \geq H\left(u, u_{1}-u\right) \tag{7.7}
\end{equation*}
$$

Next,

$$
2 H\left(u, u_{1}-u\right)=-u^{2}+\frac{1}{2} u_{1}^{2}+\int_{2 u^{2}-a}^{\frac{1}{2}\left(\frac{2 u-u_{1}}{2}\right)^{2}} \sqrt{\frac{\eta+a}{\eta}} d \eta+2 u \sqrt{4 u^{2}-2 a}
$$

so that

$$
\begin{aligned}
2 \frac{d}{d u} H\left(u, u_{1}-u\right)= & -2 u+\left(\frac{\left(2 u-u_{1}\right)^{2}+8 a}{\left(2 u-u_{1}\right)^{2}}\right)^{1 / 2} \cdot \frac{2 u-u_{1}}{2} \\
& -\left(\frac{2 u^{2}}{2 u^{2}-a}\right)^{1 / 2} \cdot 4 u \\
& +2\left(4 u^{2}-2 a\right)^{1 / 2}+8 u^{2}\left(4 u^{2}-2 a\right)^{-1 / 2} \\
= & -2 u+\frac{1}{2} \sqrt{\left(2 u-u_{1}\right)^{2}+8 a}+2 \sqrt{4 u^{2}-2 a}
\end{aligned}
$$

We claim that this derivative is ≥ 0 for $u_{0} \leq u \leq u_{1}$. For otherwise $16 u^{2} \geq$ $\left(2 u-u_{1}\right)^{2}+8 a$, so that $12 u^{2}+4 u u_{1}-u_{1}^{2}>8 a$. But this entails $15 u_{1}^{2}>8 a$, i.e.,

$$
15(1 / 20+4 \xi)>4 / 5+16 \xi
$$

which is not true. Thus our claim is correct, and

$$
H\left(u, u_{1}-u\right) \geq H\left(u_{0}, u_{1}-u_{0}\right)
$$

which together with (7.7) establishes the lemma.
It is now easy to arrive at the desired contradiction to (7.2). By Lemmas 3 and 4,

$$
\begin{aligned}
7 / 4-|f|_{1} & \geq H\left(u_{0}, u_{1}-u_{0}\right) \\
& =\frac{1}{4}\left(u_{0}^{2}+\left(u_{1}-u_{0}\right)^{2}\right)+\int_{2 u_{0}^{2}-a}^{\frac{1}{2}\left(u_{0}-\frac{1}{2} u_{1}\right)^{2}}\left(\frac{1}{2} \sqrt{\frac{\eta+a}{\eta}}-\frac{u_{0}}{\sqrt{2 \eta}}\right) d \eta
\end{aligned}
$$

Here $2 u_{0}^{2}-a=0$ and $\frac{1}{2}\left(u_{0}-\frac{1}{2} u_{1}\right)^{2}=b(\xi)=b$, say, and

$$
\int_{0}^{x} \sqrt{\frac{\eta+a}{\eta}} d \eta=a F(x / a), \quad \int_{0}^{x} \frac{d \eta}{\sqrt{2 \eta}}=\sqrt{2 x}
$$

Therefore

$$
\begin{aligned}
7 / 4-|f|_{1} & \geq \frac{1}{4}\left(2 u_{0}^{2}-2 u_{0} u_{1}+u_{1}^{2}\right)+\frac{a}{2} F(b / a)-u_{0}\left(u_{0}-u_{1} / 2\right) \\
& =-u_{0}^{2} / 2+u_{1}^{2} / 4+\frac{a}{2} F(b / a)=-\frac{1}{80}+\frac{3}{2} \xi+\frac{a}{2} F(b / a)=1 / 80+\xi
\end{aligned}
$$

contrary to (7.2).
Added in proof. Dr. Erik Bajalinov has checked that for $n \leq 26$ and $n=31,36,41$, 46, 51: $A(n)<4 / \pi$, which suggests that $B=4 / \pi$.

References

[1] B. Green, The number of squares and $B_{h}[g]$ sets, Acta Arith. 100 (2001), 365-390.

Institute of Mathematics
Polish Academy of Sciences
P.O. Box 137

00-950 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

[^0]: 2000 Mathematics Subject Classification: 26C05, 26D15.
 The second author partially supported by NSF-DMS 0074531.

