A note on the ideal class group of the cyclotomic \mathbb{Z}_{p}-extension of a totally real number field

by
Humio Ichimura (Yokohama)

1. Introduction. Let p be a fixed prime number (not necessarily odd), k a fixed totally real number field, and k_{∞} / k the cyclotomic \mathbb{Z}_{p}-extension. Let k_{n} be the nth layer of k_{∞} / k with $k_{0}=k$, and A_{n} the Sylow p-subgroup of the ideal class group of k_{n}. Denote by

$$
A_{\infty}=\underline{\longrightarrow} A_{n}
$$

the inductive limit with respect to the inclusion maps $k_{n} \rightarrow k_{m}(n<m)$. It is conjectured that $A_{\infty}=\{0\}$ (see Greenberg [1]). Let \widetilde{A}_{0} be the image of A_{0} in A_{∞}. Concerning the conjecture, Greenberg [1, Theorem 1] proved the following:

Theorem 1. Assume that there is only one prime ideal of k over p and that it is totally ramified in k_{∞}. Then $A_{\infty}=\{0\}$ if $\widetilde{A}_{0}=\{0\}$.

The purpose of the present note is to give (1) the following rather stronger version of this theorem (under the same assumptions), and (2) corresponding assertions when p splits completely in k. Let $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$, and A_{∞}^{Γ} the elements of A_{∞} fixed by Γ. Clearly, $\widetilde{A}_{0} \subseteq A_{\infty}^{\Gamma}$.

Theorem 2. Under the assumptions of Theorem $1, A_{\infty}^{\Gamma} / \widetilde{A}_{0}=\{0\}$.
Theorem 1 follows from Theorem 2 and the following assertion which is known to specialists.

Proposition 1. Under the general setting of this section, $A_{\infty}=\{0\}$ if and only if $A_{\infty}^{\Gamma}=\{0\}$.

Let L_{n} be the maximal pro- p abelian extension over k_{n} such that $L_{n} \supseteq$ k_{∞} and L_{n} / k_{∞} is unramified, and let F_{n} be the Hilbert p-class field of k_{n}.

[^0]Clearly, we have $F_{n} k_{\infty} \subseteq L_{n}$. It is known (Sumida [6, Lemma 1]) that if the equality $F_{n} k_{\infty}=L_{n}$ holds for some $n=n_{0}$, then it holds for all $n \geq n_{0}$. For this, see also Lemma 3 and (1) in Section 3.

Theorem 3. Assume that p splits completely in k and that the Leopoldt conjecture holds for (k, p). Then $A_{\infty}^{\Gamma} / \widetilde{A}_{0}=\{0\}$ if $F_{n} k_{\infty}=L_{n}$ for some n.

Corresponding to Theorem 1, we obtain, from Theorem 3 and Proposition 1 , the following:

THEOREM 4. Under the assumptions of Theorem $3, A_{\infty}=\{0\}$ if $\widetilde{A}_{0}=\{0\}$ and $F_{n} k_{\infty}=L_{n}$ for some n.

In the previous paper [2, Propositions 1, 3], we proved the assertions of Theorems 2,3 when p is odd and k is a real abelian field with $[k: \mathbb{Q}]$ not divisible by p.

We show Theorem 2 by re-arranging some arguments in [1, pp. 267269]. We can say that Theorem 2 is essentially contained in [1]. We show Theorem 3 similarly to [2, Proposition 3], using some skillful arguments of [1, p. 270].

Remark 1. (1) Under the assumptions of Theorem 1, it is known and easy to show that $F_{n} k_{\infty}=L_{n}$ for all n. (2) The sufficient condition for $A_{\infty}=\{0\}$ in Theorem 4 is also necessary. This is because $A_{\infty}=\{0\}$ if and only if $L=\bigcup_{n} L_{n}$ is a finite extension over k_{∞} (cf. [1, Proposition 2]). (3) Taya [8, Theorem 4] gave a condition for $A_{\infty}=\{0\}$ similar to Theorem 4 when p is odd and k is a real quadratic field in which p splits. In [7], Sumida proved an assertion on the p-ideal class group of k_{∞} similar to Theorem 4. His theorem is given in a very general setting where k is not necessarily totally real, p does not necessarily split completely in k, and k_{∞} / k is an arbitrary \mathbb{Z}_{p}-extension.

Remark 2. At present, we have many numerical examples of (k, p) with $A_{\infty}=\{0\}$ but no counterexamples (see Kraft and Schoof [4], Kurihara [5], Sumida and the author [3]). For example, it is known that $A_{\infty}=\{0\}$ when $p=3$ and $k=\mathbb{Q}(\sqrt{d})$ for all square free integers d with $1<d<10^{4}$ ([3, Proposition]). However, the conjecture is not yet proved to be true in general.
2. Proof of Theorem 2. In this section, we show Theorem 2 by rearranging some arguments of [1, pp. 267-269]. In what follows, we assume that the prime ideals of k over p are totally ramified in k_{∞}. Let E_{n} be the group of units of k_{n}. The following lemma is proved in [1, p. 269, line 15].

Lemma 1. Under the assumptions of Theorem 1, the order $\left|E_{0} / N_{n / 0} E_{n}\right|$ is bounded as $n \rightarrow \infty$. Here, $N_{n / 0}$ is the norm map from k_{n}^{\times}to k^{\times}.

Let I_{n} be the group of fractional ideals of k_{n}, and I_{∞} the inductive limit of I_{n} with respect to the inclusion maps $k_{n} \rightarrow k_{m}(n<m)$. We often regard ideals of k_{n} as elements of I_{∞}. For an ideal $\mathfrak{A} \in I_{n}(0 \leq n \leq \infty)$, $[\mathfrak{A}]_{n}$ denotes the ideal class of k_{n} represented by \mathfrak{A}. We put $B_{n}=A_{n}^{\Gamma}$, the elements of A_{n} invariant under the action of Γ. The following lemma is a detailed version of [1, Corollary].

Lemma 2. Assume that the assumptions of Theorem 1 hold or that the Leopoldt conjecture holds for (k, p). Let h^{\prime} be the non-p-part of the class number of k. Then, for any natural numbers m, l and any prime ideal \mathfrak{P} of k_{m} over p, the ideal $\mathfrak{P}^{h^{\prime}}$ becomes a p^{l} th power of a principal ideal in I_{∞}.

Proof. It is known that the order of B_{n} is bounded as $n \rightarrow \infty$ under the assumption of the lemma. For this, see [1, Proposition 1] and line 14 of [1, p. 269]. Let t be an integer such that p^{t} is a multiple of $\left|B_{n}\right|$ for all n. There exists a unique prime ideal $\widetilde{\mathfrak{P}}$ of k_{m+l+t} over \mathfrak{P}, and the ideal class $\left[\widetilde{\mathfrak{P}}^{h^{\prime}}\right]_{m+l+t}$ is contained in B_{m+l+t}, because the primes of k over p are totally ramified in k_{∞}. Then $\mathfrak{P}^{h^{\prime}}=\left(\widetilde{\mathfrak{P}^{h^{\prime}} p^{t}}\right)^{p^{l}}$, and $\widetilde{\mathfrak{P}}^{h^{\prime} p^{t}}$ is a principal ideal of k_{m+l+t}. The assertion follows from this.

Proof of Theorem 2. We fix a topological generator γ of Γ. Assume that the assumptions of Theorem 1 hold. Let $[\mathfrak{A}]_{\infty}$ be an element of A_{∞}^{Γ} with $\mathfrak{A} \in I_{\infty}$. We have $\mathfrak{A}^{\gamma-1}=(x)$ for some $x \in k_{\infty}^{\times}$. Take an integer n such that $\mathfrak{A} \in I_{n}$ and $x \in k_{n}^{\times}$. We have $\varepsilon=N_{n / 0} x \in E_{0}$. By Lemma 1, we see that

$$
N_{m / 0} x=\varepsilon^{p^{m-n}} \in N_{m / 0} E_{m}
$$

for a sufficiently large $m \geq n$. Then $N_{m / 0} x=N_{m / 0} \eta$ for some $\eta \in E_{m}$. From this, $x \eta^{-1}=y^{\gamma-1}$ for some $y \in k_{m}^{\times}$, and hence

$$
\mathfrak{A}^{\gamma-1}=\left(x \eta^{-1}\right)=\left(y^{\gamma-1}\right)
$$

Therefore, the ideal $\mathfrak{A}(y)^{-1}$ of k_{m} is Γ-invariant. Then we see that $\mathfrak{A}(y)^{-1}=$ $\mathfrak{B C}$ for some $\mathfrak{B} \in I_{0}$ and a product \mathfrak{C} of prime ideals of k_{m} over p. Therefore, by Lemma 2 , we see that $[\mathfrak{A}]_{\infty}^{h^{\prime}} \in \widetilde{A}_{0}$. From this, we obtain $A_{\infty}^{\Gamma} / \widetilde{A}_{0}=\{0\}$.

Proof of Proposition 1. Though this is more or less known, we give a proof for the sake of completeness. It suffices to show that the condition $A_{\infty} \neq\{0\}$ implies $A_{\infty}^{\Gamma} \neq\{0\}$. Assume that $A_{\infty} \neq\{0\}$. Let H_{n} be the kernel of the natural map $A_{n} \rightarrow A_{\infty}$. As $A_{\infty} \neq\{0\}, A_{n} / H_{n} \neq\{0\}$ for some n. Then we see that there exists a class $[\mathfrak{A}]_{n} \in A_{n}$ with $\mathfrak{A} \in I_{n}$ such that $[\mathfrak{A}]_{n} \notin H_{n}$ but $[\mathfrak{A}]_{n}^{\gamma-1} \in H_{n}$. This is because p-groups acting on p-groups have nontrivial fixed points. Therefore, we obtain $A_{\infty}^{\Gamma} \neq\{0\}$.

Remark 3. Let D_{n} be the classes in A_{n} which contain a product of prime ideals of k_{n} over p. We have $D_{n} \subseteq B_{n}$ since the primes of k over p are totally ramified in k_{∞}. Assume that the Leopoldt conjecture holds for
(k, p). Then, in [1, p. 270], it is shown that $A_{\infty}=\{0\}$ when $B_{n}=D_{n}$ for all sufficiently large n. This assertion also follows from Proposition 1 and Lemma 2.
3. Proof of Theorem 3. Let p and k be as in Section 1. For a prime ideal \mathfrak{p} of k_{n} over p, let $k_{n, \mathfrak{p}}$ be the completion of k_{n} at \mathfrak{p}, and $\mathfrak{U}_{n, \mathfrak{p}}$ the group of principal units of $k_{n, \mathfrak{p}}$. Denote by $\mathfrak{U}_{n}=\prod_{\mathfrak{p} \mid p} \mathfrak{U}_{n, \mathfrak{p}}$ the group of semi-local units of k_{n} at p, where \mathfrak{p} runs over the primes of k_{n} over p. We put

$$
\mathfrak{V}_{n}=\bigcap_{m \geq n} N_{m / n} \mathfrak{U}_{m}
$$

and

$$
\widetilde{\mathfrak{U}}_{n}=\left\{\left(u_{\mathfrak{p}}\right) \in \mathfrak{U}_{n} \mid \prod_{\mathfrak{p} \mid p}\left(u_{\mathfrak{p}}, k_{m} / k_{n}, \mathfrak{p}\right)=1, \quad \forall m \geq n\right\}
$$

Here, $N_{m / n}$ is the norm map from k_{m}^{\times}to k_{n}^{\times}, and $\left(*, k_{m} / k_{n}, \mathfrak{p}\right)$ denotes the norm residue symbol at \mathfrak{p} for the extension k_{m} / k_{n}. We have $\mathfrak{V}_{n} \subseteq \widetilde{\mathfrak{U}}_{n}$ by local class field theory. Let E_{n} be, as before, the group of units of k_{n}. Embed k_{n}^{\times}diagonally into the product $\prod_{\mathfrak{p} \mid p} k_{n, \mathfrak{p}}^{\times}$, and let \mathfrak{E}_{n} be the closure of $E_{n} \cap \mathfrak{U}_{n}$ in \mathfrak{U}_{n}. We see that $\mathfrak{E}_{n} \subseteq \widetilde{\mathfrak{U}}_{n}$ by the product formula for the norm residue symbols. On the quotient group $\widetilde{\mathfrak{U}}_{n} / \mathfrak{V}_{n} \mathfrak{E}_{n}$, the following assertion holds, which is essentially contained in [6].

Lemma 3. If the equality $\widetilde{\mathfrak{U}}_{n}=\mathfrak{V}_{n} \mathfrak{E}_{n}$ holds for some $n=n_{0}$, then it holds for all $n \geq n_{0}$.

Proof. Let $m>n$. Using local class field theory, we can show that the inclusion map $k_{n}^{\times} \rightarrow k_{m}^{\times}$induces an isomorphism

$$
\widetilde{\mathfrak{U}}_{n} / \mathfrak{V}_{n} \cong \widetilde{\mathfrak{U}}_{m} / \mathfrak{V}_{m}
$$

For details, see [6, p. 695, line 17]. The assertion follows from this as $E_{n} \subseteq$ E_{m}.

Let M_{n} be the maximal pro- p abelian extension over k_{n} unramified outside p, and let L_{n}, F_{n} be the extensions of k_{n} defined in Section 1. From the definitions, we have $F_{n} k_{\infty} \subseteq L_{n} \subseteq M_{n}$. It is known that the reciprocity law map induces isomorphisms

$$
\operatorname{Gal}\left(M_{n} / F_{n} k_{\infty}\right) \cong \widetilde{\mathfrak{U}}_{n} / \mathfrak{E}_{n} \quad \text { and } \quad \operatorname{Gal}\left(M_{n} / L_{n}\right) \cong \mathfrak{V}_{n} \mathfrak{E}_{n} / \mathfrak{E}_{n}
$$

For the former, see [9, Corollary 13.6], and for the latter, see [6, Proposition 1] or [3, Lemma 3]. From the above, one obtains the following isomorphism:

$$
\begin{equation*}
\operatorname{Gal}\left(L_{n} / F_{n} k_{\infty}\right) \cong \widetilde{\mathfrak{U}}_{n} / \mathfrak{V}_{n} \mathfrak{E}_{n} \tag{1}
\end{equation*}
$$

Proof of Theorem 3. We assume that p splits completely in k and that the Leopoldt conjecture holds for (k, p). We also assume that $F_{n_{0}} k_{\infty}=L_{n_{0}}$ for some integer n_{0}. Let $[\mathfrak{A}]_{\infty}$ be an element of A_{∞}^{Γ} with $\mathfrak{A} \in I_{\infty}$. We have

$$
\begin{equation*}
\mathfrak{A}^{\gamma-1}=(x) \tag{2}
\end{equation*}
$$

for some $x \in k_{\infty}^{\times}$. Here, γ is the fixed topological generator of Γ. Take an integer n such that $n \geq n_{0}, \mathfrak{A} \in I_{n}$ and $x \in k_{n}^{\times}$. By (2), x is relatively prime to p. Embedding k_{n}^{\times}into the product $\prod_{\mathfrak{p} \mid p} k_{n, \mathfrak{p}}^{\times}$diagonally, we can also regard x as an element of \mathfrak{U}_{n} (by raising \mathfrak{A} and x to the $(p-1)$ st power if necessary). By (2), we obtain

$$
\begin{equation*}
N_{n / 0} x \in E_{0} \tag{3}
\end{equation*}
$$

From this, we see that for any $m \geq n$,

$$
\prod_{\mathfrak{p} \mid p}\left(x, k_{m} / k_{n}, \mathfrak{p}\right)=\prod_{\mathfrak{p} \mid p}\left(N_{n / 0} x, k_{m} / k, \mathfrak{p}^{\prime}\right)=1
$$

by the product formula for the norm residue symbols. Here, \mathfrak{p} runs over the primes of k_{n} over p, and $\mathfrak{p}^{\prime}=\mathfrak{p} \cap k$. Therefore, we obtain $x \in \widetilde{\mathfrak{U}}_{n}$. It is known ([1, p. 265]) that

$$
\begin{equation*}
E_{0} \cap \mathfrak{U}_{0}^{p^{n+l}} \subseteq E_{0}^{p^{n+1}} \tag{4}
\end{equation*}
$$

for some integer $l \geq 0$ as a consequence of the Leopoldt conjecture for (k, p). Since $n \geq n_{0}$ and $F_{n_{0}} k_{\infty}=L_{n_{0}}$, we obtain $\widetilde{\mathfrak{U}}_{n}=\mathfrak{V}_{n} \mathfrak{E}_{n}$ from Lemma 3 and (1). Then, as $x \in \widetilde{\mathfrak{U}}_{n}$, we have

$$
\begin{equation*}
x \equiv\left(N_{n+l / n} v\right) \varepsilon \bmod \mathfrak{U}_{n}^{p^{l}} \tag{5}
\end{equation*}
$$

for some $v \in \mathfrak{U}_{n+l}$ and $\varepsilon \in E_{n}$.
Now, we distinguish the cases where p is odd and where $p=2$. First, let p be odd. We see that $N_{m / 0} \mathfrak{U}_{m}=\mathfrak{U}_{0}^{p^{m}}$ for any m since p is odd and p splits completely in k. Therefore, we obtain

$$
N_{n / 0} x \equiv N_{n / 0} \varepsilon \bmod \mathfrak{U}_{0}^{p^{n+l}}
$$

from (5). By (3), (4) and this congruence, we obtain $N_{n / 0}\left(x \varepsilon^{-1}\right)=\eta^{p^{n}}$ for some $\eta \in E_{0}$, and hence $N_{n / 0}\left(x \varepsilon^{-1} \eta^{-1}\right)=1$. Therefore, $x \varepsilon^{-1} \eta^{-1}=y^{\gamma-1}$ for some $y \in k_{n}^{\times}$. From this and (2), it follows that the ideal $\mathfrak{A}(y)^{-1}$ of k_{n} is Γ-invariant. Then we can write $\mathfrak{A}(y)^{-1}=\mathfrak{B C}$ for some ideal \mathfrak{B} of k and a product \mathfrak{C} of prime ideals of k_{n} over p. From this and Lemma 2 , we obtain $[\mathfrak{A}]_{\infty}^{h^{\prime}}=[\mathfrak{B}]_{\infty}^{h^{\prime}} \in \widetilde{A}_{0}$. The desired assertion follows from this when p is odd.

Next, let $p=2$. Then we see that $N_{m / 0} \mathfrak{U}_{m}^{2}=\mathfrak{U}_{0}^{2^{m+1}}$ for any m since p splits completely in k. Thus, by (3)-(5), we obtain $N_{n / 0}\left(x^{2} \varepsilon^{-2}\right)=\eta^{2^{n+1}}$ for some $\eta \in E_{0}$, and hence, $N_{n / 0}\left(x \varepsilon^{-1} \eta^{-1}\right)= \pm 1$. Let ζ be a primitive 2^{n+2} nd
root of unity, and put

$$
\delta=\zeta^{2}+\zeta+1+\zeta^{-1}+\zeta^{-2}=\left(\zeta^{5}-1\right) /\left(\zeta^{3}-\zeta^{2}\right)
$$

We easily see that $\delta \in E_{n}$ and $N_{n / 0} \delta=-1$. Therefore, we have

$$
N_{n / 0}\left(x \varepsilon^{-1} \eta^{-1}\right)=1 \quad \text { or } \quad N_{n / 0}\left(x \varepsilon^{-1} \eta^{-1} \delta\right)=1
$$

Using this, we obtain the desired assertion by an argument similar to the case $p \geq 3$.

Acknowledgements. The author is grateful to Hiroki Sumida for valuable conversations, especially on the proof of Theorem 3 for the case $p=2$.

References

[1] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[2] H. Ichimura, On a quotient of the unramified Iwasawa module over an abelian number field, J. Number Theory 88 (2001), 175-190.
[3] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, Internat. J. Math. 7 (1996), 721-744.
[4] J. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic fields, Compositio Math. 97 (1995), 135-155.
[5] M. Kurihara, The Iwasawa λ-invariants of real abelian fields and the cyclotomic elements, Tokyo J. Math. 22 (1999), 259-277.
[6] H. Sumida, Greenberg's conjecture and the Iwasawa polynomial, J. Math. Soc. Japan 49 (1997), 689-711.
[7] -, On capitulation of S-ideal classes in \mathbb{Z}_{p}-extensions, J. Number Theory 86 (2001), 163-174.
[8] H. Taya, On cyclotomic \mathbb{Z}_{p}-extensions of real quadratic fields, Acta Arith. 74 (1996), 107-119.
[9] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, New York, 1996.

Department of Mathematics
Yokohama City University
22-2, Seto, Kanazawa-ku
Yokohama, 236-0027 Japan
E-mail: ichimura@yokohama-cu.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 11R23.
 Partially supported by Grant-in-Aid for Scientific Research (C) (No.13640036), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

