Comparison of L^1 - and L^{∞} -norms of squares of polynomials

by

A. SCHINZEL (Warszawa) and W. M. SCHMIDT (Boulder, CO)

1. Introduction. Let $\mathcal{P}(n)$ be the set of polynomials $P(X) = Q(X)^2$ where Q is a nonzero polynomial of degree < n with nonnegative real coefficients. We are interested in

$$A(n) = n^{-1} \sup_{P \in \mathcal{P}(n)} |P|_1 / |P|_{\infty},$$

where $|P|_1$ is the sum, and $|P|_{\infty}$ the maximum of the coefficients of P. Let \mathcal{F} be the set of functions f = g * g where * denotes convolution and g runs through nonnegative, not identically zero, integrable functions with support in [0, 1]. Functions in \mathcal{F} have support in [0, 2]. We set

$$B = \sup_{f \in \mathcal{F}} |f|_1 / |f|_\infty$$

where $|f|_1$ is the L^1 -norm and $|f|_{\infty}$ the sup norm of f.

It is fairly obvious that

$$1 \le A(n) \le 2 - 1/n.$$

Indeed, the left inequality follows on taking $P = Q^2$ with $Q(X) = 1 + X + \dots + X^{n-1}$, the right inequality is obtained by noting that $P \in \mathcal{P}(n)$ has at most 2n - 1 nonzero coefficients, so that $|P|_1/|P|_{\infty} \leq 2n - 1$. In a similar way one sees that

$$1 \leq B \leq 2.$$

THEOREM 1. For natural n, l,

(i) $A(n) \le A(nl)$, (ii) $A(n) \le B$, (iii) $A(n) > B(1 - 6n^{-1/3})$.

2000 Mathematics Subject Classification: 26C05, 26D15.

The second author partially supported by NSF-DMS 0074531.

It follows that

$$B = \lim_{n \to \infty} A(n) = \sup_{n} A(n).$$

The determination of B appears to be difficult.

THEOREM 2. $4/\pi \le B < 1.7373$.

A slightly better upper bound will in fact be proved. We should mention that Ben Green [1] showed in effect that

$$(|f|_1/|f|_2)^2 < 7/4$$

for $f \in \mathcal{F}$, where $|f|_2$ denotes the L^2 -norm. In fact he has the slightly better bound 1.74998... Since $|f|_2^2 \leq |f|_1 |f|_\infty$, this yields B < 1.74998..., which is only slightly weaker than the upper bound in Theorem 2. However, Green's result is valid without the assumption $g \geq 0$.

On the other hand, Prof. Stanisław Kwapień (private communication) proved that

$$A(n) \ge B(1 - 3(B/4)^{1/3}n^{-1/3}).$$

2. Assertions (i), (ii) of Theorem 1. When R is a polynomial or power series $a_0 + a_1X + \ldots$, set $|R|_{\infty}$ for the maximum modulus of its coefficients. For such R, and for a polynomial S,

$$(2.1) |RS|_{\infty} \le |R|_{\infty} |S|_1.$$

When $P \in \mathfrak{P}(n)$, say $P = Q^2$, set

$$\widetilde{Q} = (1 + X + \ldots + X^{l-1})Q(X^l)$$
 and $\widetilde{P} = \widetilde{Q}^2$.

Then deg $\widetilde{Q} \leq l-1+l(n-1) = ln-1$, so that $\widetilde{P} \in \mathcal{P}(ln)$. Further $|\widetilde{Q}|_1 = l|Q|_1$, yielding

(2.2)
$$|\widetilde{P}|_1 = |\widetilde{Q}|_1^2 = l^2 |Q|_1^2 = l^2 |P|_1.$$

For polynomials or series $R = a_0 + a_1 X + \dots$, $S = b_0 + b_1 X + \dots$ with nonnegative coefficients, write $R \leq S$ if $a_i \leq b_i$ $(i = 0, 1, \dots)$. Then

$$Q(X^l)^2 \leq |Q^2|_{\infty}(1 + X^l + X^{2l} + \ldots) = |P|_{\infty}(1 + X^l + X^{2l} + \ldots).$$

Therefore

$$\widetilde{P} = (1 + X + \dots + X^{l-1})^2 Q(X^l)^2$$

$$\leq |P|_{\infty} (1 + X^l + X^{2l} + \dots) (1 + X + \dots + X^{l-1})^2$$

$$= |P|_{\infty} (1 + X + X^2 + \dots) (1 + X + \dots + X^{l-1}).$$

Now (2.1) gives $|\widetilde{P}|_{\infty} \leq |P|_{\infty}l$. Together with (2.2) this yields $n^{-1}|P|_1/|P|_{\infty} \leq (ln)^{-1}|\widetilde{P}|_1/|\widetilde{P}|_{\infty} \leq A(nl)$. Assertion (i) follows.

We now turn to (ii). Let $P \in \mathcal{P}(n)$ be given, say $P = Q^2$ with $Q = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1}$. Let g be the function with support in [0, 1) having

$$g(x) = a_i$$
 for $i/n \le x < (i+1)/n$ $(i = 0, 1, ..., n-1),$

i.e., for $\lfloor nx \rfloor = i$. Then $|g|_1 = n^{-1}|Q|_1$, so that f = g * g has

(2.3)
$$|f|_1 = n^{-2} |Q^2|_1 = n^{-2} |P|_1.$$

Let x be given. The interval I = [0, 1) is the disjoint union of the intervals (possibly empty) $I_{i,j}(x)$ $(i = 0, 1, ..., n - 1; j \in \mathbb{Z})$ consisting of numbers y with

$$\lfloor ny \rfloor = i, \quad \lfloor n(x-y) \rfloor = j-i$$

When $y \in I_{i,j}(x)$ and $0 \leq i' < n$, then $y + (i' - i)/n \in I_{i',j}(x)$. Therefore $I_{i,j}(x)$ has length independent of i; denote this length by $L_j(x)$. Clearly $L_j(x) = 0$ unless $j = \lfloor nx \rfloor$ or $\lfloor nx - 1 \rfloor$. We have

(2.4)
$$1 = \sum_{i=0}^{n-1} \sum_{j} L_j(x) = n \sum_{j} L_j(x).$$

For $y \in I_{i,j}(x)$ with $0 \le i < n$,

$$g(y)g(x-y) = \begin{cases} a_i a_{j-i} & \text{when } j-n < i \le j, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore

(2.5)
$$\int_{I_{i,j}(x)} g(y)g(x-y) \, dy = \begin{cases} a_i a_{j-i} & \text{when } j-n < i \le j, \\ 0 & \text{otherwise.} \end{cases}$$

Now

$$\sum_{i=0}^{j} a_i a_{j-i} = b_j \le |P|_{\infty},$$

where b_j is the coefficient of X^j in P. Taking the sum of (2.5) over $i = 0, 1, \ldots, n-1$ and $j \in \mathbb{Z}$, and observing (2.4), we obtain

$$f(x) = \int g(y)g(x-y) \, dy \le |P|_{\infty} \sum_{j} L_j(x) = |P|_{\infty}/n.$$

Therefore $|f|_{\infty} \leq |P|_{\infty}/n$, so that in conjunction with (2.3),

$$n^{-1}|P|_1/|P|_{\infty} \le |f|_1/|f|_{\infty} \le B.$$

Assertion (ii) follows.

3. Assertion (iii) of Theorem 1. Pick $f \in \mathcal{F}$ with $|f|_1/|f|_{\infty}$ close to B. We may suppose that $|f|_{\infty} = 1$ and $|f|_1$ is close to B, in particular that $|f|_1 \ge 1$. Say f = g * g. Then for r < s,

(3.1)
$$\left(\int_{r}^{s} g(x) dx\right)^{2} \leq \iint_{2r \leq x+y \leq 2s} g(x)g(y) dx dy$$

= $\int_{2r}^{2s} dz \int g(x)g(z-y) dy = \int_{2r}^{2s} f(z) dz \leq 2(s-r).$

Setting $G(y) = \int_0^y g(y) \, dy$, so that $G(y) \le \sqrt{2y}$, and using partial integration, we obtain

(3.2)
$$\int_{0}^{\delta} (\delta - x)g(x) \, dx = \int_{0}^{\delta} G(y) \, dy \le \int_{0}^{\delta} (2y)^{1/2} \, dy < \delta^{3/2}.$$

Similarly,

$$\int_{1-\delta}^{1} (\delta - (1-x))g(x) \, dx < \delta^{3/2}.$$

With $c \in \frac{1}{2}\mathbb{Z}$ in $1 \leq c \leq (n-1)/2$ to be determined later, set

$$a_i = \frac{n}{2c} \int_{(i+1/2-c)/n}^{(i+1/2+c)/n} g(x) \, dx \quad (0 \le i < n)$$

and

$$Q(X) = \sum_{i=0}^{n-1} a_i X^i.$$

Then

$$|Q|_1 = \sum_{i=0}^{n-1} a_i = \frac{n}{2c} \int_0^1 \nu(x) g(x) \, dx$$

where $\nu(x)$ is the number of integers $i, 0 \le i < n$, having $(i + 1/2 - c)/n \le x \le (i + 1/2 + c)/n$. Then $\nu(x)$ is the number of integers i having

$$\max(0, nx - 1/2 - c) \le i \le \min(n - 1, nx - 1/2 + c).$$

When $(c+1/2)/n \le x \le 1 - (c+1/2)/n$, this becomes the interval nx - 1/2 $-c \le i \le nx - 1/2 + c$, so that $\nu(x) \ge 2c$, as $c \in \frac{1}{2}\mathbb{Z}$. When x < (c+1/2)/n, the interval becomes $0 \le i \le nx - 1/2 + c$, and $\nu(x) \ge nx + c - 1/2 = 2c - (c+1/2 - nx)$. On the other hand when x > 1 - (c+1/2)/n, then $\nu(x) \ge 2c - (c+1/2 - n(1-x))$. Therefore

(3.3)
$$|Q|_{1} \ge n \int_{0}^{1} g(x) \, dx - \frac{n}{2c} \int_{0}^{(c+1/2)/n} (c+1/2 - nx)g(x) \, dx$$
$$- \frac{n}{2c} \int_{1-(c+1/2)/n}^{1} (c+1/2 - n(1-x))g(x) \, dx.$$

Applying (3.2) with $\delta = (c + 1/2)/n$ we obtain

$$\frac{n}{2c} \int_{0}^{(c+1/2)/n} (c+1/2 - nx)g(x) \, dx$$

$$< \frac{n^2}{2c} ((c+1/2)/n)^{3/2} < n((c+1/2)/n)^{1/2}.$$

The same bound applies to the last term on the right hand side of (3.3), so that

$$|Q|_1 \ge n|g|_1(1 - 2((c + 1/2)/n)^{1/2}/|g|_1).$$

Here $|g|_1 \ge 1$ since $|f|_1 \ge 1$.

The polynomial $P = Q^2$ lies in $\mathfrak{P}(n)$ and has

(3.4)
$$|P|_1 \ge n^2 |f|_1 (1 - 4((c+1/2)/n)^{1/2}).$$

The coefficients of P are

$$b_{l} = \sum_{i+j=l} a_{i}a_{j}$$

$$= \left(\frac{n}{2c}\right)^{2} \sum_{i+j=l} \int_{(i+1/2-c)/n}^{(i+1/2+c)/n} \int_{(j+1/2-c)/n}^{(j+1/2+c)/n} g(x)g(y) \, dx \, dy.$$

Setting z = x + y, so that $(l + 1 - 2c)/n \le z \le (l + 1 + 2c)/n$, we obtain

$$b_{l} = \left(\frac{n}{2c}\right)^{2} \int_{(l+1-2c)/n}^{(l+1+2c)/n} dz \int \mu(z,x) g(x) g(z-x) \, dx$$

where $\mu(z, x)$ is the number of integers i in $0 \le i \le n-1$ with $(i+1/2-c)/n \le x \le (i+1/2+c)/n$ and $(l-i+1/2-c)/n \le z-x \le (l-i+1/2+c)/n$. Thus h = i - nx + 1/2 lies in the range

$$\max(-c, -c + l + 1 - nz) \le h \le \min(c, c + l + 1 - nz),$$

and $\mu(z, x) \leq \lambda(z)$, which is the length of the "interval" (possibly empty) (3.5) $-c - 1/2 + \max(0, l+1 - nz) \leq h \leq c + 1/2 + \min(0, l+1 - nz).$ Therefore

$$b_l \leq \left(\frac{n}{2c}\right)^2 \int dz \,\lambda(z) \int g(x)g(z-x) \,dx$$
$$= \left(\frac{n}{2c}\right)^2 \int \lambda(z)f(z) \,dz \leq \left(\frac{n}{2c}\right)^2 \int \lambda(z) \,dz$$

But $\int \lambda(z) dz$ is the area of the domain in the (h, z)-plane given by (3.5). Here h is contained in an interval of length 2c + 1, and given h, the variable z lies in an interval of length $\leq (2c + 1)/n$, so that

$$b_l \le \left(\frac{n}{2c}\right)^2 \frac{(2c+1)^2}{n} = n\left(1 + \frac{1}{2c}\right)^2.$$

Therefore $|P|_{\infty} \le n(1 + 1/(2c))^2$, and by (3.4),

$$A(n) \ge \frac{1}{n} |P|_1 / |P|_{\infty} \ge |f|_1 \left(1 - 4\left(\left(c + \frac{1}{2}\right) / n\right)^{1/2} \right) / \left(1 + \frac{1}{2c}\right)^2.$$

We now pick $c \in \frac{1}{2}\mathbb{Z}$ with $n^{1/3} - 1 \leq c < n^{1/3} - 1/2$. When $n \geq 8$, which we may clearly suppose in proving assertion (iii), then $1 \leq n^{1/3}/2 \leq c < (n-1)/2$. Since f may be chosen with $|f|_1$ arbitrarily close to B,

$$A(n) \ge B(1 - 4n^{-1/3})/(1 + n^{-1/3})^2 > B(1 - 6n^{-1/3}).$$

4. The lower bound in Theorem 2. Set f = g * g where $g(x) = x^{-1/2}$ in 0 < x < 1, and g(x) = 0 otherwise. Then $f \in \mathcal{F}$, and $|f|_1 = |g|_1^2 = 4$. For $0 < z \le 2$,

$$f(z) = \int (z - x)^{-1/2} x^{-1/2} \, dx,$$

with the range of integration $\max(0, z-1) \le x \le \min(1, z)$. Setting $x = y^2 z$ we obtain

$$f(z) = 2\int \frac{dy}{(1-y^2)^{1/2}},$$

the integration being over $y \ge 0$ with $1 - 1/z \le y^2 \le \min(1/z, 1)$. When $0 < z \le 1$, this range is $0 \le y \le 1$, so that $f(z) = \pi$, whereas in $1 < z \le 2$ the range is smaller, and $f(z) < \pi$. We may conclude that $|f|_{\infty} = \pi$, and $B \ge |f|_1/|f|_{\infty} = 4/\pi$.

5. The upper bound $B \leq 7/4$. The upper bound of Theorem 2 will be established in three stages. Here we will show that $B \leq 7/4 = 1.75$, and in the following stages we will prove that $B \leq 7/4 - 1/80 = 1.7375$, then that $B \leq 1.7373$.

Our problem is invariant under translations. To exhibit symmetry, we therefore redefine \mathcal{F} to consist of functions f = g * g with g nonzero, non-negative and integrable, with support in [-1/2, 1/2], so that f has support

in [-1, 1]. We will suppose throughout that $f \in \mathcal{F}$ with $|f|_{\infty} = 1$, and we will give upper bounds for $|f|_1$.

Lemma 1.

$$\int_{1/2}^{1} f(z)f(-z) \, dz \le 1/4.$$

As a consequence of this lemma,

$$\begin{split} |f|_1 &= \int_{-1}^1 f(z) \, dz = \int_0^1 (f(z) + f(-z)) \, dz \le 1 + \int_{1/2}^1 (f(z) + f(-z)) \, dz \\ &\le 1 + \int_{1/2}^1 (1 + f(z)f(-z)) \, dz \le \frac{3}{2} + \frac{1}{4} = \frac{7}{4}, \end{split}$$

so that indeed $B \leq 7/4$.

Proof of Lemma 1.

(5.1)
$$f(z) = (g * g)(z) = \int g(x)g(z - x) \, dx = 2 \int_{\substack{x+y=z\\x \le y}} g(x)g(y) \, dx.$$

(It is to exhibit symmetry that we write y for z - x.) Similarly

(5.2)
$$f(-z) = 2 \int_{\substack{u+v=-z \\ u \le v}} g(u)g(v) \, du.$$

Here x, y, u, v may be restricted to lie in [1/2, -1/2]. When $\delta \ge 0$ and $z \ge 1/2 - \delta$, then $x = z - y \ge 1/2 - \delta - 1/2 = -\delta$, also $v = -u - z \le 1/2 - 1/2 + \delta = \delta$, so that

$$u \le v \le \delta, \quad -\delta \le x \le y.$$

We obtain

$$\int_{1/2-\delta}^{1} f(z)f(-z) \, dz \le 4 \int_{1/2-\delta}^{1} dz \, \iint_{\substack{u \le v \le \delta \\ -\delta \le x \le y \\ x+y=z \\ u+v=-z}} g(x)g(y)g(u)g(v) \, dx \, du.$$

In this integral $u \leq -z/2 \leq -1/4 + \delta/2$, and $y \geq z/2 \geq 1/4 - \delta/2$. Setting w = u + y = -x - v we have $w \leq u + 1/2 \leq 1/4 + \delta/2$, and in fact $|w| \leq 1/4 + \delta/2$. Replacing the variables x, u, z in the above integral by

x, y = z - x, w = u + z - x, we obtain the bound

(5.3)
$$4 \int_{-1/4-\delta/2}^{1/4+\delta/2} dw \iint_{\substack{y+u=w\\x+v=-w\\-\delta \le x \le y\\u \le v \le \delta\\x+y \ge 1/2-\delta}} g(x)g(y)g(u)g(v) \, dx \, dy.$$

Let us now take $\delta = 0$. In this case

$$\int_{1/2}^{1} f(z)f(-z) \, dz \le 4 \int_{-1/4}^{1/4} dw \, \iint_{\substack{x+v=-w \\ y+u=w \\ u \le v \le 0 \le x \le y}} g(x)g(y)g(u)g(v) \, dx \, dy.$$

Interchanging the rôles of the variables x, y, and as a result those of u, v, and replacing w by -w, we get an integral as before, except that the region $u \leq v \leq 0 \leq x \leq y$ is replaced by the region $v \leq u \leq 0 \leq y \leq x$. These regions are essentially disjoint, and are contained in $u \leq 0 \leq y, v \leq 0 \leq x$. We therefore obtain

$$\leq 2 \int_{-1/4}^{1/4} dw \Big(\int_{\substack{x+v=-w\\v\leq 0\leq x}} g(x)g(v) \, dx \Big) \Big(\int_{\substack{y+u=w\\u\leq 0\leq y}} g(y)g(u) \, dy \Big)$$
$$= 2 \int_{-1/4}^{1/4} dw \, \widetilde{f}(w) \widetilde{f}(-w)$$

with

(5.4)
$$\widetilde{f}(w) = \int_{\substack{y+u=w\\u\leq 0\leq y}} g(y)g(u)\,dy.$$

Thus

(5.5)
$$\int_{1/2}^{1} f(z)f(-z) \, dz \le 4 \int_{0}^{1/4} \widetilde{f}(w)\widetilde{f}(-w) \, dw.$$

It is clear from (5.1) and (5.4) that $\tilde{f}(w) \leq f(w)/2 \leq 1/2$, so that we obtain $\leq 1/4$, and Lemma 1 follows.

6. The upper bound $B \leq 1.7375$. With f = g * g as above, and $\varepsilon = \pm 1$, set

$$I_{\varepsilon} = \int_{0}^{1/8} g(\varepsilon x) \, dx, \qquad J_{\varepsilon} = \iint_{\substack{\varepsilon y > 0, \, \varepsilon u > 0 \\ \varepsilon(y+u) \le 1/4}} g(y)g(u) \, dy \, du.$$

LEMMA 2. (i)
$$\int_{1/2}^{1} f(z)f(-z) dz \le 1/4 - J_{\varepsilon}$$
.
(ii) For $0 \le \delta \le 1/6$,
 $\int_{1/2-\delta}^{1} f(z)f(-z) dz \le \frac{1}{4} + \frac{\delta}{2} + \left(\int_{-\delta}^{\delta} g(x) dx\right)^{2}$.

As a consequence,

(6.1)
$$|f|_{1} = \int_{0}^{1} (f(z) + f(-z)) dz = \int_{0}^{1/2-\delta} + \int_{1/2-\delta}^{1} \\ \leq 1 - 2\delta + \int_{1/2-\delta}^{1} (1 + f(z)f(-z)) dz \\ \leq \frac{3}{2} - \delta + \int_{1/2-\delta}^{1} f(z)f(-z) dz \leq \frac{7}{4} - \frac{\delta}{2} + \left(\int_{-\delta}^{\delta} g(x) dx\right)^{2}.$$

Setting $\delta = 1/8$ we obtain

(6.2)
$$|f|_1 \le \frac{27}{16} + (I_1 + I_{-1})^2 \le \frac{27}{16} + 4M^2$$

with $M = \max(I_1, I_{-1})$. On the other hand by (i),

(6.3)
$$|f|_1 \le \frac{3}{2} + \int_{1/2}^1 f(z)f(-z) \, dz \le \frac{7}{4} - \max_{\varepsilon = \pm 1} J_{\varepsilon} \le \frac{7}{4} - M^2.$$

In conjunction with (6.2) this gives $|f|_1 \le 7/4 - 1/80 = 1.7375$, so that indeed $B \le 1.7375$.

Proof of Lemma 2. When w > 0, we cannot have y + u = w and $u \le y < 0$. Therefore $\tilde{f}(w)$ as given by (5.4) is

$$\widetilde{f}(w) = \int_{\substack{y+u=w\\u\leq y}} g(y)g(u)\,dy - \int_{\substack{y+u=w\\0\leq u\leq y}} g(y)g(u)\,dy = \frac{1}{2}f(w) - \frac{1}{2}\widehat{f}(w)$$

with

$$\widehat{f}(w) = \int_{\substack{y+u=w\\y,u \ge 0}} g(y)g(u) \, dy.$$

Now (5.5) yields

$$\int_{1/2}^{1} f(z)f(-z) \, dz \le \int_{0}^{1/4} (f(w) - \widehat{f}(w))f(-w) \, dw \le \int_{0}^{1/4} (1 - \widehat{f}(w)) \, dw$$

A. Schinzel and W. M. Schmidt

$$= \frac{1}{4} - \int_{0}^{1/4} dw \int_{\substack{y+u=w\\y,u\ge0}} g(y)g(u) \, dy$$
$$= \frac{1}{4} - \iint_{\substack{y,u\ge0\\y+u\le1/4}} g(y)g(u) \, dy \, du = \frac{1}{4} - J_1.$$

The bound $1/4-J_{-1}$ is obtained similarly, so that assertion (i) is established.

We will now suppose $\delta > 0$, and we return to the bound (5.3). We first deal with the part where $v \leq x$ in the integral, so that

$$(6.4) u \le v \le x \le y.$$

After interchanging the rôles of x and y, and of u and v, and replacing w by -w, the integrand will be the same, but now

$$(6.5) v \le u \le y \le x$$

The interiors of the domains (6.4), (6.5) are disjoint, and are contained in the region with $v \leq x$ and $u \leq y$, so that this part of (5.3) is

$$(6.6) \leq 2 \int_{-1/4-\delta/2}^{1/4+\delta/2} dw \Big(\int_{\substack{x+v=-w\\v\leq x}} g(x)g(v) \, dx \Big) \Big(\int_{\substack{y+u=w\\u\leq y}} g(y)g(u) \, dy \Big) \\ = \frac{1}{2} \int_{-1/4-\delta/2}^{1/4+\delta/2} dw \, f(-w)f(w) = \int_{0}^{1/4+\delta/2} f(w)f(-w) \, dw \leq 1/4 + \delta/2.$$

It remains for us to deal with the part of (5.3) where $x \leq v$ in the integral, so that $-\delta \leq x \leq v \leq \delta$. This part is

$$\leq 4 \int dw \int_{\substack{x+v=-w\\ -\delta \leq x \leq v \leq \delta}} g(x)g(v) \, dx \int_{\substack{y+u=w\\ y \geq 1/2-\delta-x\\ u < \delta}} g(y)g(u) \, dy.$$

When $0 < \delta \le 1/6$, then $y \ge 1/2 - 2\delta \ge \delta \ge u$, and the last integral is

$$\leq \int\limits_{\substack{y+u=w\\u\leq y}} g(y)g(u)\,dy = f(w)/2 \leq 1/2.$$

Therefore the part in question of (5.3) becomes

$$\leq 2\int dw \int_{\substack{x+v=-w\\ -\delta \leq x \leq v \leq \delta}} g(x)g(v) \, dx = \int dw \int_{\substack{x+v=-w\\ -\delta \leq x, v \leq \delta}} g(x)g(v) \, dx = \Big(\int_{-\delta}^{\delta} g(x) \, dx\Big)^2.$$

Together with (6.6) this gives the asserted bound for $\int_{1/2-\delta}^{1} f(z)f(-z) dz$.

7. The upper bound 1.7373. In fact we will show that

(7.1)
$$B \le 7/4 - 1/80 - \xi < 1.7373$$

where $\xi = 0.000200513...$ is a root of the transcendental equation

$$F(b(x)/a(x)) = 1/2,$$

where $a(x) = 1/10 - 2x$, $b(x) = (\sqrt{1/20 - x} - \sqrt{1/80 + x})^2/2$, and
 $F(x) = \sqrt{x^2 + x} + \log(\sqrt{x^2 + x} + \sqrt{x}).$

The calculation of ξ has kindly been performed by Dr. A. Pokrzywa.

We will suppose that $f \in \mathcal{F}$, $|f|_{\infty} = 1$ and

(7.2)
$$|f|_1 > 7/4 - 1/80 - \xi,$$

and we will reach a contradiction, thereby establishing the truth of (7.1), and hence of Theorem 2.

Retaining earlier notation we now set $a = a(\xi)$,

$$u = I_1 + I_{-1}, \quad v = |I_1 - I_{-1}|, \quad m = \min(I_1, I_{-1}) = (u - v)/2,$$

and observe that $M = \max(I_1, I_{-1}) = (u + v)/2$. Also, u_0, u_1 will be the positive numbers with

$$u_0^2 = 1/20 - \xi = a/2, \quad u_1^2 = 1/20 + 4\xi.$$

We may suppose that

$$(7.3) u \ge u_0,$$

for otherwise (6.2) yields $|f|_1 \leq 27/16 + u_0^2 = 7/4 - 1/80 - \xi$, against (7.2). We further may suppose that

$$(7.4) u+v \le u_1,$$

for otherwise (6.3) yields $|f|_1 \leq 7/4 - u_1^2/4 = 7/4 - 1/80 - \xi$, contradicting (7.2). As a consequence,

$$2u^{2} - m^{2}/2 = 2u^{2} - (u - v)^{2}/8 = 3u^{2}/2 + u(u + v)/2 - (u + v)^{2}/8$$

$$\leq 3u^{2}/2 + 3u(u + v)/8 \leq 15u_{1}^{2}/8 < 1/10 - 2\xi = a,$$

so that

(7.5)
$$0 = 2u_0^2 - a \le 2u^2 - a < m^2/2.$$

Lemma 3.

$$\frac{7}{4} - |f|_1 \ge \frac{1}{4}(u^2 + v^2) + \int_{2u^2 - a}^{m^2/2} (\sqrt{(\eta + a)/2} - u) \frac{d\eta}{\sqrt{2\eta}}.$$

Proof. By (6.1) and (7.2),

$$1/80 + \xi > \delta/2 - \left(\int_{-\delta}^{\delta} g(x) \, dx\right)^2$$

for δ in $0 < \delta < 1/6$. Setting $\delta = 1/8 + \eta$ with $0 < \eta < 1/24$, this gives

$$\left(\int_{-1/8-\eta}^{1/8+\eta} g(x) \, dx\right)^2 > \eta/2 + 1/20 - \xi = (\eta+a)/2,$$

and

(7.6)
$$G(\eta) := \int_{1/8}^{1/8+\eta} (g(x) + g(-x)) \, dx > \sqrt{(\eta+a)/2} - u.$$

On the other hand by (6.3) and (7.2), and since $m^2/2 \le u^2/8 \le u_1^2/8 < 1/24 < 1/8$,

$$\begin{aligned} \frac{1}{80} + \xi &> \frac{1}{2} \sum_{\varepsilon = \pm 1} J_{\varepsilon} = \frac{1}{2} \Big(I_1^2 + I_{-1}^2 + 2 \sum_{\varepsilon = \pm 1} \int_{1/8}^{1/4} g(\varepsilon x) \, dx \int_{0}^{1/4 - x} g(\varepsilon y) \, dy \Big) \\ &\geq \frac{1}{2} \Big(\frac{u^2 + v^2}{2} + 2 \sum_{\varepsilon = \pm 1} \int_{1/8}^{1/8 + m^2/2} g(\varepsilon x) \, dx \int_{0}^{1/4 - x} g(\varepsilon y) \, dy \Big) \\ &= \frac{1}{4} (u^2 + v^2) + \sum_{\varepsilon = \pm 1} \int_{0}^{m^2/2} g(\varepsilon/8 + \varepsilon \eta) \, d\eta \int_{0}^{1/8 - \eta} g(\varepsilon y) \, dy. \end{aligned}$$

By (3.1) with $r = 1/8 - \eta$, s = 1/8,

$$\int_{0}^{1/8-\eta} g(\varepsilon y) \, dy = I_{\varepsilon} - \int_{1/8-\eta}^{1/8} g(\varepsilon y) \, dy \ge I_{\varepsilon} - \sqrt{2\eta} \ge m - \sqrt{2\eta}.$$

Thus

$$\begin{aligned} \frac{1}{80} + \xi &> \frac{1}{4}(u^2 + v^2) + \sum_{\varepsilon = \pm 1} \int_{0}^{m^2/2} g(\varepsilon/8 + \varepsilon\eta)(m - \sqrt{2\eta}) \, d\eta \\ &= \frac{1}{4}(u^2 + v^2) + \int_{0}^{m^2/2} (g(1/8 + \eta) + g(-1/8 - \eta))(m - \sqrt{2\eta}) \, d\eta. \end{aligned}$$

Integrating by parts we represent the last integral as

$$\int_{0}^{m^{2}/2} G(\eta) \frac{d\eta}{\sqrt{2\eta}} \ge \int_{2u^{2}-a}^{m^{2}/2} G(\eta) \frac{d\eta}{\sqrt{2\eta}}.$$

Since $m^2/2 < 1/24$ we may apply (7.6) to obtain the lemma.

LEMMA 4. In the domain of points (u, v) with (7.3), (7.4), $v \ge 0$, the function

$$H(u,v) = \frac{1}{4}(u^2 + v^2) + \int_{2u^2 - a}^{\frac{1}{2}(\frac{u-v}{2})^2} (\sqrt{(\eta+a)/2} - u) \frac{d\eta}{\sqrt{2\eta}}$$

satisfies $H(u, v) \ge H(u_0, u_1 - u_0)$.

Proof.

$$2H(u,v) = \frac{1}{2}(u^2 + v^2) + \int_{2u^2 - a}^{\frac{1}{2}(\frac{u-v}{2})^2} \sqrt{\frac{\eta + a}{\eta}} \, d\eta - u(u-v) + 2u\sqrt{4u^2 - 2a}.$$

Hence

$$2\frac{\partial H(u,v)}{\partial v} = v + u + \left(\frac{(u-v)^2 + 8a}{(u-v)^2}\right)^{1/2} \cdot \frac{v-u}{4}$$
$$= v + u - \frac{1}{4}((u-v)^2 + 8a)^{1/2}.$$

We claim that this partial derivative is ≤ 0 in our domain. For otherwise $16(u+v)^2 - ((u-v)^2 + 8a) > 0$, or $15(u+v)^2 + 4uv - 8a > 0$. But $u+v \leq u_1$ and $4uv \leq 4u(u_1 - u) \leq 4u_0(u_1 - u_0)$ since $u \geq u_0 > u_1/2$. Therefore $15u_1^2 + 4u_0u_1 - 4u_0^2 - 8a > 0$. Substituting the values for a, u_0, u_1 gives

$$4u_0u_1 \ge 1/4 - 80\xi$$

Squaring, we get

$$16(1/20 + 4\xi)(1/20 - \xi) > (1/4 - 80\xi)^2$$

which is not true. Thus our claim is proven, and

(7.7)
$$H(u,v) \ge H(u,u_1-u).$$

Next,

$$2H(u, u_1 - u) = -u^2 + \frac{1}{2}u_1^2 + \int_{2u^2 - a}^{\frac{1}{2}(\frac{2u - u_1}{2})^2} \sqrt{\frac{\eta + a}{\eta}} \, d\eta + 2u\sqrt{4u^2 - 2a},$$

so that

$$2\frac{d}{du}H(u,u_1-u) = -2u + \left(\frac{(2u-u_1)^2 + 8a}{(2u-u_1)^2}\right)^{1/2} \cdot \frac{2u-u_1}{2}$$
$$- \left(\frac{2u^2}{2u^2-a}\right)^{1/2} \cdot 4u$$
$$+ 2(4u^2 - 2a)^{1/2} + 8u^2(4u^2 - 2a)^{-1/2}$$
$$= -2u + \frac{1}{2}\sqrt{(2u-u_1)^2 + 8a} + 2\sqrt{4u^2 - 2a}.$$

We claim that this derivative is ≥ 0 for $u_0 \leq u \leq u_1$. For otherwise $16u^2 \geq (2u - u_1)^2 + 8a$, so that $12u^2 + 4uu_1 - u_1^2 > 8a$. But this entails $15u_1^2 > 8a$, i.e.,

$$15(1/20 + 4\xi) > 4/5 + 16\xi,$$

which is not true. Thus our claim is correct, and

$$H(u, u_1 - u) \ge H(u_0, u_1 - u_0),$$

which together with (7.7) establishes the lemma.

It is now easy to arrive at the desired contradiction to (7.2). By Lemmas 3 and 4,

$$7/4 - |f|_1 \ge H(u_0, u_1 - u_0)$$

= $\frac{1}{4}(u_0^2 + (u_1 - u_0)^2) + \int_{2u_0^2 - a}^{\frac{1}{2}(u_0 - \frac{1}{2}u_1)^2} \left(\frac{1}{2}\sqrt{\frac{\eta + a}{\eta}} - \frac{u_0}{\sqrt{2\eta}}\right) d\eta.$

Here $2u_0^2 - a = 0$ and $\frac{1}{2}(u_0 - \frac{1}{2}u_1)^2 = b(\xi) = b$, say, and $\int_0^x \sqrt{\frac{\eta + a}{\eta}} d\eta = aF(x/a), \quad \int_0^x \frac{d\eta}{\sqrt{2\eta}} = \sqrt{2x}.$

Therefore

$$7/4 - |f|_1 \ge \frac{1}{4} (2u_0^2 - 2u_0u_1 + u_1^2) + \frac{a}{2}F(b/a) - u_0(u_0 - u_1/2)$$

= $-u_0^2/2 + u_1^2/4 + \frac{a}{2}F(b/a) = -\frac{1}{80} + \frac{3}{2}\xi + \frac{a}{2}F(b/a) = 1/80 + \xi,$

contrary to (7.2).

Added in proof. Dr. Erik Bajalinov has checked that for $n \leq 26$ and n = 31, 36, 41, 46, 51: $A(n) < 4/\pi$, which suggests that $B = 4/\pi$.

References

[1] B. Green, The number of squares and $B_h[g]$ sets, Acta Arith. 100 (2001), 365–390.

Institute of MathematicsDepartment of MathematicsPolish Academy of SciencesUniversity of ColoradoP.O. Box 137Boulder, CO 80309-0395, U.S.A.00-950 Warszawa, PolandE-mail: Schmidt@euclid.colorado.eduE-mail: schinzel@impan.gov.plE-mail: Schmidt@euclid.colorado.edu