On the irreducibility of the generalized Laguerre polynomials

by

M. FILASETA (Columbia, SC) and T.-Y. LAM (Berkeley, CA)

1. Introduction. The generalized Laguerre polynomials are defined by

$$L_m^{(\alpha)}(x) = \sum_{j=0}^m \frac{(m+\alpha)(m-1+\alpha)\dots(j+1+\alpha)(-x)^j}{(m-j)!j!},$$

where *m* is a positive integer and α is an arbitrary complex number. In 1929, I. Schur [4] established the irreducibility over the rationals of $L_m^{(0)}(x)$, the classical Laguerre polynomials, for every *m*. In 1931, I. Schur [5] considered $L_m^{(\alpha)}(x)$ in general and showed that $L_m^{(1)}(x)$ is irreducible over the rationals for every *m*. The case $\alpha \notin \{0, 1\}$ remained open. The purpose of this paper is to establish the following:

THEOREM 1. Let α be a rational number which is not a negative integer. Then for all but finitely many positive integers m, the polynomial $L_m^{(\alpha)}(x)$ is irreducible over the rationals.

Before going to the proof, it is worth noting that reducible $L_m^{(\alpha)}(x)$ do exist even with $\alpha = 2$. In particular, we give the following examples:

$$L_2^{(2)}(x) = \frac{1}{2}(x-2)(x-6),$$

$$L_2^{(23)}(x) = \frac{1}{2}(x-20)(x-30),$$

$$L_4^{(23)}(x) = \frac{1}{24}(x-30)(x^3-78x^2+1872x-14040),$$

$$L_4^{(12/5)}(x) = \frac{1}{15000}(25x^2-420x+1224)(25x^2-220x+264),$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 12D05; Secondary 11R09, 33C45.M. Filaseta gratefully acknowledges support from the National Security Agency.

$$L_5^{(39/5)}(x) = \frac{-1}{375000} (5x - 84)(625x^4 - 29500x^3 + 448400x^2 - 2662080x + 5233536).$$

It is not difficult to show that in fact there are infinitely many positive integers α for which $L_2^{(\alpha)}(x)$ is reducible (a product of two linear polynomials).

Theorem 1 is a direct consequence of the following more general result:

THEOREM 2. Let α be a rational number which is not a negative integer. Then for all but finitely many positive integers m, the polynomial

$$\sum_{j=0}^{m} a_j \frac{(m+\alpha)(m-1+\alpha)\dots(j+1+\alpha)x^j}{(m-j)!j!}$$

is irreducible over the rationals provided only that $a_j \in \mathbb{Z}$ for $0 \leq j \leq m$ and $|a_0| = |a_m| = 1$.

I. Schur obtained his irreducibility results for $L_m^{(0)}(x)$ and $L_m^{(1)}(x)$ through general results similar to the above. Recent work of a similar nature has been done by Filaseta [1, 2] and by Filaseta and Trifonov [3]. We note also that the above results can be made effective so that for any fixed $\alpha \in \mathbb{Q}$, α not a negative integer, it is possible to determine a finite set $S = S(\alpha)$ of msuch that the polynomial in Theorem 2 is irreducible (for a_j as stated there) provided $m \notin S$.

2. A proof of Theorem 2. For a prime p and a non-zero integer a, we define $\nu(a) = \nu_p(a) = e$ where $p^e \parallel a$. We set $\nu(0) = \infty$. We begin with the following preliminary results.

LEMMA 1. Let k be a positive integer. Suppose $g(x) = \sum_{j=0}^{n} b_j x^j \in \mathbb{Z}[x]$ and p is a prime such that $p \nmid b_n$, $p \mid b_j$ for all $j \in \{0, 1, \ldots, n-k\}$, and $\nu(b_j) > \nu(b_0) - j/k$ for $1 \leq j \leq n$. Then for any integers a_0, a_1, \ldots, a_n with $|a_0| = |a_n| = 1$, the polynomial $f(x) = \sum_{j=0}^{n} a_j b_j x^j$ cannot have a factor of degree k in $\mathbb{Z}[x]$.

LEMMA 2. Let a, b, c and d be integers with $bc-ad \neq 0$. Then the largest prime factor of (am + b)(cm + d) tends to infinity as the integer m tends to infinity.

Lemma 1 is a consequence of Lemma 2 in [1]. Observe that f(x) satisfies the same conditions as g(x) in the lemma so that the lemma can be established by simply showing the conditions on g(x) imply g(x) cannot have a factor of degree k (see [1] for details). Lemma 2 above is a fairly easy consequence of the fact that the Thue equation $ux^3 - vy^3 = w$ has finitely many solutions in integers x and y where u, v, and w are fixed integers with $w \neq 0$. It also immediately follows from Corollary 1.2 of [6]. We omit the proofs.

178

Fix α now as in Theorem 2. Throughout the argument we suppose as we may that m is large. Define

$$c_j = \binom{m}{j} (m+\alpha)(m-1+\alpha) \dots (j+1+\alpha) \quad \text{for } 0 \le j \le m$$

We want to show that for all but finitely many positive integers m, the polynomial $f(x) = \sum_{j=0}^{m} a_j c_j x^j$ is irreducible over the rationals, where a_j are arbitrary integers with $|a_0| = |a_m| = 1$. Motivated by Lemma 1, we consider instead $g(x) = \sum_{j=0}^{m} c_j x^j$. Let u and v be relatively prime integers with v > 0 such that $\alpha = u/v$. The condition that α is not a negative integer implies that for each $j \in \{0, 1, \ldots, m-1\}, m-j+\alpha$ and, hence, v(m-j) + u cannot be zero. We assume that g(x) has a factor in $\mathbb{Z}[x]$ of degree $k \in [1, m/2]$ and establish the theorem by obtaining a contradiction to Lemma 1. We divide the argument into cases depending on the size of k.

CASE 1: $k > m/\log^2 m$. For a and b integers with b > 0, let $\pi(x; b, a)$ denote the number of primes $\leq x$ which are $\equiv a \pmod{b}$. Then the Prime Number Theorem for Arithmetic Progressions implies that if gcd(a, b) = 1, then

$$\pi(x; b, a) = \frac{1}{\phi(b)} \int_{2}^{x} \frac{dt}{\log t} + O\left(\frac{x}{\log^{4} x}\right) \\ = \frac{1}{\phi(b)} \left(\frac{x}{\log x} + \frac{x}{\log^{2} x} + \frac{2x}{\log^{3} x} + O\left(\frac{x}{\log^{4} x}\right)\right).$$

By considering $\pi(x; b, a) - \pi(x - h; b, a)$, it follows that for a and b fixed, the interval (x - h, x] contains a prime $\equiv a \pmod{b}$ if $h = x/(2\log^2 x)$ and if x is sufficiently large. Taking a = u, b = v, and x = vm + u, we deduce that for some integer $j \in [0, k)$, the number v(m - j) + u is prime. Call such a prime p, and observe that $p \ge 2vm/3$ (since v is a positive integer and m is large). We deduce that p does not divide v. Observe that

$$c_{l} = \binom{m}{l} \frac{(vm+u)(v(m-1)+u)\dots(v(l+1)+u)}{v^{m-l}} \quad \text{for } 0 \le l \le m.$$

For $j \in \{0, 1, ..., k-1\}$, the numbers v(m-j)+u appear in the numerator of the fraction on the right-hand side above whenever $0 \le l \le m-k$. Therefore,

(1)
$$\nu_p(c_l) \ge 1 \quad \text{for } 0 \le l \le m-k.$$

Since $c_m = 1$, $\nu_p(c_m) = 0$. To obtain a contradiction to Lemma 1 for the case under consideration, we show that $\nu_p(c_0) = 1$; the contradiction will be achieved since (1) and $k \leq m-k$ imply $\nu(c_l) \geq 1 > 1 - l/k$ for $1 \leq l \leq k$ and since the inequality $\nu(c_l) > 1 - l/k$ is clear for $k < l \leq m$. Recall that $p \nmid v$ and that $p \geq 2vm/3$. For $j \in \{0, 1, \ldots, m-1\}$, we deduce the inequality

$$2p > vm + u \ge v(m - j) + u \ge v + u > -p.$$

As α is not a negative integer, none of v(m-j) + u can be zero. Hence, p itself is the only multiple of p among the numbers v(m-j) + u with $0 \le j \le m-1$. Since $c_0 = (vm+u)(v(m-1)+u) \dots (v+u)/v^m$, we obtain $\nu_p(c_0) = 1$.

CASE 2: $k_0 \leq k \leq m/\log^2 m$ with $k_0 = k_0(u, v)$ a sufficiently large integer. Let $z = k(\log \log k)^{1/2}$. We first show that there is a prime p > z that divides v(m-j) + u for some $j \in \{0, 1, \ldots, k-1\}$. Then (1) follows as before, and we will obtain a contradiction to Lemma 1 by showing $\nu(c_j) > \nu(c_0) - j/k$ for $1 \leq j \leq m$.

Let

$$T = \{v(m-j) + u : 0 \le j \le k-1\}.$$

Since *m* is large, we deduce that the elements of *T* are each $\geq m/2$. Also, observe that gcd(u, v) = 1 implies that each element of *T* is relatively prime to *v*. For each prime $p \leq z$, we consider an element $a_p = v(m - j) + u \in T$ with $\nu_p(a_p)$ as large as possible. We let

$$S = T - \{a_p : p \nmid v, p \le z\}.$$

By the Prime Number Theorem,

$$\pi(z) \le \frac{2k(\log\log k)^{1/2}}{\log k}.$$

We combine this momentarily with $|S| \ge k - \pi(z)$. Since $k \le m/\log^2 m$, we obtain $m \ge k \log^2 k$. Consider a prime $p \le z$ with p not dividing v, and let $r = \nu_p(a_p)$. By the definition of a_p , if j > r, then there are no multiples of p^j in T (and, hence, in S). For $1 \le j \le r$, there are $\le [k/p^j] + 1$ multiples of p^j in T and, hence, at most $[k/p^j]$ multiples of p^j in S. Therefore,

$$\nu_p\left(\prod_{s\in S} s\right) \le \sum_{j=1}^r \left[\frac{k}{p^j}\right] \le \nu_p(k!) \quad \text{and} \quad \prod_{s\in S} \prod_{p\le z} p^{\nu_p(s)} \le k! \le k^k.$$

On the other hand,

$$\prod_{s \in S} s \ge \left(\frac{m}{2}\right)^{|S|} \ge \left(\frac{k \log^2 k}{2}\right)^{k - \pi(z)}$$

Recalling our bound on $\pi(z)$, we obtain

$$\log\left(\prod_{s\in S} s\right) \ge (k - \pi(z))(\log k + 2\log\log k - \log 2)$$
$$\ge \left(k - \frac{2k\sqrt{\log\log k}}{\log k}\right)(\log k + 2\log\log k - \log 2)$$
$$\ge k\log k + 2k\log\log k + O(k\sqrt{\log\log k}).$$

Since $k \ge k_0$ where k_0 is sufficiently large,

$$\log\left(\prod_{s\in S} s\right) > k\log k \ge \log\left(\prod_{s\in S} \prod_{p\le z} p^{\nu_p(s)}\right).$$

It follows that there is a prime p > z that divides some element of S and, hence, divides some element of T.

Fix a prime p > z that divides an element in T, and let $\nu = \nu_p$. Fix $j \in \{1, \ldots, m\}$. We show $\nu(c_j) > \nu(c_0) - j/k$. Observe that

$$\nu(c_0) - \nu(c_j) \le \nu((vj+u)(v(j-1)+u)\dots(v+u))$$

$$\le \nu((vj+|u|)!) = \sum_{i=1}^{\infty} \left[\frac{vj+|u|}{p^i}\right] < \sum_{i=1}^{\infty} \frac{vj+|u|}{p^i} = \frac{vj+|u|}{p-1}.$$

Since $p > z = k(\log \log k)^{1/2}$ and $k \ge k_0$, we deduce that (vj + |u|)/(p-1) < j/k and the inequality $\nu(c_j) > \nu(c_0) - j/k$ follows. Hence, as indicated at the beginning of this case, we obtain a contradiction to Lemma 1.

CASE 3: $2 \le k < k_0$. By Lemma 2 (with a = v, b = u, c = v, and d = u-v), the largest prime factor of the product (vm+u)(v(m-1)+u) tends to infinity. Since m is large, we deduce that there is a prime $p > (v + |u|)k_0$ that divides (vm + u)(v(m - 1) + u). The argument now follows as in the previous case. In particular,

$$\frac{\nu(c_0) - \nu(c_j)}{j} < \frac{vj + |u|}{j(p-1)} \le \frac{v + |u|}{p-1} \le \frac{1}{k_0} < \frac{1}{k} \quad \text{ for } 1 \le j \le m.$$

Hence, in this case, we also obtain a contradiction.

CASE 4: k = 1. From Lemma 2, if $u \neq 0$, then the largest prime factor of m(vm + u) tends to infinity with m. We consider a large prime factor pof this product. In particular, we suppose that p > v + |u|. Note this implies $p \nmid v$. As in the previous case, we are through if $p \mid (vm + u)$. So suppose $p \mid m$. The binomial coefficient $\binom{m}{j}$ appears in the definition of c_j , and this is sufficient to guarantee that $\nu(c_j) \geq 1$ and $\nu(c_{m-j}) \geq 1$ for $1 \leq j \leq p - 1$. On the other hand,

$$c_{j} = \binom{m}{j} \frac{(vm+u)(v(m-1)+u)\dots(v(j+1)+u)}{v^{m-j}}$$

For $j \leq m-p$, the numerator of the fraction on the right is a product of $\geq p$ consecutive terms in the arithmetic progression vt + u with gcd(p, v) = 1; thus, $\nu(c_{m-j}) \geq 1$ for $j \geq p$. This implies that (1) holds with k = 1. It follows, along the lines of the previous two cases, that $\nu(c_j) > \nu(c_0) - j/k$ for $1 \leq j \leq m$. A contradiction to Lemma 1 is again obtained (and the proof of the theorem is complete).

References

- M. Filaseta, The irreducibility of all but finitely many Bessel polynomials, Acta Math. 174 (1995), 383–397.
- [2] —, A generalization of an irreducibility theorem of I. Schur, in: Analytic Number Theory: Proc. of a Conference in Honor of Heini Halberstam, Vol. 1, B. C. Berndt, H. G. Diamond and A. J. Hildebrand (eds.), Birkhäuser, Boston, 1996, 371–396.
- [3] M. Filaseta and O. Trifonov, *The irreducibility of the Bessel polynomials*, J. Reine Angew. Math., to appear.
- I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen, *I*, Sitzungsber. Preuss. Akad. Wissensch. Phys.-Math. Kl. 23 (1929), 125–136.
- [5] —, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome, J. Reine Angew. Math. 165 (1931), 52–58.
- [6] T. N. Shorey and R. Tijdeman, *Exponential Diophantine Equations*, Cambridge Univ. Press, Cambridge, 1986.

Mathematics Department University of South Carolina Columbia, SC 29208, U.S.A. E-mail: filaseta@math.sc.edu http://www.math.sc.edu/~filaseta/ Department of Mathematics University of California Berkeley, CA 94720-3840, U.S.A. E-mail: lam@math.berkeley.edu http://www.math.berkeley.edu/~lam/

Received on 30.11.2000 and in revised form on 20.2.2002

(3923)