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On the irreducibility of the
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1. Introduction. The generalized Laguerre polynomials are defined by

L(α)
m (x) =

m∑

j=0

(m+ α)(m− 1 + α) . . . (j + 1 + α)(−x)j

(m− j)!j! ,

where m is a positive integer and α is an arbitrary complex number. In 1929,
I. Schur [4] established the irreducibility over the rationals of L(0)

m (x), the
classical Laguerre polynomials, for every m. In 1931, I. Schur [5] considered
L

(α)
m (x) in general and showed that L(1)

m (x) is irreducible over the rationals
for every m. The case α 6∈ {0, 1} remained open. The purpose of this paper
is to establish the following:

Theorem 1. Let α be a rational number which is not a negative integer.
Then for all but finitely many positive integers m, the polynomial L(α)

m (x) is
irreducible over the rationals.

Before going to the proof, it is worth noting that reducible L(α)
m (x) do

exist even with α = 2. In particular, we give the following examples:

L
(2)
2 (x) =

1
2

(x− 2)(x− 6),

L
(23)
2 (x) =

1
2

(x− 20)(x− 30),

L
(23)
4 (x) =

1
24

(x− 30)(x3 − 78x2 + 1872x− 14040),

L
(12/5)
4 (x) =

1
15000

(25x2 − 420x+ 1224)(25x2 − 220x+ 264),
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L
(39/5)
5 (x) =

−1
375000

(5x− 84)(625x4 − 29500x3

+ 448400x2 − 2662080x+ 5233536).

It is not difficult to show that in fact there are infinitely many positive inte-
gers α for which L(α)

2 (x) is reducible (a product of two linear polynomials).
Theorem 1 is a direct consequence of the following more general result:

Theorem 2. Let α be a rational number which is not a negative integer.
Then for all but finitely many positive integers m, the polynomial

m∑

j=0

aj
(m+ α)(m− 1 + α) . . . (j + 1 + α)xj

(m− j)!j!
is irreducible over the rationals provided only that aj ∈ Z for 0 ≤ j ≤ m and
|a0| = |am| = 1.

I. Schur obtained his irreducibility results for L(0)
m (x) and L(1)

m (x) through
general results similar to the above. Recent work of a similar nature has been
done by Filaseta [1, 2] and by Filaseta and Trifonov [3]. We note also that
the above results can be made effective so that for any fixed α ∈ Q, α not
a negative integer, it is possible to determine a finite set S = S(α) of m
such that the polynomial in Theorem 2 is irreducible (for aj as stated there)
provided m 6∈ S.

2. A proof of Theorem 2. For a prime p and a non-zero integer a, we
define ν(a) = νp(a) = e where pe ‖ a. We set ν(0) = ∞. We begin with the
following preliminary results.

Lemma 1. Let k be a positive integer. Suppose g(x) =
∑n

j=0 bjx
j ∈ Z[x]

and p is a prime such that p - bn, p | bj for all j ∈ {0, 1, . . . , n − k}, and
ν(bj) > ν(b0)− j/k for 1 ≤ j ≤ n. Then for any integers a0, a1, . . . , an with
|a0| = |an| = 1, the polynomial f(x) =

∑n
j=0 ajbjx

j cannot have a factor of
degree k in Z[x].

Lemma 2. Let a, b, c and d be integers with bc−ad 6= 0. Then the largest
prime factor of (am+ b)(cm+ d) tends to infinity as the integer m tends to
infinity.

Lemma 1 is a consequence of Lemma 2 in [1]. Observe that f(x) satisfies
the same conditions as g(x) in the lemma so that the lemma can be es-
tablished by simply showing the conditions on g(x) imply g(x) cannot have
a factor of degree k (see [1] for details). Lemma 2 above is a fairly easy
consequence of the fact that the Thue equation ux3 − vy3 = w has finitely
many solutions in integers x and y where u, v, and w are fixed integers with
w 6= 0. It also immediately follows from Corollary 1.2 of [6]. We omit the
proofs.
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Fix α now as in Theorem 2. Throughout the argument we suppose as we
may that m is large. Define

cj =
(
m

j

)
(m+ α)(m− 1 + α) . . . (j + 1 + α) for 0 ≤ j ≤ m.

We want to show that for all but finitely many positive integers m, the
polynomial f(x) =

∑m
j=0 ajcjx

j is irreducible over the rationals, where aj
are arbitrary integers with |a0| = |am| = 1. Motivated by Lemma 1, we
consider instead g(x) =

∑m
j=0 cjx

j . Let u and v be relatively prime integers
with v > 0 such that α = u/v. The condition that α is not a negative
integer implies that for each j ∈ {0, 1, . . . ,m − 1}, m − j + α and, hence,
v(m − j) + u cannot be zero. We assume that g(x) has a factor in Z[x] of
degree k ∈ [1,m/2] and establish the theorem by obtaining a contradiction
to Lemma 1. We divide the argument into cases depending on the size of k.

Case 1: k > m/log2m. For a and b integers with b > 0, let π(x; b, a)
denote the number of primes ≤ x which are ≡ a (mod b). Then the Prime
Number Theorem for Arithmetic Progressions implies that if gcd(a, b) = 1,
then

π(x; b, a) =
1

φ(b)

x�

2

dt

log t
+O

(
x

log4 x

)

=
1

φ(b)

(
x

log x
+

x

log2 x
+

2x
log3 x

+O

(
x

log4 x

))
.

By considering π(x; b, a)−π(x−h; b, a), it follows that for a and b fixed, the
interval (x− h, x] contains a prime ≡ a (mod b) if h = x/(2 log2 x) and if x
is sufficiently large. Taking a = u, b = v, and x = vm + u, we deduce that
for some integer j ∈ [0, k), the number v(m − j) + u is prime. Call such a
prime p, and observe that p ≥ 2vm/3 (since v is a positive integer and m is
large). We deduce that p does not divide v. Observe that

cl =
(
m

l

)
(vm+ u)(v(m− 1) + u) . . . (v(l + 1) + u)

vm−l
for 0 ≤ l ≤ m.

For j ∈ {0, 1, . . . , k−1}, the numbers v(m−j)+u appear in the numerator of
the fraction on the right-hand side above whenever 0 ≤ l ≤ m−k. Therefore,

νp(cl) ≥ 1 for 0 ≤ l ≤ m− k.(1)

Since cm = 1, νp(cm) = 0. To obtain a contradiction to Lemma 1 for the
case under consideration, we show that νp(c0) = 1; the contradiction will be
achieved since (1) and k ≤ m−k imply ν(cl) ≥ 1 > 1− l/k for 1 ≤ l ≤ k and
since the inequality ν(cl) > 1 − l/k is clear for k < l ≤ m. Recall that p - v
and that p ≥ 2vm/3. For j ∈ {0, 1, . . . ,m− 1}, we deduce the inequality

2p > vm+ u ≥ v(m− j) + u ≥ v + u > −p.



180 M. Filaseta and T.-Y. Lam

As α is not a negative integer, none of v(m − j) + u can be zero. Hence,
p itself is the only multiple of p among the numbers v(m − j) + u with
0 ≤ j ≤ m− 1. Since c0 = (vm+ u)(v(m− 1) + u) . . . (v+ u)/vm, we obtain
νp(c0) = 1.

Case 2: k0 ≤ k ≤ m/log2m with k0 = k0(u, v) a sufficiently large
integer. Let z = k(log log k)1/2. We first show that there is a prime p > z
that divides v(m− j) + u for some j ∈ {0, 1, . . . , k− 1}. Then (1) follows as
before, and we will obtain a contradiction to Lemma 1 by showing ν(cj) >
ν(c0)− j/k for 1 ≤ j ≤ m.

Let
T = {v(m− j) + u : 0 ≤ j ≤ k − 1}.

Since m is large, we deduce that the elements of T are each ≥ m/2. Also,
observe that gcd(u, v) = 1 implies that each element of T is relatively prime
to v. For each prime p ≤ z, we consider an element ap = v(m− j) + u ∈ T
with νp(ap) as large as possible. We let

S = T − {ap : p - v, p ≤ z}.
By the Prime Number Theorem,

π(z) ≤ 2k(log log k)1/2

log k
.

We combine this momentarily with |S| ≥ k− π(z). Since k ≤ m/log2m, we
obtain m ≥ k log2 k. Consider a prime p ≤ z with p not dividing v, and let
r = νp(ap). By the definition of ap, if j > r, then there are no multiples of
pj in T (and, hence, in S). For 1 ≤ j ≤ r, there are ≤ [k/pj] + 1 multiples
of pj in T and, hence, at most [k/pj] multiples of pj in S. Therefore,

νp

(∏

s∈S
s
)
≤

r∑

j=1

[
k

pj

]
≤ νp(k!) and

∏

s∈S

∏

p≤z
pνp(s) ≤ k! ≤ kk.

On the other hand,

∏

s∈S
s ≥

(
m

2

)|S|
≥
(
k log2 k

2

)k−π(z)

.

Recalling our bound on π(z), we obtain

log
(∏

s∈S
s
)
≥ (k − π(z))(log k + 2 log log k − log 2)

≥
(
k − 2k

√
log log k
log k

)
(log k + 2 log log k − log 2)

≥ k log k + 2k log log k +O(k
√

log log k).
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Since k ≥ k0 where k0 is sufficiently large,

log
(∏

s∈S
s
)
> k log k ≥ log

(∏

s∈S

∏

p≤z
pνp(s)

)
.

It follows that there is a prime p > z that divides some element of S and,
hence, divides some element of T .

Fix a prime p > z that divides an element in T , and let ν = νp. Fix
j ∈ {1, . . . ,m}. We show ν(cj) > ν(c0)− j/k. Observe that

ν(c0)− ν(cj) ≤ ν((vj + u)(v(j − 1) + u) . . . (v + u))

≤ ν((vj + |u|)!) =
∞∑

i=1

[
vj + |u|
pi

]
<

∞∑

i=1

vj + |u|
pi

=
vj + |u|
p− 1

.

Since p > z = k(log log k)1/2 and k ≥ k0, we deduce that (vj+ |u|)/(p−1) <
j/k and the inequality ν(cj) > ν(c0) − j/k follows. Hence, as indicated at
the beginning of this case, we obtain a contradiction to Lemma 1.

Case 3: 2 ≤ k < k0. By Lemma 2 (with a = v, b = u, c = v, and
d = u−v), the largest prime factor of the product (vm+u)(v(m−1)+u) tends
to infinity. Since m is large, we deduce that there is a prime p > (v+ |u|)k0

that divides (vm + u)(v(m − 1) + u). The argument now follows as in the
previous case. In particular,

ν(c0)− ν(cj)
j

<
vj + |u|
j(p− 1)

≤ v + |u|
p− 1

≤ 1
k0

<
1
k

for 1 ≤ j ≤ m.

Hence, in this case, we also obtain a contradiction.

Case 4: k = 1. From Lemma 2, if u 6= 0, then the largest prime factor
of m(vm+ u) tends to infinity with m. We consider a large prime factor p
of this product. In particular, we suppose that p > v+ |u|. Note this implies
p - v. As in the previous case, we are through if p | (vm + u). So suppose
p |m. The binomial coefficient

(
m
j

)
appears in the definition of cj , and this

is sufficient to guarantee that ν(cj) ≥ 1 and ν(cm−j) ≥ 1 for 1 ≤ j ≤ p− 1.
On the other hand,

cj =
(
m

j

)
(vm+ u)(v(m− 1) + u) . . . (v(j + 1) + u)

vm−j
.

For j ≤ m−p, the numerator of the fraction on the right is a product of ≥ p
consecutive terms in the arithmetic progression vt + u with gcd(p, v) = 1;
thus, ν(cm−j) ≥ 1 for j ≥ p. This implies that (1) holds with k = 1. It
follows, along the lines of the previous two cases, that ν(cj) > ν(c0) − j/k
for 1 ≤ j ≤ m. A contradiction to Lemma 1 is again obtained (and the proof
of the theorem is complete).
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