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Cramér functions and Guinand equations

by

Georg Illies (Siegen)

In [Cr] Cramér introduced the function

V (t) =
∑

=(%)>0

e%t, =(t) > 0,

% being the zeros of the Riemann zeta function in the upper half plane, and
he examined its analytic behaviour. In [Gu] Guinand proved a functional
equation for V (t). We generalize these theorems to a large class of abstract
L-series instead of the Riemann zeta function improving the results of [JL2].
At the end we treat as an example Hecke L-series.

1. Introduction. For V (t) as defined above, Cramér [Cr] showed that
the function

V (t)− 1
2πi
· log t

1− e−t
has a meromorphic continuation to C, determined the poles (which are all
simple) and the corresponding residues and also found the constant term
of the Laurent expansion at t = 0. Guinand [Gu] proved the functional
equation

e−t/2(V (t)− 1) + et/2(V (exp(πi)t)− 1) = − e−t/2

1− e−2t , t ∈ C̃∗.
Summarizing one has the following three results:

(a) Meromorphic continuation of V (t) to C̃∗ with explicit determination
of poles and singular parts and explicit determination of V (t)−V (exp(2πi)t),

(b) Guinand’s functional equation for V (t),
(c) behaviour of V (t) at t = 0, i.e. the asymptotics for |t| → 0 except for

the coefficients of the terms tn, n ∈ N (Cramér asymptotics).

There are several analogous results for other L-series instead of ζ(s),
e.g. [CV] for the Selberg zeta function, [Ka] for Dirichlet L-series for Q
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and [DS] for motivic L-series (1). Jorgenson and Lang [JL1], [JL2] consider
an abstract meromorphic function of finite order L(s) which has a Dirichlet
series representation in a half plane and satisfies a functional equation. They
formulate a generalization of (a) and give a proof of the existence of a Cramér
asymptotics. Guinand’s functional equation and the explicit determination
of the Cramér asymptotics are not given.

The aim of this article which reproduces Chapter 4 of my Ph.D. thesis
[Il1] is to give a complete generalization of (a), (b) and (c) in the setting of
Jorgenson and Lang, even slightly more general. For (a) and (b) we use the
function θ̃D(t, s) defined in [Il1] and [Il2], which gives a more elegant access
to the Cramér function than Cramér’s contour integral method (also used
in [JL2], [Ka], [CV], [Gu]) or the distributional approach of [DS] that does
not apply to our general case. For (c) we also use results from [Il1] and [Il2].
The discussion of functional equations and ε-factors in terms of regularized
determinants (Sections 7 and 9) should be interesting in its own right and
in the context of [De].

For large classes of L-series from different branches of mathematics (com-
pare the examples given in [JL2]) the concrete parameters for (a), (b) and
(c) can be determined by trivial computations. One has just to follow the
pattern given in Section 10 where the Theorem is applied to Hecke L-series.

Acknowledgements. I would like to thank C. Deninger for supervising
my Ph.D. thesis as well as M. Schröter, I. Vardi, C. Bree, C. Soulé, A. Voros,
J. B. Bost and J. Jorgenson for helpful discussions and improvements. Parts
of the article were written during a visit to the IHES.

2. Some notations. A meromorphic function L̇(z) of finite order is a
function that can be represented as the quotient of two entire functions of
finite order. Recall ([Ti]) that there is a β > 0 such that

∑

%∈C
|ordL̇,%| · |%|−β <∞.(2.1)

The exponent ṙ of L̇ is the infimum of all β > 0 satisfying (2.1); the genus
ġ of L̇ is the smallest n ∈ N0 such that (2.1) is satisfied for β = n+ 1; note
that g + 1 ≥ r ≥ g.

In what follows, to meromorphic functions of finite order L̇(z) we will
associate auxiliary functions (2) such as ξḊ(s) or θḊ(t). The symbol L̇ is
meant as a “wildcard”: Instead of L̇(z) we could for example have the func-
tion L∞(z) which would have genus g∞ and an auxiliary function ξD∞(s)

(1) The Cramér function plays a role in certain speculative considerations in arithmetic
algebraic geometry [De].

(2) The strange symbol Ḋ for the “divisor” of L̇ has no deeper meaning here, it is
used just for compatibility with [Il2].
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or a function L(z) with exponent r and so on. We also use the abbreviated
notation ∑

%∈Ḋ
ϕ(%) :=

∑

%∈C
ordL̇,% · ϕ(%).

3. The Theorem

GS (General situation) L(z) and L∗(z) are meromorphic functions of
finite order such that for a suitable branch of the logarithm one has absolutely
convergent Dirichlet series representations

logL(z) =
∞∑

n=1

cn
qzn
, logL∗(z) =

∞∑

n=1

c∗n
q∗zn

(3.1)

for <(z) > σ0 with a certain σ0 ∈ R, with (3) q(∗)
n > 1, limn→∞ q

(∗)
n = ∞

and with complex c(∗)
n . L∞(z) and L∗∞(z) are meromorphic functions of finite

order such that almost all zeros and poles % satisfy ϕ < arg(%) < 2π−ϕ for
some fixed 0 < ϕ < 2π. The functions

L̂(z) := L(z)L∞(z), L̂∗(z) := L∗(z)L∗∞(z),(3.2)

satisfy the functional equation

L̂(z) = eQ(z)L̂∗(−z),(3.3)

with a polynomial Q(z).

Definition 3.1. In the situation GS one defines the Cramér function
of L̂(z) by (4)

θD̂+
(t) :=

∑

%∈C
ord+

L̂,%
· e%t(3.4)

where ord+
L̂,%

is defined by

ord+
L̂,%

:=





ordL̂,% for =(%) ≥ 0 with % 6∈ R≥0,
1
2 ordL̂,0 for % = 0,
0 else.

The series (3.1) is absolutely convergent for π/2−ϕ < arg(t) < π/2 +ϕ,
uniformly in compact sets, so θD̂+

(t) is holomorphic. Correspondingly one

has the Cramér function θD̂∗+(t) of L̂∗(z).

In the following Theorem we use the universal covering pr: C̃∗ → C∗ with
the canonical isomorphism log: C̃∗ → C such that pr = exp ◦ log. For t ∈ C̃∗

(3) Here and in what follows, a term or an equation with (∗) (e.g. q(∗)
n ) is meant as a

simultaneous expression, one with and one without ∗ (i.e. qn and q∗n in the example).
(4) This choice is arbitrary insofar as the results remain valid for series that differ

only by finitely many summands.
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one has arg(t) := =(log t). For t ∈ C̃∗ and α ∈ C we denote by exp(α) · t
that t′ ∈ C̃∗ with log t′ = α+ log t.

Theorem. In addition to GS assume that there are ϑ, ϑ∗ ∈ [−π/2, π/2]
and ε > 0 such that π/2+ϑ+ε < arg(%) < 3π/2+ϑ−ε for almost all zeros
and poles of L∞(z) and π/2+ϑ∗+ε < arg(%) < 3π/2+ϑ∗−ε for almost all
zeros and poles of L∗∞(z). Also assume that the partition functions θD∞(t)
and θD∗∞(t) which are defined by (4.3) have meromorphic continuations to C.
Identify the domain of definition for (3.4) with those t ∈ C̃∗ with π/2−ϕ <
arg(t) < π/2 + ϕ in the natural way. Then:

(a) The function θD̂+
(t) has a meromorphic continuation to C̃∗. The

function

θD̂+
(t) +

1
2πi

θD∞(t) log t− 1
2πi

θD∗∞(−t) log t(3.5)

is single-valued , i.e. is meromorphic in C. Except for the pole at t = 0 which
is described in (c), the only poles are at t = log qn and t = − log q∗n with
residues 1

2πicn log qn and 1
2πic

∗
n log q∗n respectively , and some poles arising

from θD∞(t) and θD∗∞(t). The latter can be characterized as follows: θD̂+
(t)

has no singularities arising from θD∞(t) in −ϑ−ε < arg(t) < 2π−ϑ+ε, and
θD̂+

(t) has no singularities arising from θD∗∞(t) in −π − ϑ∗ − ε < arg(t) <
π − ϑ∗ + ε.

(b) (Guinand’s functional equation) For all t ∈ C̃∗,
θD̂+

(t) + θD̂∗+
(exp(πi)t) = θD∞(t).(3.6)

(c) For the ε-polynomial of the ξ-regularization (see Definitions 6.1 and
7.1)

P (z) =
ĝ∑

l=0

plz
l(3.7)

and for the Laurent expansion (5) at t = 0

θD∞(t) =
∞∑

l=0

αlt
−l +O(t)(3.8)

one has the following Laurent expansion at t = 0:

(3.9) θD̂+
(t) +

1
2πi

θD∞(t) log t− 1
2πi

θD∗∞(−t) log t

=
ĝ∑

l=0

(
αl
2
− (−1)ll!pl

2πi

)
t−l + k +O(t)

(5) From Proposition 6.4 it follows that αl = 0 for all l > g∞.
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with a certain k ∈ Z or k ∈ Z + 1/2 depending on whether the multiplicity
of % = 0 for L̂ is even or odd , respectively , and with αl = 0 for all l > ĝ.
In the symmetric case L̂ = L̂∗ the expansion (3.9) is valid with pl = 0 for
all even (6) l and with k = 0.

The analogous properties of the dual function θD̂∗+
(t) can be derived by

substituting all parameters by their star duals (using ∗∗ = id). For example
one has

θD̂∗+
(t) + θD̂+

(exp(πi)t) = θD∗∞(t).

The dual ε-polynomial P ∗(z) is just −P (−z) as one can see from the func-
tional equation (7.1); so ĝ∗ = ĝ. The dual k∗ of k in (3.9) is k∗ = k.

Remark. From the proof of the Theorem one can see at once that
everything remains valid analogously for L∞ and L∗∞ being finite products
of functions described in the Theorem with different ϑ and ϑ∗ (see [Il1]). One
also rediscovers the (corrected forms) of the results in [JL2]: Their proofs
do not work unless one demands αj ∈ R≥0 in the definition of “regularized
product type” instead of just <(αj) ≥ 0. Theorem 1.2 of [JL2] which states
the existence of a meromorphic continuation to C\R≥0 then also fails as for
the G∗-terms the cut has to be made on the other side. Our method applies
to the “polynomial Bessel class” introduced in [JL3] as well.

Sections 4–8 are devoted to the proof of the Theorem. For this proof we
assume in addition:

AC (Additional condition) All zeros and poles of the functions L̇ =
L̂(∗), L(∗), L(∗)

∞ satisfy % 6= 0 and ϕ < arg(%) < 2π − ϕ.

This is necessary in order to define the θ̃-functions (Definition 4.1). The
general case can easily be reduced to this case by multiplicative combi-
nation with the trivial special case L̂(z) = (1 − e−(z−%))±1 and L̂∗(z) =
(1 − e−(z−%))±1 with eP (z) = (−e−(z−%))±1 (as both L̂(z) and L̂∗(z) are
ξ-regularized by Proposition 6.3). The trivial calculations for this case are
left to the reader.

4. The functions ξD(s, z), θ̃D(s, t) and θD(t)

Definition 4.1. If all zeros and poles % of a meromorphic function of
finite order L̇ satisfy % 6= 0 and ϕ < arg(%) < 2π − ϕ for a fixed 0 < ϕ < π
its Hurwitz ξ function is defined by

ξḊ(s, z) := Γ (s)
∑

%∈Ḋ
(z − %)−s, <(s) > ṙ, |z| small.(4.1)

(6) In this case the expansion is also valid for negative even l when we define pl := 0.
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In this definition for sufficiently small |z| we choose −π < arg(z − %) < π.
ξḊ(s) := ξḊ(s, 0) is called the ξ function of L̇.

For t ∈ C̃∗ with π/2 − ϕ < arg(t) < 3π/2 + ϕ and for <(s) > ṙ one
defines

θ̃Ḋ(t, s) :=
t−(s−1)

2πi

eiα∞�

0

ewtξḊ(s, w) dw(4.2)

for every α ∈ ]−ϕ,ϕ[ satisfying π/2 < arg(t) + α < 3π/2.
If, in addition, π/2 < ϕ then the partition function is defined for t ∈ C∗

with −(ϕ− π/2) < arg(t) < ϕ− π/2 by

θḊ(t) :=
∑

%∈Ḋ
e%t.(4.3)

In (4.2), wt is just the complex number with |wt| = |w|·|t| and arg(wt) =
arg(w)+arg(t). Convergence of the series (4.1) and (4.3) is absolute and uni-
form and the functions are holomorphic in their variables. ξḊ(s, z), <(s) > ṙ,
has a holomorphic continuation for z ∈ C∗ with −ϕ < arg(z) < ϕ: just re-
gard finitely many (z − %)−s separately. By the elementary estimate

∑

%∈C
|ordL̇,% · (z − %)−s| = o(|z|ṙ−<(s)+δ), |z| → ∞,(4.4)

valid for −ϕ + ε < arg(z) < ϕ − ε and for all fixed δ, ε > 0 (cf. [Il2,
Lemma 12.1]) the Laplace integral (4.2) converges absolutely, is well defined
and holomorphic in the two variables.

Proposition 4.2. For fixed m ∈ N, m > ṙ and ε > 0 the estimate

θ̃Ḋ(t,m) = O(|t|−m), |t| → 0,(4.5)

is valid for π/2 − ϕ + ε < arg(t) < 3π/2 + ϕ − ε. In the case π/2 < ϕ the
following functional equation is valid :

θ̃Ḋ(t,m)− θ̃Ḋ(exp(2πi)t,m) = θḊ(t),(4.6)

where the overlap in the domain of definition for θ̃Ḋ(t,m) is identified with
the domain of definition for the partition function θḊ(t) in the natural way.

Proof. Lemma 13.1 and Proposition 9.2 in [Il2].

Remark. Further properties of θ̃Ḋ(t, s) can be found in Section 9 of [Il2]
and Section 2.6 of [Il1]. For the following proof of the Theorem it is suffi-
cient to have the estimate (4.5) with a weaker exponent than −m, and such
a weaker estimate follows trivially from (4.2) and (4.4). (4.6) can be imme-
diately seen by the residue theorem using majorized convergence because
of (4.4).
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5. Proof of parts (a) and (b). Proposition 5.1 below, a consequence
of (4.6), is the principle behind parts (a) and (b) of the Theorem: The
function θD̂+

(t) is represented in terms of the θ̃D̂(∗)(t,m), so by (3.2), i.e.

θ̃D̂(∗)(t,m) = θ̃D(∗)(t,m) + θ̃
D

(∗)
∞

(t,m),(5.1)

everything is reduced to the properties of the functions θ̃D(∗) and θ̃
D

(∗)
∞

which
are given by Proposition 5.2 and the assumption of the Theorem, respec-
tively.

Proposition 5.1. In the situation GS+AC with m ∈ N, m > r̂, r̂∗ the
following is valid :

(a) If the t ∈ C∗ with π/2− ϕ < arg(t) < π/2 + ϕ (the domain of defi-
nition for θD̂+

(t)) are identified with those t ∈ C̃∗ with the same arguments
then

θD̂+
(t) = θ̃D̂(t,m)− θ̃D̂∗(exp(πi)t,m).(5.2)

(b) If θ̃D̂(t,m) and θ̃D̂∗(t,m) have meromorphic continuations in t to all
of C̃∗, then so also do θD̂+

(t) and θD̂∗+(t), and we have Guinand’s functional
equation

θD̂+
(t) + θD̂∗+

(exp(πi)t) = θ̃D̂(t,m)− θ̃D̂(exp(2πi)t,m).(5.3)

Proof. Using the multiplicities ord+
L̂

from (3.4) we can define the function

θ̃D̂+
(t). (To be precise: Choose a meromorphic function L̂+(z) of finite order

with ordL̂+,% = ord+
L̂,%

for all % ∈ C and use Definition 4.1.) Correspondingly

we have the function θ̃D̂∗+
(t). By the functional equation (3.3) a % ∈ C is a

zero or pole of L̂(z) if and only if −% is a zero or pole of L̂∗(z), respectively.
So by (3.4) and Definition 4.1 we have, for π/2− ϕ < arg(t) < 3π/2 + ϕ,

θ̃D̂(t,m) = θ̃D̂+
(t,m) + θ̃D̂∗+

(exp(πi)t,m),

θ̃D̂∗(t,m) = θ̃D̂+
(exp(πi)t,m) + θ̃D̂∗+

(t,m).

From (4.6) (and a trivial rotation) everything follows.

Proposition 5.2. In the situation GS + AC with sufficiently large
m ∈ N the function θ̃D(t,m) is meromorphic in C. Except for t = 0 the
only poles are at t = log qn, they are of first order with residues 1

2πicn log qn,
respectively. The corresponding statement is true for θ̃D∗(t,m).

Proof. As ∆Wei
D (z) (defined by (6.3) below) and L(z) are meromorphic

of finite order with the same zeros and poles one gets for the mth loga-
rithmic derivatives log(m)∆Wei

D (z) = log(m) L(z) for sufficiently large m and
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comparing (6.3) and (4.1) also ξD(m, z) = (−1)m−1 log(m)∆Wei
D (z), thus by

(3.1),

ξD(m,w) = (−1)m−1 log(m) L(w) = −
∞∑

n=1

cn logm qn
qwn

, <(w) > σ0.

Equation (4.2) then yields, for π/2 < arg(t) < 3π/2 and a σ1 > σ0,

θ̃D(t,m) =
t−(m−1)

2πi

∞�

0

ewtξD(m,w) dw

= − t
−(m−1)

2πi

∞�

σ1

ewt
( ∞∑

n=1

cn logm qn
qwn

)
dw

+
t−(m−1)

2πi

σ1�

0

ewtξD(m,w) dw

︸ ︷︷ ︸
=:hD,m,σ1 (t)

=
t−(m−1)

2πi
eσ1t

∞∑

n=1

cn logm qn
qσ1
n (t− log qn)

+ hD,m,σ1(t),

by majorized convergence. The parameter-dependent integral hD,m,σ1(t) is
meromorphic in C with at most one pole, at t = 0, of order not exceed-
ing m − 1. The absolutely convergent series represents a function that is
meromorphic in C with the needed poles and residues.

Proof of (a) and (b) of the Theorem. Let m ∈ N be sufficiently large. By
Definition 4.1, θ̃D∞(t,m) is holomorphic for −ϑ − ε < arg(t) < 2π − ϑ + ε
and according to (4.6) the function

θ̃D∞(t,m) +
1

2πi
θD∞(t) log t

is meromorphic in C∗ because θD∞(t) is meromorphic in C. By (4.5) this
function increases for t→ 0 not faster than a pole, so it is in fact meromor-
phic in C. θ̃D∗∞(t,m) is treated in the same way. Then (a) and (b) follow at
once from Proposition 5.1, equation (5.1) and Proposition 5.2.

6. Regularization. In Sections 7 and 8 we will apply the following facts
about regularized products to get information about the poles of ξD̂+

(s),
which by Proposition 6.4 below will give the behaviour of θD̂+

(t) at t = 0.

Definition 6.1. A meromorphic function L̇(z) of finite order as in Def-
inition 4.1 is called regularizable if ξḊ(s) is meromorphic in a half plane
<(s) > −ε with ε > 0. For sufficiently small |z|,

∆Ḋ(z) := exp(−CTs=0(ξḊ(s, z)))(6.1)

is called the ξ-regularized determinant of L̇.
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Remark 1. By the Taylor series expansion of (z−%)−s in the variable z
one finds that if L̇(z) is regularizable then ξḊ(s, z) is meromorphic at s = 0
for |z| sufficiently small (cf. [Il2, Prop. 1]); CTs=0 denotes the constant term
in the Laurent expansion. The definition obviously extends to functions L̇
satisfying AC only up to finitely many zeros and poles.

The following propositions are consequences of Theorem 1, Corollary 1
and Theorem 3 of [Il2].

Proposition 6.2. ∆Ḋ(z) is a meromorphic function of finite order with
the same zeros and poles as L̇(z). The polynomial PḊ(z) such that

∆Ḋ(z) = ePḊ(z)∆Wei
Ḋ

(z)(6.2)

with the (absolutely convergent) canonical Weierstrass product

∆Wei
Ḋ

(z) :=
∏

%∈C

{(
1− z

%

)
exp

( ġ∑

k=0

1
k

(
z

%

)k)}ordL̇,%
(6.3)

is explicitly given by

PḊ(z) =
ġ∑

l=0

zl

l!
log(l)∆Ḋ(0),

log(l)∆Ḋ(z) = (−1)l+1 CTs=0(ξḊ(s+ l, z)), l = 0, 1, . . .

Proposition 6.3. In the situation GS + AC, ξD(s) and ξD∗(s), the
ξ functions of L(z) and L∗(z), are holomorphic. For the regularized deter-
minants one has

L(z) = ∆D(z), L∗(z) = ∆D∗(z).(6.4)

Proposition 6.4. Let pn ∈ C (n = 0, 1, . . .) with <(p0) ≤ <(p1) ≤ . . . ≤
<(pn) ≤ . . . , let p := limn→∞<(pn) ∈ R ∪ {∞} and Bn(z) (n = 0, 1, . . .) be
complex polynomials. If in the situation of Definition 4.1 with π/2 < ϕ < π
for every q′ < q < p the asymptotics

θḊ(t)−
∑

<(pn)<q

tpnBn(log t) = O(|t|q′) for |t| → 0(6.5)

is valid for −(ϕ − π/2) < arg(t) < ϕ − π/2 then ξḊ(s) is meromorphic for
<(s) > −p with poles only at s = −pn, n = 0, 1, . . . , with singular part

Bn(∂s)
[

1
s+ pn

]
.

Remark 2. Proposition 6.4 is an easy consequence of the Mellin integral
representation ξḊ(s) = � ∞0 θḊ(s)ts−1 dt while for the proof of Proposition 6.3
a sort of Hankel integral is used.
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7. Functional equations and ε-factors. In the situation of the The-
orem, L(z) and L∗(z) are regularizable by Proposition 6.3 and L∞(z) and
L∗∞(z) are regularizable by Proposition 6.4. Thus also L̂(z) and L̂∗(z) are
regularizable and so by Proposition 6.2 there is a polynomial P (z) such that
the following functional equation for the ξ-regularized determinants is valid:

∆D̂(z) = eP (z)∆D̂∗(−z),(7.1)

as by (3.3) both sides represent meromorphic functions of finite order with
the same zeros and poles.

Definition 7.1. eP (z) is called the ε-factor and P (z) (of course only
determined up to a summand 2πik, k ∈ Z) is called the ε-polynomial of the
ξ-regularization.

Again by (3.3) one has∆Wei
D̂

(z) = ∆Wei
D̂∗

(−z) for the canonical Weierstrass
product (6.3) and comparison with (7.1) using Proposition 6.2 shows:

Proposition 7.2. The ε-polynomial is explicitly given with a k ∈ Z by

P (z) = 2πik +
ĝ∑

l=0

zl

l!
CTs=0(ξD̂∗(s+ l)− (−1)lξD̂(s+ l)).(7.2)

The ξ function of L̂+(z) (compare the proof of Proposition 5.1) can
obviously be expressed by the ξD̂(∗)(s):

ξD̂+
(s) =

eπisξD̂(s)− ξD̂∗(s)
eπis − e−πis .(7.3)

Conclusion. By (7.3) the singular parts of ξD̂+
(s) are determined by

those of the ξD̂(∗)(s) except for the residues at s = l, l ∈ Z, as the denomi-
nators of (7.3) become 0.

Knowing the ε-polynomial P (z) the missing coefficients can be derived
from (7.2) for all l ∈ N, and it can be derived up to a summand k ∈ Z for
l = 0.

Special case symmetry L̂ = L̂∗. To completely derive the singular parts
of ξD̂+

(s) = (1 + e−πis)−1ξD̂(s) one only needs (the singular parts of ξD̂(s)
and) the values CTs=2n+1(ξD̂(s)), n ∈ Z. For n ≥ 0 these values can be
derived from the ε-factor by (7.2):

P (z) = 2πik +
[(ĝ−1)/2]∑

n=0

2 CTs=0 ξD̂(s+ 2n+ 1)
z2n+1

(2n+ 1)!
(7.4)

with k ∈ Z. In particular the ε-polynomial is uneven up to the unknown
2πik. The singular parts of ξD̂+

(s) at s 6= 2n + 1 (in particular for s = 0!)
are completely determined by those of ξD̂(s).
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8. Proof of part (c). The idea is to get the asymptotics of θD̂+
(t),

t → 0, from the singular parts of ξD̂+
(s) by applying Proposition 6.4. And

these are derived from (7.3) and (7.2), having as input the information about
ξD̂(∗)(s) available from GS and Propositions 6.3 and 6.4.

By Propositions 6.3 and 6.4 the only singular parts of ξD̂(∗)(s) = ξD(∗)(s)
+ ξ

D
(∗)
∞

in the half plane <(s) > −1 are

α
(∗)
l

s− l , l = 0, 1, . . . , g(∗)
∞ .

ξD̂(s) and ξD̂∗(s) are holomorphic for <(s) ≥ ĝ + 1 by the absolute con-

vergence of the defining series, thus α(∗)
l = 0 for l > ĝ. Using the Laurent

expansion at s = l,

1
eπis − e−πis =

(−1)l

2πi
· 1
s− l +O(s− l),

one gets from (7.3), (7.2) and the described singular parts of ξD̂(s) and
ξD̂∗(s) the singular parts of ξD̂+

(s):

αl − (−1)lα∗l
2πi(s− l)2 +

αl
2(s− l) −

(−1)ll!p̃l
2πi(s− l) , l = 0, . . . , ĝ,

with p̃l = pl for l 6= 0 and p̃0 = p0−2πik. By part (a) of the Theorem, θD̂+
(t)

satisfies an asymptotics of the form (6.5) in the domain of convergence
π − ϕ′ < arg(t) < π + ϕ′ with a suitable 0 < ϕ′ < π/2. From the just
determined singular parts one can derive this asymptotics up to order 1 by
Proposition 6.4 (and a trivial rotation):

θD̂+
(t) ∼

ĝ∑

l=0

(
−αl − (−1)lα∗l

2πi
t−l log t+

(
αl
2
− (−1)ll!p̃l

2πi

)
t−l
)
, |t| → 0,

which yields the Laurent expansion. For the symmetric case compare the
discussion in Section 7.

9. Other regularizations. Definition 6.1 can be generalized: Let δ =
(δn)n=0,1,... be any sequence of complex numbers with δ0 = 1. Then in the
situation of Definition 6.1 the δ-regularized determinant is defined by

∆δ
Ḋ

(z) := exp(−CTs=0(δ(s)ξḊ(s, z)))(9.1)

with the formal power series δ(s) = δ0 + δ1s+ δ2s
2 + . . . So δ(s) = 1 corre-

sponds to ξ-regularization. δ(s) = Γ−1(s+1) is called the zeta-regularization
and is the most natural one and most frequently used (see [Il2]).



114 G. Illies

As generalization of Proposition 6.2 one has ([Il2, Theorem 1])

∆δ
Ḋ

(z) = ePḊ,δ(z)∆Wei
Ḋ

(z),

PḊ,δ(z) =
g∑

l=0

(−1)l+1 CTs=0(δ(s)ξD(s+ l))
zl

l!
.

In the situation of the Theorem one can define an ε-polynomial P δ(z) for
the δ-regularization analogously by (7.1). Since by Proposition 6.3, ξD(s, z)
is holomorphic at s = 0, we have L(z) = ∆δ

D(z) independently of δ, and the
corresponding fact is true for L∗(z). Using this the following proposition is
easily extracted from the above proof of part (c) of the Theorem.

Proposition 9.1. In the situation of the Theorem the ε-polynomial P δ

of the δ-regularization is given by

P δ(z) = P (z) + 2πik′ +
ĝ∑

l=0

δ1(α∗l − (−1)lαl)
zl

l!
(9.2)

with the α
(∗)
l from (3.8) and its “dual”, k′ ∈ Z and P (z) being the ε-

polynomial for the ξ-regularization.

10. Example: Hecke L-series. We now apply the Theorem to Hecke
L-series, thus, in particular, rediscover the results of [Cr], [Gu], [Ka]. To
do this the functions θ

D
(∗)
∞

(t) have to be found, shown to be meromorphic
in C and the Laurent expansion (3.8) and the ε-polynomial P (z) of the
ξ-regularization have to be explicitly determined.

In this case the functions L(∗)
∞ (z) are products of the usual Γ -functions

whose regularizations are obtained from Proposition 10.1. In [Il2, Propo-
sition 8.3] also the regularizations of the higher Γ -functions are given, so
for any kind of L-series with functional equation including only higher
Γ -functions (in particular Selberg-type zeta functions) the application of
the Theorem is reduced to trivial calculations.

10.1. Review of groessencharacters and Hecke L-series. Let k be an
algebraic number field with n = [k : Q] and for an integral ideal m let Jm

be the group of fractional ideals coprime to m. For every infinite place p
we have the absolute value |a|p = |ip(a)| for a corresponding embedding
ip : k ↪→ C. Let np = 1 or 2 if p is real or complex, respectively, and for
a ∈ Jm let N(a) be the ideal norm.

A quasi-character χ : Jm → C∗ such that there exist parameters mp ∈ Z,
ϕp ∈ R for all p |∞ and s0 ∈ C with mp ∈ {0, 1} for real p and

∑
p|∞ npϕp
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= 0 and

χ((a)) = (N((a)))−s0
∏

p|∞
|a|−iϕp

p

(
ap

|a|p

)mp

for a ∈ ok, a ≡ 1 mod m

is called a groessencharacter modulo m over k. The parameters s0,mp, ϕp

are uniquely determined by χ. From now on we assume that χ is primitive,
i.e. it is not the restriction of a groessencharacter modulo m′ with m′ |m,
and that it is normalized , i.e. s0 = 0. The results for the general case can
easily be derived from this case. The Hecke L-series of χ is defined by the
absolutely convergent Euler product

L(χ, s) =
∏

p

(
1− χ(p)

N(p)s

)−1

, <(s) > 1,(10.1)

over all prime ideals p with the convention χ(p) := 0 for p 6∈ Jm. With
ΓR(s) = 2−1/2π−s/2Γ (s/2) and ΓC(s) := (2π)−sΓ (s) the completed Hecke
L-series is defined by

L̂(χ, s) := L(χ, s)L∞(χ, s),

L∞(χ, s) :=
∏

p|∞
Γp

(
s+
|mp|
np

+ iϕp

)
(10.2)

with Γp = ΓR or ΓC if p is real or complex, respectively. Let ε0 be 1 for
the trivial groessencharacter χ0 = 1, else ε0 = 0 and let dk denote the
discriminant of k. Then (s(s − 1))ε0L̂(χ, s) is an entire function of order 1
with exponent 1 and genus 1 and satisfies the functional equation

L̂(χ, s) = W (χ)(N(m)|dk|)1/2−sL̂(χ, 1− s)(10.3)

with |W (χ)| = 1 = W (χ0). For the trivial character χ = χ0, L(χ, s) = ζk(s)
is the Dedekind zeta function which has a simple pole at s = 1. Compare
[Ne, Kap. VII, §8] for proofs and [We], [Ba] for the notation.

10.2. The Theorem for Hecke L-series. Let χ be a primitive normalized
groessencharacter modulo m over k with the above notations. We apply
the Theorem to L(z) := L(χ, z + 1/2), L∗(z) := L(χ, z + 1/2), L∞(z) :=
L∞(χ, z + 1/2) and L∗∞(z) := L∞(χ, z + 1/2). Then we have the absolutely
convergent Dirichlet series representation

logL(z) =
∑

p<∞

∞∑

m=1

χ(p)
m(N(p))m(z+1/2)

, <(z) > 1/2,

as well as the corresponding one for logL∗(z), and from (10.2) we get

θD∞(t) = −
∑

p real

e(−|mp|−iϕp−1/2)t

1− e−2t −
∑

p comp.

e(−|mp|/2−iϕp−1/2)t

1− e−t ,(10.4)
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θD∗∞(t) = −
∑

p real

e(−|mp|+iϕp−1/2)t

1− e−2t −
∑

p comp.

e(−|mp|/2+iϕp−1/2)t

1− e−t .(10.5)

Both functions are meromorphic in C and keeping in mind that
∑

p|∞ npϕp

= 0 we obtain for the Laurent coefficients (3.8):

α1 = α∗1 = −n
2
, α0 = α∗0 = −n

4
+
r2

2
+

1
2

∑

p|∞
|mp|,(10.6)

with r2 being the number of complex places of k.
Now to calculate P (z) we need to determine the ξ-regularized deter-

minant ∆D̂(∗)(z) = ∆D(∗)(z)∆
D

(∗)
∞

(z) of L̂(∗)(z). But we have ∆D(∗)(z) =

L(∗)(z) by Proposition 6.3 and the ∆
D

(∗)
∞

(z) can be evaluated with the fol-

lowing application of [Il2, Corollary 8.4].

Proposition 10.1. The ξ-regularized determinant of the function L̇(z)
= Γ (az+ b), a>0, b ∈ C, is given with the Euler–Mascheroni constant γ by

∆Ḋ(z) =
Γ (az + b)√

2π
e−(log a−γ)(az+b−1/2).

From (10.2), (7.1) and (10.3) one finally gets (3.7) explicitly: P (z) =
p1z + p0, where

p1 = γn+ log
(

(2π)n

N(m)|dk|

)
, p0 = logW (χ) + 2πik′, k′ ∈ Z.(10.7)

Conclusion. For the functions θD̂+
(z) and θD̂∗+

(z) the statements of

the Theorem are true with the parameters given by (10.4)–(10.7). In partic-
ular , equation (3.6) is satisfied. For −π − ε < arg(t) < π + ε the only poles
of θD̂+

(t) are the following simple poles:

• for all m ∈ N and p <∞: at t = m logN(p) with residue χ(p) logN(p)
2πi(N(p))m/2

and at t = −m logN(p) with residue χ(p) logN(p)
2πi(N(p))m/2

,

• for all m ∈ N: at t = −2πim with residue −n/2 (with n = [k : Q]),
• for all m ∈ N: at t = −πi(2m+ 1) with residue −r1/2, where r1 is the

number of real embeddings of k

(which can cancel partially). Define

wp(t) :=

{
1, p real ,

e
|mp|

2 t + e−
|mp|

2 t, p complex.

Then there is a k ∈ Z such that with the Euler–Mascheroni constant γ and
with 0 < arg(t) < π for =(t) > 0,
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θD̂+
(t)− 1

2πi

(∑

p|∞
e−(1/2+iϕp)t wp(t)

1− e−t
)

log t

− 1
2πi

(
log
(

(2π)n

N(m)|dk|

)
+ n

(
γ − πi

2

))
1
t

+
n

8
− r2

4
− 1

4

∑

p|∞
|mp|+

logW (χ)
2πi

+ k

is a function which is meromorphic for t ∈ C with a zero at t = 0. For χ = χ
one can choose logW (χ) = k = 0.

(For checking the result keep in mind mp ∈ {0, 1} for p real.)

Remark. For the function

θ+
D̂+

(t) :=
∑

=(%)>0

e%t, =(t) > 0,

where the summation with multiplicities is over all zeros % of L̂(z) with
positive imaginary part, one also has the functional equation (independent
of Guinand’s)

θ+
D̂+

(t) = θ+
D̂+

(exp(πi)t),(10.8)

if one defines complex conjugation in C̃∗ by |t| := t, arg(t) := − arg(t). This
follows immediately from the fact that % 7→ −% maps the set of zeros % of
L̂(z) = L̂(χ, z + 1/2) with =(%) > 0 onto itself.
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