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On the irreducibility of the
generalized Laguerre polynomials
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1. Introduction. The generalized Laguerre polynomials are defined by

m .

(@) () — (m+a)(m—-1+a)...J+1+a)(—z)
Enla) = 2 (m =)

)

where m is a positive integer and « is an arbitrary complex number. In 1929,
I. Schur [4] established the irreducibility over the rationals of L,(g)(m), the
classical Laguerre polynomials, for every m. In 1931, I. Schur [5] considered

Ll (z) in general and showed that L%)(a:) is irreducible over the rationals
for every m. The case a ¢ {0, 1} remained open. The purpose of this paper
is to establish the following:

THEOREM 1. Let « be a rational number which is not a negative integer.
Then for all but finitely many positive integers m, the polynomial LSff)(x) 18
1rreducible over the rationals.

Before going to the proof, it is worth noting that reducible Lgﬁ‘)(a:) do
exist even with a = 2. In particular, we give the following examples:

(@) = (e~ 2)(x ~6),

L3 (@) = 5(x — 20)(x — 30),

1
L®() = 51— 30) (2% — 7827 + 1872z — 14040),

1
LU (z) = Teg0g (25¢° — 4202 + 1224) (250° — 220z + 264),
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L @) =

_ 4 3
= 5200y (57 — 84)(6252" — 20500z

4 4484002% — 2662080z + 5233536).

It is not difficult to show that in fact there are infinitely many positive inte-
gers « for which Léa) (x) is reducible (a product of two linear polynomials).

Theorem 1 is a direct consequence of the following more general result:

THEOREM 2. Let « be a rational number which is not a negative integer.
Then for all but finitely many positive integers m, the polynomial

ia‘(m+a)(m—1+a)...(j+1+oz)$j

J — 114!

_]70 (m j)‘]‘

is irreducible over the rationals provided only that a; € Z for 0 < j < m and
|ao| = lam| = 1.

I. Schur obtained his irreducibility results for L,(g)(m) and Lg,ll)(a;) through
general results similar to the above. Recent work of a similar nature has been
done by Filaseta [1, 2] and by Filaseta and Trifonov [3]. We note also that
the above results can be made effective so that for any fixed o € Q, a not
a negative integer, it is possible to determine a finite set S = S(a) of m
such that the polynomial in Theorem 2 is irreducible (for a; as stated there)
provided m & S.

2. A proof of Theorem 2. For a prime p and a non-zero integer a, we
define v(a) = vp(a) = e where p° || a. We set v(0) = co. We begin with the
following preliminary results.

LEMMA 1. Let k be a positive integer. Suppose g(x) = > ."_,bjx’ € Z[z]
and p is a prime such that p{by, p|b; for all j € {0,1,...,n — k}, and
v(bj) > v(bg) — j/k for 1 < j < n. Then for any integers ag, a1, ..., a, with
|ao| = |an| = 1, the polynomial f(x) = ", ajbjz! cannot have a factor of
degree k in Z[z].

LEMMA 2. Leta, b, ¢ and d be integers with bc—ad # 0. Then the largest
prime factor of (am +b)(ecm + d) tends to infinity as the integer m tends to
nfinity.

Lemma 1 is a consequence of Lemma 2 in [1]. Observe that f(x) satisfies
the same conditions as g(x) in the lemma so that the lemma can be es-
tablished by simply showing the conditions on g(z) imply ¢g(z) cannot have
a factor of degree k (see [1] for details). Lemma 2 above is a fairly easy
consequence of the fact that the Thue equation uz® — vy = w has finitely
many solutions in integers x and y where u, v, and w are fixed integers with
w # 0. It also immediately follows from Corollary 1.2 of [6]. We omit the
proofs.
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Fix a now as in Theorem 2. Throughout the argument we suppose as we
may that m is large. Define

¢ = <”f)(m+a)(m_1+a)...(j+1+a) for 0 < j < m.
J

We want to show that for all but finitely many positive integers m, the
polynomial f(z) = Z;’;O ajcjz? is irreducible over the rationals, where a;
are arbitrary integers with |ag| = |am,| = 1. Motivated by Lemma 1, we
consider instead g(z) = Z?LO cjz?. Let u and v be relatively prime integers
with v > 0 such that @« = u/v. The condition that « is not a negative
integer implies that for each j € {0,1,...,m — 1}, m — j + « and, hence,
v(m — j) + u cannot be zero. We assume that g(x) has a factor in Z[z] of
degree k € [1,m/2] and establish the theorem by obtaining a contradiction
to Lemma 1. We divide the argument into cases depending on the size of k.

CASE 1: k > m/log?m. For a and b integers with b > 0, let 7(z; b, a)
denote the number of primes < x which are = a (modb). Then the Prime
Number Theorem for Arithmetic Progressions implies that if ged(a,b) = 1,
then

T

dt z
mlwiba) = 25 § logt O<10g496>

_1<x+x+2x+0(a}>>
(b)) \logz  log?z  logdzx logtz /) )

By considering 7(z; b, a) — 7 (xz — h; b, a), it follows that for a and b fixed, the
interval (z — h, ] contains a prime = a (modb) if h = 2/(2log® x) and if =
is sufficiently large. Taking a = u, b = v, and x = vm + u, we deduce that
for some integer j € [0, k), the number v(m — j) 4+ u is prime. Call such a
prime p, and observe that p > 2vm/3 (since v is a positive integer and m is
large). We deduce that p does not divide v. Observe that

_(m\ (vm+u)(v(m —1)+u)...(v(l +1) +u)
a= l pm—l

For j € {0,1,...,k—1}, the numbers v(m—j)+wu appear in the numerator of

the fraction on the right-hand side above whenever 0 < [ < m—k. Therefore,

(1) vp(e)) >1 for0<I<m—k.

for 0 <l <m.

Since ¢, = 1, p(cm) = 0. To obtain a contradiction to Lemma 1 for the
case under consideration, we show that v,(co) = 1; the contradiction will be
achieved since (1) and k < m—k imply v(¢;) > 1 > 1—1/kfor 1 <[ < k and
since the inequality v(¢;) > 1 — [ /k is clear for k < | < m. Recall that pfv
and that p > 2vm/3. For j € {0,1,...,m — 1}, we deduce the inequality

2p>vm+u>v(m—j)+u>v+u>—p.
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As « is not a negative integer, none of v(m — j) + u can be zero. Hence,
p itself is the only multiple of p among the numbers v(m — j) + u with
0<j<m-—1. Since ¢cg = (vm+u)(v(m—1)4+u)...(v+u)/v™, we obtain
vp(co) = 1.

CASE 2: kg < k < m/log?m with ky = ko(u,v) a sufficiently large
integer. Let z = k(loglog k)'/2. We first show that there is a prime p > z
that divides v(m — j) + u for some j € {0,1,...,k —1}. Then (1) follows as
before, and we will obtain a contradiction to Lemma 1 by showing v(c;) >
v(co) —j/k for 1 <j <m.

Let

T={vim—j)+u:0<j<k-—1}
Since m is large, we deduce that the elements of T are each > m/2. Also,
observe that ged(u, v) = 1 implies that each element of T is relatively prime
to v. For each prime p < z, we consider an element ap, = v(m — j)+ueT
with vp(a,) as large as possible. We let

S=T—{ap:pfv,p <z}
By the Prime Number Theorem,
2k(log log k)1/?
< —— -
m(z) < log k

We combine this momentarily with |S| > k — 7(z). Since k& < m/log?m, we
obtain m > klog? k. Consider a prime p < z with p not dividing v, and let
r = vp(ap). By the definition of ay, if j > r, then there are no multiples of
p’ in T (and, hence, in S). For 1 < j < r, there are < [k/p’] + 1 multiples
of p/ in T and, hence, at most [k/p’] multiples of p/ in S. Therefore,

I/p<H s) < ZT: [5] < up(k!) and H Hp””(s) < k! < kF.

seS j=1 seS p<z

m S| k:log2 k k—m(z)
= (%) = .
2 2

sES

On the other hand,

Recalling our bound on 7(z), we obtain

log (H s) > (k—7(2))(logk + 2loglog k — log 2)

ses
S (k _ 2ky/loglogk

Tog ) (log k 4 2loglog k — log 2)

> klogk + 2kloglog k + O(k+/loglog k).
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Since k > ko where ko is sufficiently large,
log (] ) > klogk = log (T] [T»™).
s€S s€S p<lz

It follows that there is a prime p > z that divides some element of S and,
hence, divides some element of T.

Fix a prime p > z that divides an element in 7', and let v = v,,. Fix
j€{l,...,m}. We show v(c;) > v(co) — j/k. Observe that

v(co) —v(cj) <v((vj+u)(w(li—1)+u)...(v+u)
<+l =3 [HEM] < ST e Wt

Y2 —
i=1 = P p—1

Since p > z = k(loglog k)'/? and k > ko, we deduce that (vj+|ul)/(p—1) <
j/k and the inequality v(c;) > v(co) — j/k follows. Hence, as indicated at
the beginning of this case, we obtain a contradiction to Lemma 1.

CASE 3: 2 < k < kg. By Lemma 2 (with a = v, b = u, ¢ = v, and
d = u—v), the largest prime factor of the product (vm-+u)(v(m—1)+u) tends
to infinity. Since m is large, we deduce that there is a prime p > (v + |u|)ko
that divides (vm + u)(v(m — 1) + u). The argument now follows as in the
previous case. In particular,

vico) —vle) _vitlul ~vtfu -1 1
J jp=1) " p=1 "k k

Hence, in this case, we also obtain a contradiction.

for 1 <j<m.

CASE 4: k = 1. From Lemma 2, if 4 # 0, then the largest prime factor
of m(vm + u) tends to infinity with m. We consider a large prime factor p
of this product. In particular, we suppose that p > v+ |u|. Note this implies
pfv. As in the previous case, we are through if p|(vm + u). So suppose
p|m. The binomial coefficient (Zn) appears in the definition of ¢;, and this
is sufficient to guarantee that v(c;) > 1 and v(¢p—j) > 1for 1 <j<p-—1.
On the other hand,

¢ — <m>(vm—i-u)(v(m—1)+u)...(v(j+1)+u)‘

J v
For 5 < m —p, the numerator of the fraction on the right is a product of > p
consecutive terms in the arithmetic progression vt + u with ged(p,v) = 1;
thus, v(c¢m—j) > 1 for j > p. This implies that (1) holds with & = 1. It
follows, along the lines of the previous two cases, that v(c;) > v(co) — j/k
for 1 < 7 < m. A contradiction to Lemma 1 is again obtained (and the proof
of the theorem is complete).
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