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1. Introduction. Let P(n) be the set of polynomials P (X) = Q(X)2

where Q is a nonzero polynomial of degree < n with nonnegative real coef-
ficients. We are interested in

A(n) = n−1 sup
P∈P(n)

|P |1/|P |∞,

where |P |1 is the sum, and |P |∞ the maximum of the coefficients of P . Let
F be the set of functions f = g ∗ g where ∗ denotes convolution and g runs
through nonnegative, not identically zero, integrable functions with support
in [0, 1]. Functions in F have support in [0, 2]. We set

B = sup
f∈F

|f |1/|f |∞

where |f |1 is the L1-norm and |f |∞ the sup norm of f .
It is fairly obvious that

1 ≤ A(n) ≤ 2− 1/n.

Indeed, the left inequality follows on taking P = Q2 with Q(X) = 1 +X +
. . .+Xn−1, the right inequality is obtained by noting that P ∈ P(n) has at
most 2n − 1 nonzero coefficients, so that |P |1/|P |∞ ≤ 2n − 1. In a similar
way one sees that

1 ≤ B ≤ 2.

Theorem 1. For natural n, l,

(i) A(n) ≤ A(nl),
(ii) A(n) ≤ B,
(iii) A(n) > B(1− 6n−1/3).
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It follows that

B = lim
n→∞

A(n) = sup
n
A(n).

The determination of B appears to be difficult.

Theorem 2. 4/π ≤ B < 1.7373.

A slightly better upper bound will in fact be proved. We should mention
that Ben Green [1] showed in effect that

(|f |1/|f |2)2 < 7/4

for f ∈ F, where |f |2 denotes the L2-norm. In fact he has the slightly better
bound 1.74998. . . Since |f |22 ≤ |f |1|f |∞, this yields B < 1.74998 . . . , which is
only slightly weaker than the upper bound in Theorem 2. However, Green’s
result is valid without the assumption g ≥ 0.

On the other hand, Prof. Stanisław Kwapień (private communication)
proved that

A(n) ≥ B(1− 3(B/4)1/3n−1/3).

2. Assertions (i), (ii) of Theorem 1. When R is a polynomial or
power series a0 + a1X + . . . , set |R|∞ for the maximum modulus of its
coefficients. For such R, and for a polynomial S,

(2.1) |RS|∞ ≤ |R|∞|S|1.
When P ∈ P(n), say P = Q2, set

Q̃ = (1 +X + . . .+X l−1)Q(X l) and P̃ = Q̃2.

Then deg Q̃ ≤ l−1+l(n−1) = ln−1, so that P̃ ∈ P(ln). Further |Q̃|1 = l|Q|1,
yielding

(2.2) |P̃ |1 = |Q̃|21 = l2|Q|21 = l2|P |1.
For polynomials or series R = a0 + a1X + . . . , S = b0 + b1X + . . . with
nonnegative coefficients, write R � S if ai ≤ bi (i = 0, 1, . . .). Then

Q(X l)2 � |Q2|∞(1 +X l +X2l + . . .) = |P |∞(1 +X l +X2l + . . .).

Therefore

P̃ = (1 +X + . . .+X l−1)2Q(X l)2

� |P |∞(1 +X l +X2l + . . .)(1 +X + . . .+X l−1)2

= |P |∞(1 +X +X2 + . . .)(1 +X + . . .+X l−1).
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Now (2.1) gives |P̃ |∞ ≤ |P |∞l. Together with (2.2) this yields n−1|P |1/|P |∞
≤ (ln)−1|P̃ |1/|P̃ |∞ ≤ A(nl). Assertion (i) follows.

We now turn to (ii). Let P ∈ P(n) be given, say P = Q2 with Q =
a0 + a1X + . . . + an−1X

n−1. Let g be the function with support in [0, 1)
having

g(x) = ai for i/n ≤ x < (i+ 1)/n (i = 0, 1, . . . , n− 1),

i.e., for bnxc = i. Then |g|1 = n−1|Q|1, so that f = g ∗ g has

(2.3) |f |1 = n−2|Q2|1 = n−2|P |1.
Let x be given. The interval I = [0, 1) is the disjoint union of the intervals

(possibly empty) Ii,j(x) (i = 0, 1, . . . , n− 1; j ∈ Z) consisting of numbers y
with

bnyc = i, bn(x− y)c = j − i.
When y ∈ Ii,j(x) and 0 ≤ i′ < n, then y + (i′ − i)/n ∈ Ii′,j(x). Therefore
Ii,j(x) has length independent of i; denote this length by Lj(x). Clearly
Lj(x) = 0 unless j = bnxc or bnx− 1c. We have

(2.4) 1 =
n−1∑

i=0

∑

j

Lj(x) = n
∑

j

Lj(x).

For y ∈ Ii,j(x) with 0 ≤ i < n,

g(y)g(x− y) =
{
aiaj−i when j − n < i ≤ j,
0 otherwise.

Therefore

(2.5)
�

Ii,j(x)

g(y)g(x− y) dy =
{
aiaj−i when j − n < i ≤ j,
0 otherwise.

Now
j∑

i=0

aiaj−i = bj ≤ |P |∞,

where bj is the coefficient of Xj in P . Taking the sum of (2.5) over i =
0, 1, . . . , n− 1 and j ∈ Z, and observing (2.4), we obtain

f(x) =
�
g(y)g(x− y) dy ≤ |P |∞

∑

j

Lj(x) = |P |∞/n.

Therefore |f |∞ ≤ |P |∞/n, so that in conjunction with (2.3),

n−1|P |1/|P |∞ ≤ |f |1/|f |∞ ≤ B.
Assertion (ii) follows.
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3. Assertion (iii) of Theorem 1. Pick f ∈ F with |f |1/|f |∞ close to
B. We may suppose that |f |∞ = 1 and |f |1 is close to B, in particular that
|f |1 ≥ 1. Say f = g ∗ g. Then for r < s,

( s�

r

g(x) dx
)2
≤

� �

2r≤x+y≤2s

g(x)g(y) dx dy(3.1)

=
2s�

2r

dz
�
g(x)g(z − y) dy =

2s�

2r

f(z) dz ≤ 2(s− r).

SettingG(y) =
� y
0 g(y) dy, so thatG(y) ≤ √2y, and using partial integration,

we obtain

(3.2)
δ�

0

(δ − x)g(x) dx =
δ�

0

G(y) dy ≤
δ�

0

(2y)1/2 dy < δ3/2.

Similarly,
1�

1−δ
(δ − (1− x))g(x) dx < δ3/2.

With c ∈ 1
2Z in 1 ≤ c ≤ (n− 1)/2 to be determined later, set

ai =
n

2c

(i+1/2+c)/n�

(i+1/2−c)/n
g(x) dx (0 ≤ i < n)

and

Q(X) =
n−1∑

i=0

aiX
i.

Then

|Q|1 =
n−1∑

i=0

ai =
n

2c

1�

0

ν(x)g(x) dx

where ν(x) is the number of integers i, 0 ≤ i < n, having (i+ 1/2− c)/n ≤
x ≤ (i+ 1/2 + c)/n. Then ν(x) is the number of integers i having

max(0, nx− 1/2− c) ≤ i ≤ min(n− 1, nx− 1/2 + c).

When (c+ 1/2)/n ≤ x ≤ 1− (c+ 1/2)/n, this becomes the interval nx−1/2
− c ≤ i ≤ nx−1/2+ c, so that ν(x) ≥ 2c, as c ∈ 1

2Z. When x < (c+1/2)/n,
the interval becomes 0 ≤ i ≤ nx − 1/2 + c, and ν(x) ≥ nx + c − 1/2 =
2c − (c + 1/2 − nx). On the other hand when x > 1 − (c + 1/2)/n, then
ν(x) ≥ 2c− (c+ 1/2− n(1− x)). Therefore
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|Q|1 ≥ n
1�

0

g(x) dx− n

2c

(c+1/2)/n�

0

(c+ 1/2− nx)g(x) dx(3.3)

− n

2c

1�

1−(c+1/2)/n

(c+ 1/2− n(1− x))g(x) dx.

Applying (3.2) with δ = (c+ 1/2)/n we obtain

n

2c

(c+1/2)/n�

0

(c+ 1/2− nx)g(x) dx

<
n2

2c
((c+ 1/2)/n)3/2 < n((c+ 1/2)/n)1/2.

The same bound applies to the last term on the right hand side of (3.3), so
that

|Q|1 ≥ n|g|1(1− 2((c+ 1/2)/n)1/2/|g|1).

Here |g|1 ≥ 1 since |f |1 ≥ 1.
The polynomial P = Q2 lies in P(n) and has

(3.4) |P |1 ≥ n2|f |1(1− 4((c+ 1/2)/n)1/2).

The coefficients of P are

bl =
∑

i+j=l

aiaj

=
(
n

2c

)2 ∑

i+j=l

(i+1/2+c)/n�

(i+1/2−c)/n

(j+1/2+c)/n�

(j+1/2−c)/n
g(x)g(y) dx dy.

Setting z = x+ y, so that (l + 1− 2c)/n ≤ z ≤ (l + 1 + 2c)/n, we obtain

bl =
(
n

2c

)2 (l+1+2c)/n�

(l+1−2c)/n

dz
�
µ(z, x)g(x)g(z − x) dx

where µ(z, x) is the number of integers i in 0 ≤ i ≤ n−1 with (i+1/2−c)/n ≤
x ≤ (i+ 1/2 + c)/n and (l − i + 1/2 − c)/n ≤ z − x ≤ (l − i + 1/2 + c)/n.
Thus h = i− nx+ 1/2 lies in the range

max(−c,−c+ l + 1− nz) ≤ h ≤ min(c, c+ l + 1− nz),

and µ(z, x) ≤ λ(z), which is the length of the “interval” (possibly empty)

(3.5) −c− 1/2 + max(0, l + 1− nz) ≤ h ≤ c+ 1/2 + min(0, l + 1− nz).
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Therefore

bl ≤
(
n

2c

)2 �
dz λ(z)

�
g(x)g(z − x) dx

=
(
n

2c

)2 �
λ(z)f(z) dz ≤

(
n

2c

)2 �
λ(z) dz.

But
�
λ(z) dz is the area of the domain in the (h, z)-plane given by (3.5).

Here h is contained in an interval of length 2c+ 1, and given h, the variable
z lies in an interval of length ≤ (2c+ 1)/n, so that

bl ≤
(
n

2c

)2 (2c+ 1)2

n
= n

(
1 +

1
2c

)2

.

Therefore |P |∞ ≤ n(1 + 1/(2c))2, and by (3.4),

A(n) ≥ 1
n
|P |1/|P |∞ ≥ |f |1

(
1− 4

((
c+

1
2

)/
n

)1/2)/(
1 +

1
2c

)2

.

We now pick c ∈ 1
2Z with n1/3− 1 ≤ c < n1/3− 1/2. When n ≥ 8, which

we may clearly suppose in proving assertion (iii), then 1 ≤ n1/3/2 ≤ c <
(n− 1)/2. Since f may be chosen with |f |1 arbitrarily close to B,

A(n) ≥ B(1− 4n−1/3)/(1 + n−1/3)2 > B(1− 6n−1/3).

4. The lower bound in Theorem 2. Set f = g∗g where g(x) = x−1/2

in 0 < x < 1, and g(x) = 0 otherwise. Then f ∈ F, and |f |1 = |g|21 = 4. For
0 < z ≤ 2,

f(z) =
�
(z − x)−1/2x−1/2 dx,

with the range of integration max(0, z−1) ≤ x ≤ min(1, z). Setting x = y2z
we obtain

f(z) = 2
� dy

(1− y2)1/2
,

the integration being over y ≥ 0 with 1 − 1/z ≤ y2 ≤ min(1/z, 1). When
0 < z ≤ 1, this range is 0 ≤ y ≤ 1, so that f(z) = π, whereas in 1 < z ≤ 2
the range is smaller, and f(z) < π. We may conclude that |f |∞ = π, and
B ≥ |f |1/|f |∞ = 4/π.

5. The upper bound B ≤ 7/4. The upper bound of Theorem 2 will
be established in three stages. Here we will show that B ≤ 7/4 = 1.75, and
in the following stages we will prove that B ≤ 7/4 − 1/80 = 1.7375, then
that B ≤ 1.7373.

Our problem is invariant under translations. To exhibit symmetry, we
therefore redefine F to consist of functions f = g ∗ g with g nonzero, non-
negative and integrable, with support in [−1/2, 1/2], so that f has support
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in [−1, 1]. We will suppose throughout that f ∈ F with |f |∞ = 1, and we
will give upper bounds for |f |1.

Lemma 1.
1�

1/2

f(z)f(−z) dz ≤ 1/4.

As a consequence of this lemma,

|f |1 =
1�

−1

f(z) dz =
1�

0

(f(z) + f(−z)) dz ≤ 1 +
1�

1/2

(f(z) + f(−z)) dz

≤ 1 +
1�

1/2

(1 + f(z)f(−z)) dz ≤ 3
2

+
1
4

=
7
4
,

so that indeed B ≤ 7/4.

Proof of Lemma 1.

(5.1) f(z) = (g ∗ g)(z) =
�
g(x)g(z − x) dx = 2

�

x+y=z
x≤y

g(x)g(y) dx.

(It is to exhibit symmetry that we write y for z − x.) Similarly

(5.2) f(−z) = 2
�

u+v=−z
u≤v

g(u)g(v) du.

Here x, y, u, v may be restricted to lie in [1/2,−1/2]. When δ ≥ 0 and
z ≥ 1/2 − δ, then x = z − y ≥ 1/2 − δ − 1/2 = −δ, also v = −u − z ≤
1/2− 1/2 + δ = δ, so that

u ≤ v ≤ δ, −δ ≤ x ≤ y.

We obtain
1�

1/2−δ
f(z)f(−z) dz ≤ 4

1�

1/2−δ
dz

� �

u≤v≤δ
−δ≤x≤y
x+y=z
u+v=−z

g(x)g(y)g(u)g(v) dx du.

In this integral u ≤ −z/2 ≤ −1/4 + δ/2, and y ≥ z/2 ≥ 1/4− δ/2. Setting
w = u + y = −x − v we have w ≤ u + 1/2 ≤ 1/4 + δ/2, and in fact
|w| ≤ 1/4 + δ/2. Replacing the variables x, u, z in the above integral by
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x, y = z − x, w = u+ z − x, we obtain the bound

(5.3) 4
1/4+δ/2�

−1/4−δ/2
dw

� �

y+u=w
x+v=−w
−δ≤x≤y
u≤v≤δ

x+y≥1/2−δ

g(x)g(y)g(u)g(v) dx dy.

Let us now take δ = 0. In this case
1�

1/2

f(z)f(−z) dz ≤ 4
1/4�

−1/4

dw
� �

x+v=−w
y+u=w

u≤v≤0≤x≤y

g(x)g(y)g(u)g(v) dx dy.

Interchanging the rôles of the variables x, y, and as a result those of u, v,
and replacing w by −w, we get an integral as before, except that the region
u ≤ v ≤ 0 ≤ x ≤ y is replaced by the region v ≤ u ≤ 0 ≤ y ≤ x. These
regions are essentially disjoint, and are contained in u ≤ 0 ≤ y, v ≤ 0 ≤ x.
We therefore obtain

≤ 2
1/4�

−1/4

dw
( �

x+v=−w
v≤0≤x

g(x)g(v) dx
)( �

y+u=w
u≤0≤y

g(y)g(u) dy
)

= 2
1/4�

−1/4

dw f̃(w)f̃(−w)

with

(5.4) f̃(w) =
�

y+u=w
u≤0≤y

g(y)g(u) dy.

Thus

(5.5)
1�

1/2

f(z)f(−z) dz ≤ 4
1/4�

0

f̃(w)f̃(−w) dw.

It is clear from (5.1) and (5.4) that f̃(w) ≤ f(w)/2 ≤ 1/2, so that we obtain
≤ 1/4, and Lemma 1 follows.

6. The upper bound B ≤ 1.7375. With f = g ∗ g as above, and
ε = ±1, set

Iε =
1/8�

0

g(εx) dx, Jε =
� �

εy>0, εu>0
ε(y+u)≤1/4

g(y)g(u) dy du.
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Lemma 2. (i)
� 1
1/2 f(z)f(−z) dz ≤ 1/4− Jε.

(ii) For 0 ≤ δ ≤ 1/6,

1�

1/2−δ
f(z)f(−z) dz ≤ 1

4
+
δ

2
+
( δ�

−δ
g(x) dx

)2
.

As a consequence,

|f |1 =
1�

0

(f(z) + f(−z)) dz =
1/2−δ�

0

+
1�

1/2−δ
(6.1)

≤ 1− 2δ +
1�

1/2−δ
(1 + f(z)f(−z)) dz

≤ 3
2
− δ +

1�

1/2−δ
f(z)f(−z) dz ≤ 7

4
− δ

2
+
( δ�

−δ
g(x) dx

)2
.

Setting δ = 1/8 we obtain

(6.2) |f |1 ≤
27
16

+ (I1 + I−1)2 ≤ 27
16

+ 4M2

with M = max(I1, I−1). On the other hand by (i),

(6.3) |f |1 ≤
3
2

+
1�

1/2

f(z)f(−z) dz ≤ 7
4
− max
ε=±1

Jε ≤
7
4
−M2.

In conjunction with (6.2) this gives |f |1 ≤ 7/4 − 1/80 = 1.7375, so that
indeed B ≤ 1.7375.

Proof of Lemma 2. When w > 0, we cannot have y + u = w and u ≤
y < 0. Therefore f̃(w) as given by (5.4) is

f̃(w) =
�

y+u=w
u≤y

g(y)g(u) dy −
�

y+u=w
0≤u≤y

g(y)g(u) dy =
1
2
f(w)− 1

2
f̂(w)

with
f̂(w) =

�

y+u=w
y,u≥0

g(y)g(u) dy.

Now (5.5) yields

1�

1/2

f(z)f(−z) dz ≤
1/4�

0

(f(w)− f̂(w))f(−w) dw ≤
1/4�

0

(1− f̂(w)) dw
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=
1
4
−

1/4�

0

dw
�

y+u=w
y,u≥0

g(y)g(u) dy

=
1
4
−

� �

y,u≥0
y+u≤1/4

g(y)g(u) dy du =
1
4
− J1.

The bound 1/4−J−1 is obtained similarly, so that assertion (i) is established.
We will now suppose δ > 0, and we return to the bound (5.3). We first

deal with the part where v ≤ x in the integral, so that

(6.4) u ≤ v ≤ x ≤ y.
After interchanging the rôles of x and y, and of u and v, and replacing w
by −w, the integrand will be the same, but now

(6.5) v ≤ u ≤ y ≤ x.
The interiors of the domains (6.4), (6.5) are disjoint, and are contained in
the region with v ≤ x and u ≤ y, so that this part of (5.3) is

≤ 2
1/4+δ/2�

−1/4−δ/2
dw
( �

x+v=−w
v≤x

g(x)g(v) dx
)( �

y+u=w
u≤y

g(y)g(u) dy
)

(6.6)

=
1
2

1/4+δ/2�

−1/4−δ/2
dw f(−w)f(w) =

1/4+δ/2�

0

f(w)f(−w) dw ≤ 1/4 + δ/2.

It remains for us to deal with the part of (5.3) where x ≤ v in the integral,
so that −δ ≤ x ≤ v ≤ δ. This part is

≤ 4
�
dw

�

x+v=−w
−δ≤x≤v≤δ

g(x)g(v) dx
�

y+u=w
y≥1/2−δ−x

u≤δ

g(y)g(u) dy.

When 0 < δ ≤ 1/6, then y ≥ 1/2− 2δ ≥ δ ≥ u, and the last integral is

≤
�

y+u=w
u≤y

g(y)g(u) dy = f(w)/2 ≤ 1/2.

Therefore the part in question of (5.3) becomes

≤ 2
�
dw

�

x+v=−w
−δ≤x≤v≤δ

g(x)g(v) dx =
�
dw

�

x+v=−w
−δ≤x,v≤δ

g(x)g(v) dx =
( δ�

−δ
g(x) dx

)2
.

Together with (6.6) this gives the asserted bound for
� 1
1/2−δ f(z)f(−z) dz.
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7. The upper bound 1.7373. In fact we will show that

(7.1) B ≤ 7/4− 1/80− ξ < 1.7373

where ξ = 0.000200513 . . . is a root of the transcendental equation

F (b(x)/a(x)) = 1/2,

where a(x) = 1/10− 2x, b(x) = (
√

1/20− x−
√

1/80 + x)2/2, and

F (x) =
√
x2 + x+ log(

√
x2 + x+

√
x).

The calculation of ξ has kindly been performed by Dr. A. Pokrzywa.
We will suppose that f ∈ F, |f |∞ = 1 and

(7.2) |f |1 > 7/4− 1/80− ξ,
and we will reach a contradiction, thereby establishing the truth of (7.1),
and hence of Theorem 2.

Retaining earlier notation we now set a = a(ξ),

u = I1 + I−1, v = |I1 − I−1|, m = min(I1, I−1) = (u− v)/2,

and observe that M = max(I1, I−1) = (u + v)/2. Also, u0, u1 will be the
positive numbers with

u2
0 = 1/20− ξ = a/2, u2

1 = 1/20 + 4ξ.

We may suppose that

(7.3) u ≥ u0,

for otherwise (6.2) yields |f |1 ≤ 27/16 + u2
0 = 7/4− 1/80− ξ, against (7.2).

We further may suppose that

(7.4) u+ v ≤ u1,

for otherwise (6.3) yields |f |1 ≤ 7/4− u2
1/4 = 7/4− 1/80− ξ, contradicting

(7.2). As a consequence,

2u2 −m2/2 = 2u2 − (u− v)2/8 = 3u2/2 + u(u+ v)/2− (u+ v)2/8

≤ 3u2/2 + 3u(u+ v)/8 ≤ 15u2
1/8 < 1/10− 2ξ = a,

so that

(7.5) 0 = 2u2
0 − a ≤ 2u2 − a < m2/2.

Lemma 3.

7
4
− |f |1 ≥

1
4

(u2 + v2) +
m2/2�

2u2−a
(
√

(η + a)/2− u)
dη√
2η
.
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Proof. By (6.1) and (7.2),

1/80 + ξ > δ/2−
( δ�

−δ
g(x) dx

)2

for δ in 0 < δ < 1/6. Setting δ = 1/8 + η with 0 < η < 1/24, this gives

( 1/8+η�

−1/8−η
g(x) dx

)2
> η/2 + 1/20− ξ = (η + a)/2,

and

(7.6) G(η) :=
1/8+η�

1/8

(g(x) + g(−x)) dx >
√

(η + a)/2− u.

On the other hand by (6.3) and (7.2), and since m2/2 ≤ u2/8 ≤ u2
1/8 <

1/24 < 1/8,

1
80

+ ξ >
1
2

∑

ε=±1

Jε =
1
2

(
I2
1 + I2

−1 + 2
∑

ε=±1

1/4�

1/8

g(εx) dx
1/4−x�

0

g(εy) dy
)

≥ 1
2

(
u2 + v2

2
+ 2

∑

ε=±1

1/8+m2/2�

1/8

g(εx) dx
1/4−x�

0

g(εy) dy
)

=
1
4

(u2 + v2) +
∑

ε=±1

m2/2�

0

g(ε/8 + εη) dη
1/8−η�

0

g(εy) dy.

By (3.1) with r = 1/8− η, s = 1/8,
1/8−η�

0

g(εy) dy = Iε −
1/8�

1/8−η
g(εy) dy ≥ Iε −

√
2η ≥ m−

√
2η.

Thus

1
80

+ ξ >
1
4

(u2 + v2) +
∑

ε=±1

m2/2�

0

g(ε/8 + εη)(m−
√

2η) dη

=
1
4

(u2 + v2) +
m2/2�

0

(g(1/8 + η) + g(−1/8− η))(m−
√

2η) dη.

Integrating by parts we represent the last integral as
m2/2�

0

G(η)
dη√
2η
≥

m2/2�

2u2−a
G(η)

dη√
2η
.

Since m2/2 < 1/24 we may apply (7.6) to obtain the lemma.
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Lemma 4. In the domain of points (u, v) with (7.3), (7.4), v ≥ 0, the
function

H(u, v) =
1
4

(u2 + v2) +

1
2 (u−v)

2 )2

�

2u2−a
(
√

(η + a)/2− u)
dη√
2η

satisfies H(u, v) ≥ H(u0, u1 − u0).

Proof.

2H(u, v) =
1
2

(u2 + v2) +

1
2 (u−v2 )2

�

2u2−a

√
η + a

η
dη − u(u− v) + 2u

√
4u2 − 2a.

Hence

2
∂H(u, v)

∂v
= v + u+

(
(u− v)2 + 8a

(u− v)2

)1/2

· v − u
4

= v + u− 1
4

((u− v)2 + 8a)1/2.

We claim that this partial derivative is ≤ 0 in our domain. For otherwise
16(u+v)2−((u−v)2 +8a) > 0, or 15(u+v)2 +4uv−8a > 0. But u+v ≤ u1

and 4uv ≤ 4u(u1 − u) ≤ 4u0(u1 − u0) since u ≥ u0 > u1/2. Therefore
15u2

1 + 4u0u1 − 4u2
0 − 8a > 0. Substituting the values for a, u0, u1 gives

4u0u1 ≥ 1/4− 80ξ.

Squaring, we get

16(1/20 + 4ξ)(1/20− ξ) > (1/4− 80ξ)2,

which is not true. Thus our claim is proven, and

(7.7) H(u, v) ≥ H(u, u1 − u).

Next,

2H(u, u1 − u) = −u2 +
1
2
u2

1 +

1
2 ( 2u−u1

2 )2

�

2u2−a

√
η + a

η
dη + 2u

√
4u2 − 2a,

so that

2
d

du
H(u, u1 − u) = − 2u+

(
(2u− u1)2 + 8a

(2u− u1)2

)1/2

· 2u− u1

2

−
(

2u2

2u2 − a

)1/2

· 4u

+ 2(4u2 − 2a)1/2 + 8u2(4u2 − 2a)−1/2

= − 2u+
1
2

√
(2u− u1)2 + 8a+ 2

√
4u2 − 2a.
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We claim that this derivative is ≥ 0 for u0 ≤ u ≤ u1. For otherwise 16u2 ≥
(2u− u1)2 + 8a, so that 12u2 + 4uu1 − u2

1 > 8a. But this entails 15u2
1 > 8a,

i.e.,
15(1/20 + 4ξ) > 4/5 + 16ξ,

which is not true. Thus our claim is correct, and

H(u, u1 − u) ≥ H(u0, u1 − u0),

which together with (7.7) establishes the lemma.

It is now easy to arrive at the desired contradiction to (7.2). By Lemmas
3 and 4,

7/4− |f |1 ≥ H(u0, u1 − u0)

=
1
4

(u2
0 + (u1 − u0)2) +

1
2 (u0− 1

2u1)2

�

2u2
0−a

(
1
2

√
η + a

η
− u0√

2η

)
dη.

Here 2u2
0 − a = 0 and 1

2

(
u0 − 1

2u1
)2

= b(ξ) = b, say, and
x�

0

√
η + a

η
dη = aF (x/a),

x�

0

dη√
2η

=
√

2x.

Therefore

7/4− |f |1 ≥
1
4

(2u2
0 − 2u0u1 + u2

1) +
a

2
F (b/a)− u0(u0 − u1/2)

= −u2
0/2 + u2

1/4 +
a

2
F (b/a) = − 1

80
+

3
2
ξ +

a

2
F (b/a) = 1/80 + ξ,

contrary to (7.2).
Added in proof. Dr. Erik Bajalinov has checked that for n ≤ 26 and n = 31, 36, 41,

46, 51: A(n) < 4/π, which suggests that B = 4/π.
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