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Distribution of digits in integers:
fractal dimensions and zeta functions

by

L. Olsen (St. Andrews)

1. Introduction and statement of results. Let N ≥ 2 be a fixed
positive integer. For a positive integer n ∈ N, let

(1.1) n = d0(n) + d1(n)N + d2(n)N2 + . . .+ dγ(n)(n)Nγ(n),

where di(n) ∈ {0, 1, . . . , N − 1} and dγ(n)(n) 6= 0, denote the N -ary expan-
sion of n.

The purpose of this paper is to introduce a very general class of subsets
of N defined in terms of the asymptotic behaviour of the digits in the N -ary
expansion of the integers, and to study the “fractal” dimensions and zeta
functions associated with these sets. In particular, we compute the “fractal”
dimensions of the set of positive integers n such that each digit i in n appears
with frequence pi for some probability vector p = (pi)i, i.e. we compute the
“fractal” dimensions of the set

(1.2) Br(p) =
{
n ∈ N

∣∣∣∣
∣∣∣∣
|{0 ≤ k ≤ γ(n) | dk(n) = i}|

γ(n) + 1
− pi

∣∣∣∣ ≤ r for all i
}

in the limit as r ↘ 0; and, for a given function f : {0, 1, . . . , N − 1} → R,
we compute the “fractal” dimensions of the set of positive integers n such
that the sum of f over the digits in n equals a given real number t, i.e. we
compute the “fractal” dimensions of the set

(1.3) Er(t) =
{
n ∈ N

∣∣∣∣
∣∣∣∣
f(d0(n)) + f(d1(n)) + . . .+ f(dγ(n)(n))

γ(n) + 1
−t
∣∣∣∣ ≤ r

}

in the limit as r ↘ 0. For example, if x ≈ 6.032078568 denotes the unique
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real number such that
9∑

i=0

(sin(i)− 7/10)xsin(i) = 0,

and we let

d = log
( 9∑

i=0

xsin(i)/x7/10
)
/ log(10) ≈ 0.8386016690,

then it follows from Corollary 5 that there are roughly nd positive integers
m less than n such that the average of the sum of the sines of the decimal
digits in m equals 7/10; more precisely, if

a(n) =
sin(d0(n)) + sin(d1(n)) + . . .+ sin(dγ(n)(n))

γ(n) + 1

denotes the average of the sum of the sines of the decimal digits in n and
we write

Er = {n ∈ N | |a(n)− 7/10| ≤ r}, Nn(Er) = |{1, . . . , n} ∩ Er|,
then

lim
r↘0

lim inf
n

logNn(Er)
log n

= lim
r↘0

lim sup
n

logNn(Er)
logn

= d.

Also, if we define the zeta function ζEr of the set Er by

ζEr(t) =
∑

n∈Er

1
nt
,

and denote the abscissa of convergence of ζr by σc,Er , then

lim
r↘0

σc,Er = d.

In Section 1.1 we introduce several natural fractional dimensions and zeta
functions of subsets of N. The key idea is that the fractional dimensions
and the abscissa of convergence provide natural discrete analogues of the
usual fractional dimensions in fractal geometry; indeed, this point of view is
supported by Corollaries 4 and 5 which provide natural discrete counterparts
of some well-known results in fractal geometry.

In Section 1.2 we define the notion of a continuous deformation of the
digits of a positive integer. Using this notion we introduce a very general class
of subsets of N defined in terms of the asymptotic behaviour of the digits
in the N -ary expansion of the integers. These sets include, for example, the
sets in (1.2) and (1.3), i.e. the set of positive integers n such that each digit
i of n appears with frequence pi for some probability vector p = (pi)i, i.e.
the set

Br(p) =
{
n ∈ N

∣∣∣∣
∣∣∣∣
|{0 ≤ k ≤ γ(n) | dk(n) = i}|

γ(n) + 1
− pi

∣∣∣∣ ≤ r for all i
}
,
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and the set of positive integers n such that the sum of the function f over
the digits of n equals a given real number t, i.e. the set

Er(t) =
{
n ∈ N

∣∣∣∣
∣∣∣∣
f(d0(n)) + f(d1(n)) + . . .+ f(dγ(n)(n))

γ(n) + 1
− t
∣∣∣∣ ≤ r

}
.

Section 1.3 contains the main result of the paper, viz. Theorem 2. In The-
orem 2 we compute the fractional dimensions and abscissa of convergence
of the zeta functions of the sets introduced in Section 1.2. The fractional di-
mensions and abscissa of convergence of the zeta functions will be expressed
in terms of entropies of certain probability measures. This provides an in-
teresting connection between dynamical systems and arithmetic functions
in number theory.

In Sections 1.4 and 1.5 we apply Theorem 2 to compute the fractional
dimensions of the set Br(p) and the set Er(t) (in the limit as r ↘ 0) (cf.
Corollaries 4 and 5). Corollary 4, giving the fractional dimensions of the
set Br(p), provides a natural discrete analogue of a classical result due to
Besicovitch and Eggleston on the Hausdorff dimension of certain sets of
non-normal numbers, and Corollary 5, giving the fractional dimensions of
the set Er(t), provides a natural discrete analogue of a result in dynamical
systems on the Hausdorff dimension of sets with prescribed ergodic averages.

Finally, in Section 1.6 we consider a more general class of zeta functions
associated with subsets of N and give an upper bound for the abscissa of
convergence.

1.1. Fractional dimensions and zeta functions of subsets of N. We will
now define various notions of fractional dimensions of a subset of the positive
integers N. For E ⊆ N, let Nn(E) = |{1, . . . , n} ∩ E|. Following [BeF], we
define the lower and upper fractal dimension of E by

(1.4) dim(E) = lim inf
n

logNn(E)
log n

, dim(E) = lim sup
n

logNn(E)
logn

.

Definitions of dimensions for discrete sets also appear in [BlK, BaT1, BaT2,
Fu, Na]. However, these definitions have been designed for other purposes
and generally take different values than dim(E) and dim(E). Motivated by
the so-called exponent of convergence for limit sets of Kleinian groups, we
define the exponent of convergence δ(E) of E ⊆ N by

(1.5) δ(E) = sup
{
t ≥ 0

∣∣∣∣
∑

n∈E

1
nt

=∞
}
.

The number δ(E) can clearly also be defined in terms of Dirichlet series and
the corresponding zeta functions. For E ⊆ N we define the zeta function ζE
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of E by

(1.6) ζE(t) =
∑

n∈E

1
nt
.

If we let σc,E and σa,E denote the abscissa of convergence of ζE and the
abscissa of absolute convergence of ζE, then clearly σc,E = σa,E = δ(E).
Since the coefficients in the Dirichlet series (1.6) are positive, it follows from
the general theory of Dirichlet series (cf. [Ap, Theorems 8.2 and 8.3]) that
σc,E = σa,E = dim(E). Hence we have

Proposition 1. Let E be a subset of N. Then

dim(E) ≤ dim(E) = σc,E = σa,E = δ(E) ≤ 1.

The reader is referred to the recent monograph by Lapidus & van Fran-
kenhuysen [LvF] for a different attempt to develop a theory of fractal di-
mensions (of so-called fractal strings) based on zeta functions.

1.2. Subsets of N defined by continuous deformations digits. We will
now introduce the notion of a continuous deformation of the digits of a
positive integer.

We first introduce some notation. Let

Σ∗ =
⋃

n

{0, 1, . . . , N − 1}n, Σ = {0, 1, . . . , N − 1}N,

i.e. Σ∗ is the set of all finite strings ω1 . . . ωn with elements ωi from {0, 1, . . .
. . . , N − 1}, and Σ is the set of all infinite strings ω1ω2 . . . with elements ωi
from {0, 1, . . . , N − 1}. We let S : Σ → Σ denote the shift map, i.e.

S(ω1ω2 . . .) = ω2ω3 . . .

For ω = ω1 . . . ωn, σ = σ1 . . . σm ∈ Σ∗, we let ωσ = ω1 . . . ωnσ1 . . . σm ∈ Σ∗
denote the concatenation of ω and σ, and for ω ∈ Σ∗, we write

ω = ωω . . . ∈ Σ.
Let P(Σ) denote the family of probability measures on Σ, and let PS(Σ)
denote the family of shift invariant probability measures on Σ.

Recall that if n is a positive integer, then

n = d0(n) + d1(n)N + d2(n)N2 + . . .+ dγ(n)(n)Nγ(n),

where di(n) ∈ {0, 1, 2, . . . , N − 1} and dγ(n)(n) 6= 0, denotes the N -ary
expansion of n. We denote the string d0(n)d1(n) . . . dγ(n)(n) ∈ Σ∗ of N -ary
digits of n by d(n), i.e.

d(n) := d0(n)d1(n) . . . dγ(n)(n) ∈ Σ∗.
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(We emphasize that d(n) is not the product of the N -ary digits in n. If, for
example, N = 7 and n = 2 + 5 · 7 + 4 · 72 + 6 · 74, then d(n) equals the string
25406.)

With each positive integer n we will now associate a natural probability
measure I(n) on Σ. Define I : N→ P(Σ) by

(1.7) I(n) =
1

γ(n) + 1

γ(n)∑

k=0

δSk(d(n))

where δx denotes the Dirac measure concentrated at x. The probability
measure I(n) describes in a measure-theoretic way the distribution of the
digits in n, and enables us to use methods from ergodic theory and large
deviations. By a continuous deformation of the digits of a positive integer,
we mean a pair (X,Ξ) where X is a metric space and Ξ : P(Σ) → X is
continuous with respect to the weak topology; we will think of the composite
n 7→ Ξ(I(n)) as a continuous deformation of the digits of n. Let (X,Ξ) be
a continuous deformation. For a subset C of X and r > 0, we let

(1.8) ∆r(C) = {n ∈ N | dist(Ξ(I(n)), C) ≤ r}.
If C = {x} for x ∈ X, we will write ∆r(x) = ∆r({x}). For different choices
of X and Ξ we obtain sets describing the distribution of different number-
theoretic functions. We emphasize that we do not assume that X is a vector
space and that the deformation map Ξ : P(Σ) → X is affine. Indeed,
interesting examples are obtained for certain non-affine deformations; cf.,
for example, the non-affine deformation in example (1.11) below. For a digit
i ∈ {0, 1, . . . , N − 1} we define the cylinder [i] generated by i by

[i] = {ω1ω2 . . . ∈ Σ | ω1 = i}.
• Distribution of digits: Let X = RN and define Ξ : P(Σ)→ X by

(1.9) Ξ(µ) = (µ([i]))i.

Then

∆r(C) =
{
n ∈ N

∣∣∣∣ dist
(( |{0 ≤ k ≤ γ(n) | dk(n) = i}|

γ(n) + 1

)

i

, C

)
≤ r
}
.

• Distribution of sum of digits: Let X= R and define Ξ : P(Σ)→ X by

(1.10) Ξ(µ) =
∑

i=0,1,...,N−1

iµ([i]).

Then

∆r(C) =
{
n ∈ N

∣∣∣∣ dist
(
d0(n) + d1(n) + . . .+ dγ(n)(n)

γ(n) + 1
, C

)
≤ r
}
.

• Distribution of powers of sum of functions of digits: Fix a positive
integer m and let f : {0, 1, . . . , N − 1} → R be a function. Let X = R and
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define Ξ : P(Σ)→ X by

(1.11) Ξ(µ) =
∑

i1,...,im=0,1,...,N−1

f(i1) . . . f(im)µ([i1]) . . . µ([im]).

Then

∆r(C) =
{
n ∈ N

∣∣∣∣ dist
((

f(d0(n)) + . . .+ f(dγ(n)(n))
γ(n) + 1

)m
, C

)
≤ r
}
.

1.3. Dimensions of subsets of N defined by continuous deformations of
digits. Theorem 2 below computes the fractional dimensions of ∆r(C) (in
the limit as r ↘ 0). For a continuous deformation (X,Ξ) and x ∈ X, we
define H(x) by

(1.12) H(x) = sup
µ∈PS(Σ)
Ξ(µ)=x

h(µ)
logN

where h(µ) denotes the entropy of µ (as usual, we put supµ∈∅
h(µ)
logN = 0).

Theorem 2. Let X be a metric space and let Ξ : P(Σ) → X be con-
tinuous with respect to the weak topology.

(i) If C 6⊆ Ξ(P(Σ)), then

lim
r↘0

dim(∆r(C)) = lim
r↘0

dim(∆r(C)) = lim
r↘0

δ(∆r(C)) = 0.

(ii) If C ⊆ Ξ(P(Σ)) is closed , then

lim
r↘0

dim(∆r(C)) = lim
r↘0

dim(∆r(C)) = lim
r↘0

δ(∆r(C)) = sup
x∈C

H(x).

In particular , for x ∈ Ξ(P(Σ)) we have

lim
r↘0

dim(∆r(x)) = lim
r↘0

dim(∆r(x)) = lim
r↘0

δ(∆r(x)) = H(x).

To prove Theorem 2, it clearly suffices to prove the upper bound

(1.13) lim sup
r↘0

δ(∆r(C)) ≤ sup
x∈C

H(x)

and the lower bound

(1.14) lim inf
r↘0

dim(∆r(C)) ≥ sup
x∈C

H(x).

The upper bound (1.13) follows from a more general result, Theorem 6, in
Section 1.6. Theorem 6 is proved in Section 3 using methods from large devi-
ation theory. The lower bound (1.14) is proved in Section 4 using arguments
from ergodic theory.

With the use of Proposition 1, Theorem 2 can clearly also be formulated
in terms of abscissa of convergence of Dirichlet series.
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Theorem 3. Let X be a metric space and let Ξ : P(Σ) → X be con-
tinuous with respect to the weak topology. Let C be a subset of X, and let
σc,r and σa,r denote the abscissa of convergence and the abscissa of absolute
convergence of the Dirichlet series

ζ∆r(C)(t) =
∑

n∈∆r(C)

1
nt
.

(i) If C 6⊆ Ξ(P(Σ)), then

lim
r↘0

σc,r = lim
r↘0

σa,r = 0.

(ii) If C ⊆ Ξ(P(Σ)) is closed , then

lim
r↘0

σc,r = lim
r↘0

σa,r = sup
x∈C

H(x).

For particular choices of X and Ξ, the supremum

H(x) = sup
µ∈PS(Σ)
Ξ(µ)=x

h(µ)
logN

can be computed explicitly. Below we consider two interesting examples.

1.4. An application: Besicovitch–Eggleston subsets of N. The first ap-
plication of Theorem 2 investigates the frequency of the digits in the N -ary
expansion of integers, and provides a natural discrete analogue of a classical
result due to Besicovitch and Eggleston.

Corollary 4. Let X = RN and define Ξ : P(Σ) → X by Ξ(µ) =
(µ([i]))i. For C ⊆ RN , we have

∆r(C)=Br(C) :=
{
n∈N

∣∣∣∣dist
(( |{0 ≤ k ≤ γ(n) | dk(n) = i}|

γ(n) + 1

)

i

, C

)
≤r
}
.

Let ∆ = {(p0, p1, . . . , pN−1) | pi ≥ 0,
∑
i pi = 1} denote the set of N -

dimensional probability vectors. Then Ξ(PS(Σ)) = ∆ and

H(p) = −
∑
i pi log pi
logN

for p = (p0, p1, . . . , pN−1) ∈ ∆.

If C ⊆ ∆ is closed , then

lim
r↘0

dim(Br(C)) = lim
r↘0

dim(Br(C)) = lim
r↘0

δ(Br(C))

= sup
(p0,p1,...,pN−1)∈C

−
∑

i pi log pi
logN

.
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In particular , for p = (p0, p1, . . . , pN−1) ∈ ∆ we have (where we have written
Br(p) = Br({p}))

lim
r↘0

dim(Br(p)) = lim
r↘0

dim(Br(p)) = lim
r↘0

δ(Br(p)) = −
∑
i pi log pi
logN

.

Proof. Using standard properties of the entropy, it is easily seen that if
p = (p0, p1, . . . , pN−1) ∈ ∆, then

H(p) := sup
µ∈PS(Σ)

(µ([i]))i=p

h(µ)
logN

= −
∑
i pi log pi
logN

.

The desired result now follows from Theorem 2.

The result in Corollary 4 was first obtained in [Ol2] and provides a nat-
ural discrete analogue of a classical result due to Besicovitch and Eggleston
on the Hausdorff dimension of certain sets of non-normal numbers. For a
real number x ∈ [0, 1], we let

x =
∞∑

n=1

εn(x)
Nn

where εn(x) ∈ {0, 1, . . . , N − 1}, denote the unique non-terminating N -ary
expansion of x. Let B(p) denote the set of reals x such that the frequency
of the digit i among the first n digits of x approaches pi as n → ∞ for all
i ∈ {0, 1, . . . , N − 1}, i.e. the set

(1.15) B(p) =
{
x ∈ [0, 1]

∣∣∣∣
|{1 ≤ k ≤ n | εk(x) = i}|

n
→ pi for all i

}
.

Besicovitch and Eggleston proved that

(1.16) dimB(p) = −
∑

i pi log pi
logN

where dim denotes the Hausdorff dimension. Formula (1.16) was first proved
by Besicovitch [Be] for N = 2 in 1934, and later for general N by Eggleston
[Eg] in 1949.

Other references to the distribution of digits in integers can be found in
[DT2, NS, Sh].

1.5. An application: subsets of N with prescribed digit sum averages. The
second application of Theorem 2 studies the distribution of averages of sums
of functions of digits, and provides a natural discrete analogue of some recent
results from dynamical systems on the dimension of sets with prescribed
ergodic average. We note that there is a vast literature discussing other
approaches to the study of the asymptotic properties of the sum of digits
(cf. [BS, Bu, Co, De, DT1, DT3, GKPT, K, KC]).
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Corollary 5. Let f : {0, 1, . . . , N − 1} → R be a function. Let X = R
and define Ξ : P(Σ)→ X by Ξ(µ) =

∑
i f(i)µ([i]) (recall that the cylinder

[i] is defined by [i] = {ω1ω2 . . . ∈ Σ | ω1 = i}). For C ⊆ R, we have

∆r(C) = Er(C)

:=
{
n ∈ N

∣∣∣∣ dist
(
f(d0(n)) + f(d1(n)) + . . .+ f(dγ(n)(n))

γ(n) + 1
, C

)
≤r
}
.

Let I = [0,maxi f(i)] and write

Tt =
{
x ≥ 0

∣∣∣
N−1∑

i=0

(f(i)− t)xf(i) = 0
}

for t ∈ R.

Then Ξ(PS(Σ)) = I and

H(t) := sup
µ∈PS(Σ)∑
i f(i)µ([i])=t

h(µ)
logN

= max
x∈Tt

1
logN

log
(∑

i x
f(i)

xt

)
for t ∈ I.

If C ⊆ I is closed , then

lim
r↘0

dim(Er(C)) = lim
r↘0

dim(Er(C)) = lim
r↘0

δ(Er(C))

= sup
t∈C

max
x∈Tt

1
logN

log
(∑

i x
f(i)

xt

)
.

In particular , for t ∈ I we have (where we have written Er(t) = Er({t}))
lim
r↘0

dim(Er(t)) = lim
r↘0

dim(Er(t)) = lim
r↘0

δ(Er(t))

= max
x∈Tt

1
logN

log
(∑

i x
f(i)

xt

)
.

Proof. We must prove that if t ∈ I, then

(1.17) H(t) := sup
µ∈PS(Σ)∑
i f(i)µ([i])=t

h(µ)
logN

= max
x∈Tt

1
logN

log
(∑

i x
f(i)

xt

)
.

Let M denote the right hand side of (1.17).
We first prove that H(t) ≥M . Fix x ∈ Tt and write pi = xf(i)/

∑
j x

f(j).
Then (pi)i is a probability vector and we can define a shift invariant prob-
ability measure ν on Σ by ν = ×∞n=1

(
∑
i piδi). Clearly

∑
i f(i)ν([i]) =∑

i f(i)pi = t, whence

H(t) ≥ h(ν)
logN

= −
∑
i pi log pi
logN

=
1

logN
log
(∑

i x
f(i)

xt

)
.

Taking maximum over all x ∈ Tt shows that M ≤ H(t).
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Next we prove that H(t) ≤ M . Let ∆ = {(p0, p1, . . . , pN−1) | pi ≥ 0,∑
i pi = 1} denote the set of N -dimensional probability vectors. Let µ ∈

PS(Σ) with
∑
i f(i)µ([i]) = t. Then clearly

H(t) ≤ −
∑
i µ([i]) logµ([i])

logN
≤ sup

(p0,p1,...,pN−1)∈∆∑
i f(i)pi=t

−
∑
i pi log pi
logN

.

Finally, a standard calculus argument using Lagrange multipliers shows that

sup
(p0,p1,...,pN−1)∈∆∑

i f(i)pi=t

−
∑
i pi log pi
logN

≤M.

This shows that H(t) ≤M .
The desired result now follows from (1.17) and Theorem 2.

The result in Corollary 5, i.e. the equality

lim
r↘0

dim(∆r(t)) = lim
r↘0

dim(∆r(t)) = sup
µ∈PS(Σ)∑
i f(i)µ([i])=t

h(µ)
logN

(
= max

x∈Tt

1
logN

log
(∑

i x
f(i)

xt

))
,

provides a natural discrete analogue of a result from dynamical systems on
the dimension of sets with prescribed ergodic average. Let f : Σ → R be a
continuous function and t ∈ R. Let E(t) denote the set of ω∈Σ such that
the ergodic average of f over the orbit (ω, Sω, S2ω, S3ω, . . .) of ω equals
t, i.e.

E(t) =
{
ω ∈ Σ

∣∣∣∣
f(ω) + f(S(ω)) + . . .+ f(Sn−1(ω))

n
→ t

}
.

Then

dimE(t) = sup
µ∈PS(Σ)�
f dµ=t

h(µ)
logN

.

This result was proved for Hölder continuous functions f by Pesin & Weiss
[PW] and has recently been extended to arbitrary continuous functions by
Fan et al. [FFW] and Olsen [Ol1].

1.6. Some generalizations. In this section we introduce a more general
class of zeta functions than those introduced in Section 1.1, and we study
the abscissa of convergence and Euler products of these.

Let s = (s0, s1, . . . , sN−1) be a family of real numbers with si ∈ (0, 1).
Recall that Σ∗ =

⋃
n{0, 1, . . . , N − 1}n denotes the set of all finite strings

ω1 . . . ωn with elements ωi from {0, 1, . . . , N − 1}. For a finite string ω =
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ω1 . . . ωn ∈ Σ∗ with elements ωi from {0, 1, . . . , N − 1}, we write

sω = sω1 . . . sωn .

Also, recall that if n ∈ N is a positive integer, then

d(n) = d0(n)d1(n) . . . dγ(n)(n) ∈ Σ∗

denotes the finite string of N -ary digits d0(n), d1(n), . . . , dγ(n)(n) of n. In
particular, we have sd(n) = sd0(n)sd1(n) . . . sdγ(n)(n). For a subset E of N, we
define the s-exponent of convergence δ(E; s) of E by

δ(E; s) = sup
{
t ≥ 0

∣∣∣
∑

n∈E
std(n) =∞

}
.

As in Section 1.1, the exponent δ(E; s) can also be defined in terms of zeta
functions. We define the s zeta function of E ⊆ N by

ζE(t; s) =
∑

n∈E
std(n).

If we let σc,E(s) denote abscissa of convergence of ζE(t; s), then clearly
σc,E(s) = δ(E; s). In the theorem below we give an upper bound for
σc,∆r(C)(s) = δ(∆r(C); s); recall that the set ∆r(C) is defined in (1.8).

Theorem 6. Let s = (s0, s1, . . . , sN−1) be a family of real numbers with
si ∈ (0, 1). Let X be a metric space and let Ξ : P(Σ) → X be continuous
with respect to the weak topology.

(i) If C 6⊆ Ξ(P(Σ)), then

lim
r↘0

δ(∆r(C); s) = 0.

(ii) If C ⊆ Ξ(P(Σ)) is closed , then

lim sup
r↘0

δ(∆r(C); s) ≤ sup
µ∈PS(Σ)
Ξ(µ)∈C

− h(µ)∑
i µ([i]) log si

.

We will now prove an Euler product for ζ∆r(C)(t; s). We define the mod-
ified s zeta function of a subset E of N by

ZE(t; s) =
∑

n∈E

1
γ(n) + 1

std(n).

Next we define the Euler product of E. A finite string ω ∈ Σ∗ is called
periodic if there exists a finite string σ ∈ Σ∗ and a positive integer n ≥ 2
such that ω = σ . . . σ where n copies of σ have been concatenated. A string
is called primitive if it is not periodic. We define the set P of N -ary primitive
integers by

(1.18) P = {n ∈ N | d(n) is primitive}.
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The s Euler product of E is now defined by

QE(t; s) =
∏

n∈E∩P

(
1

1− std(n)

)1/(γ(n)+1)

.

Theorem 7. Let s = (s0, s1, . . . , sN−1) be a family of real numbers with
si ∈ (0, 1). Let X be a metric space and let Ξ : P(Σ) → X be continuous
with respect to the weak topology. Let C ⊆ X be a closed subset of X and
r > 0.

(i) For t ∈ C with Re t > σc,∆r(C)(s) we have

expZ∆r(C)(t; s) = Q∆r(C)(t; s).

(ii) Assume that s = (s, . . . , s) for some s ∈ (0, 1). For t ∈ C with
Re t > σc,∆r(C)(s) we have

d

dt
Z∆r(C)(t; s) = ζ∆r(C)(t; s) log s.

In particular , for t ∈ C with Re t > σc,∆r(C)(s) we have

ζ∆r(C)(t; s) log s =
d

dt
logQ∆r(C)(t; s).

In Section 2 we collect some notation. In Section 3 we prove Theorem 6
and the upper bound (1.13), and in Section 4 we prove the lower bound
(1.14). Finally, in Section 5 we prove Theorem 7.

2. Notation and preliminary results. In this section we collect some
notation. Let

Σn = {ω1 . . . ωn | ωi = 0, 1, . . . , N − 1}
and recall that

Σ∗ =
⋃

n

Σn, Σ = {ω1ω2 . . . | ωi = 0, 1, . . . , N − 1},

i.e. Σn is the family of all strings of length n, Σ∗ is the family of all finite
strings, and Σ is the family of all infinite strings. For ω ∈ Σn, we will write
|ω| = n. For ω = ω1 . . . ωn ∈ Σn and a positive integer m with m ≤ n, or
for ω = ω1ω2 . . . ∈ Σ and a positive integer m, let ω|m = ω1 . . . ωm denote
the truncation of ω to the mth place. The cylinder [ω] generated by a finite
string ω ∈ Σn is defined by

[ω] = {σ ∈ Σ | σ|n = ω}.

3. Proof of Theorem 6 and the upper bound (1.13). To prove
Theorem 6 we need some results from large deviation theory. In particular,
we need Varadhan’s [Va] large deviation theorem (Theorem 3.1(i) below),
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and a non-trivial application of this (viz. Theorem 3.1(ii)) providing first
order asymptotics of certain “Boltzmann distributions”.

Definition. Let X be a complete separable metric space and let (Pn)n
be a sequence of probability measures on X. Let (an)n be a sequence of
positive numbers with an → ∞ and let I : X → [0,∞] be a lower semi-
continuous function with compact level sets. The sequence (Pn)n is said to
have the large deviation property with constants (an)n and rate function I
if the following hold:

(i) for each closed subset K of X we have

lim sup
n

1
an

logPn(K) ≤ − inf
x∈K

I(x);

(ii) for each open subset G of X we have

lim inf
n

1
an

logPn(G) ≥ − inf
x∈G

I(x).

Theorem 3.1. Let X be a complete separable metric space and let (Pn)n
be a sequence of probability measures on X. Assume that the sequence (Pn)n
has the large deviation property with constants (an)n and rate function I.
Let F : X → R be a continuous function such that�

exp(anF ) dPn <∞ for all n,

and

lim
M→∞

lim sup
n

1
an

log
�

{M≤F}
exp(anF ) dPn = −∞.

(Observe that the above conditions are satisfied if F is bounded.) Then the
following statements hold :

(i) We have

lim
n

1
an

log
�
exp(anF ) dPn = − inf

x∈X
(I(x)− F (x)).

(ii) For each n define a probability measure Qn on X by

Qn(E) = � E exp(anF ) dPn

� exp(anF ) dPn
.

Then the sequence (Qn)n has the large deviation property with constants
(an)n and rate function (I − F )− infx∈X(I(x)− F (x)).

Proof. Statement (i) follows from [El, Theorem II.7.1] or [DZ, Theorem
4.3.1], and statement (ii) follows from [El, Theorem II.7.2].

Lemma 3.2. Let X be a metric space and let f : X → R be an upper
semicontinuous function. Let K1,K2, . . . ⊆ X be non-empty compact subsets
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of X with K1 ⊇ K2 ⊇ . . . Then

inf
k

sup
t∈Kk

f(t) = sup
t∈⋂kKk

f(t).

Proof. This result follows by a standard compactness argument, and the
details are therefore omitted.

Recall that if ω ∈ Σ∗, then we define ω ∈ Σ by ω = ωω . . . We now
define L : Σ∗ → P(Σ) by

L(ω) =
1
n

n∑

k=1

δSkω for ω ∈ Σn.

Proposition 3.3. Let s = (s0, s1, . . . , sN−1) be a list of numbers with
si ∈ (0, 1) and define Φ : Σ → R by

Φ(ω) = log sω1 for ω = ω1ω2 . . . ∈ Σ.

Write sω = sω1 . . . sωn for ω = ω1 . . . ωn ∈ Σn. Let X be a metric space
and let Ξ : P(Σ)→ X be continuous with respect to the weak topology. Let
C ⊆ X be a closed subset of X and r > 0. If

t > sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤r

− h(µ)

� Φdµ
,

then ∑

m

∑

ω∈Σm
dist(Ξ(L(ω)),C)≤r

stω <∞.

Proof. We first prove that

(3.1) lim sup
m

1
m

log
∑

σ∈Σm
dist(Ξ(L(σ)),C)≤r

suσ ≤ sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤r

(
u

�
Φdµ+ h(µ)

)

for all u > 0. Fix u > 0. For a positive integer m we define Lm : Σ →
PS(Σ) by

Lm(ω) = L(ω|m) =
1
m

m−1∑

k=0

δSkω|m.

Next, let P denote the probability measure on Σ defined by

P =
∞×
n=1

( N∑

i=1

1
N
δi

)
.

Finally, we define F : P(Σ)→ R by

F (µ) = u
�
Φdµ,
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and for m ∈ N, we define probability measures Pm, Qm ∈ P(PS(Σ)) by

Pm = P ◦ L−1
m , Qm(E) = � E exp(mF ) dPm

� exp(mF ) dPm
for E ⊆ PS(Σ).

It now follows that�
{τ∈Σ|dist(Ξ(Lm(τ)),C)≤r}

suω|m dP (ω)

=
∑

σ∈Σm

�
[σ]∩{τ∈Σ|dist(Ξ(Lm(τ)),C)≤r}

suω|m dP (ω)

=
∑

σ∈Σm
stσ P ([σ] ∩ {τ ∈ Σ | dist(Ξ(Lm(τ)), C) ≤ r})

≥
∑

σ∈Σm
dist(Ξ(L(σ)),C)≤r

suσ P ([σ]) =
∑

σ∈Σm
dist(Ξ(L(σ)),C)≤r

suσN
−m.

Hence

(3.2)
∑

σ∈Σm
dist(Ξ(L(σ)),C)≤r

suσ

≤ Nm
�

{τ∈Σ|dist(Ξ(Lm(τ)),C)≤r}
suω|m dP (ω)

= Nm
�

{τ∈Σ|dist(Ξ(Lm(τ)),C)≤r}
exp

(
u
m−1∑

k=0

ΦSkω
)
dP (ω)

= Nm
�

{τ∈Σ|dist(Ξ(Lm(τ)),C)≤r}
exp

(
um

�
Φd(Lmω)

)
dP (ω)

= Nm
�

{τ∈Σ|dist(Ξ(Lm(τ)),C)≤r}
exp(mF (Lmω)) dP (ω)

= Nm
�

{ΞLm∈B(C,r)}
exp(mF (Lmω)) dP (ω)

= Nm
�

{Ξ∈B(C,r)}
exp(mF ) dPm

= NmQm({Ξ ∈ B(C, r)})
�
exp(mF ) dPm.

Since the sequence (Pn = P ◦L−1
n )n ⊆ P(PS(Σ)) has the large deviation

property with respect to (n)n and rate function I : PS(Σ) → R given by
I(µ) = logN − h(µ) where h(µ) denotes the entropy of µ (cf. [El]), it now
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follows from Theorem 3.1 that the sequence (Qn)n has the large deviation
property with respect to (n)n and rate function (I−F )− infν∈PS(Σ)(I(ν)−
F (ν)). It therefore follows from (3.2) and Theorem 3.1 that

lim sup
m

1
m

log
∑

σ∈Σm
dist(Ξ(L(σ)),C)≤r

suσ

≤ logN + lim sup
m

1
m

logQm({Ξ ∈ B(C, r)})

+ lim sup
m

1
m

log
�
exp(mF ) dPm

≤ logN − inf
µ∈PS(Σ)

Ξ(µ)∈B(C,r)

((I(µ)− F (µ))− inf
ν∈PS(Σ)

(I(ν)− F (ν)))

+ inf
ν∈PS(Σ)

(I(ν)− F (ν))

= logN + sup
µ∈PS(Σ)

Ξ(µ)∈B(C,r)

(F (µ)− I(µ))

= sup
µ∈PS(Σ)

Ξ(µ)∈B(C,r)

(
u

�
Φdµ+ h(µ)

)
.

This proves (3.1).
Next, write

s = sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤r

− h(µ)

� Φdµ
and let t > s. Put ε = (t− s)/3 > 0. Hence, for all µ ∈ PS(Σ) with
dist(Ξ(µ), C) ≤ r we have −h(µ)/ � Φdµ < s+ ε = (s+ 2ε)− ε, and so

(s+ 2ε)
�
Φdµ+ h(µ) ≤ ε

�
Φdµ ≤ −εc

where c = log(1/maxi si) > 0. This and (3.1) imply that

lim sup
m

1
m

log
∑

σ∈Σm
dist(Ξ(L(σ)),C)≤r

stσ ≤ lim sup
m

1
m

log
∑

σ∈Σm
dist(Π(σ),C)≤r

ss+2ε
σ

≤ sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤r

(
(s+ 2ε)

�
Φdµ+ h(µ)

)

≤ − εc.
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We therefore conclude that there exists an integer M such that
∑

σ∈Σm
dist(Ξ(L(σ)),C)≤r

stσ ≤ e−mεc/2 for all m ≥M .

This gives the desired result.

Theorem 3.4. Let s = (s0, s1, . . . , sN−1) be a finite list of numbers with
si ∈ (0, 1). Let X be a metric space and let Ξ : P(Σ) → X be continuous
with respect to the weak topology. If C ⊆ X is a closed subset of X, then

lim sup
r↘0

δs(∆r(C)) ≤ sup
µ∈PS(Σ)
Ξ(µ)∈C

− h(µ)∑
i µ([i]) log si

.

Proof. Define Φ : Σ → R by Φ(ω) = log sω1 for ω = ω1ω2 . . . ∈ Σ. We
first prove that

(3.3) δs(∆r(C)) ≤ sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤r

− h(µ)

� Φdµ
for all r ≥ 0.

We therefore fix r ≥ 0 and

t > sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤r

− h(µ)

� Φdµ
.

It now follows from Proposition 3.3 that
∑

m

∑

ω∈Σm
dist(Ξ(L(ω)),C)≤r

stω <∞.

This clearly implies that
∑

n∈∆r(C)

(sd0(n)sd1(n) . . . sdγ(n)(n))
t

=
∑

m

∑

k=Nm,...,Nm+1−1
k∈∆r(C)

(sd0(k)sd1(k) . . . sdγ(k)(k))
t

≤
∑

m

∑

ω∈Σm+1

dist(Ξ(L(ω)),C)≤r

stω <∞,

whence δs(∆r(C)) ≤ t. Since this holds for all t as above, inequality (3.3)
follows.
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It follows immediately from (3.3) that

(3.4) lim sup
r↘0

δs(∆r(C)) ≤ inf
k

sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤1/k

− h(µ)

� Φdµ
.

Finally, since the function Ξ : P(Σ) → ∆ is continuous we conclude that
Ξ−1B(C,1/k) is compact for all k. Hence, the setCk=PS(Σ)∩Ξ−1B(C,1/k)
is compact. Also, since the entropy function h : P(Σ)→ R is upper semicon-
tinuous (cf. [Wa, Theorem 8.2]), we deduce that the function f : P(Σ)→ R
given by f(µ) = −h(µ)/ � Φdµ is upper semicontinuous. Lemma 3.2 therefore
implies that

(3.5) inf
k

sup
µ∈Ck

f(µ) = sup
µ∈⋂k Ck

f(µ).

Since
⋂
k Ck =

⋂
k(PS(Σ) ∩ Ξ−1B(C, 1/k)) = PS(Σ) ∩ Ξ−1C, combining

(3.4) and (3.5) gives

lim sup
r↘0

δs(∆r(C)) ≤ inf
k

sup
µ∈PS(Σ)

dist(Ξ(µ),C)≤1/k

− h(µ)

� Φdµ
= sup

µ∈PS(Σ)
Ξ(µ)∈C

− h(µ)

� Φdµ
.

The desired result now follows since � Φdµ =
∑
i µ([i]) log si for all proba-

bility measures µ on Σ.

Proof of Theorem 6 and the upper bound (1.13). Theorem 6 follows imme-
diately from Theorem 3.4. We will now prove (1.13). Let s = (s0, . . . , sN−1)
= (1/N, . . . , 1/N), and observe that for this choice of s we have

∑

n∈∆r(C)

1
nt
≤

∑

n∈∆r(C)

1
N (γ(n)+1)t

=
∑

n∈∆r(C)

std(n)

for all t ≥ 0 and all r > 0, whence

lim sup
r↘0

δ(∆r(C)) ≤ lim sup
r↘0

δ(∆r(C); s)

≤ sup
µ∈PS(Σ)
Ξ(µ)∈C

− h(µ)∑
i µ([i]) log(1/N)

= sup
µ∈PS(Σ)
Ξ(µ)∈C

h(µ)
logN

.

This proves (1.13).

4. Proof of the lower bound (1.14). Throughout this section X will
be a metric space and Ξ : P(Σ)→ X will be continuous with respect to the
weak topology. Recall that L : Σ∗ → P(Σ) is defined as follows. For ω ∈ Σ∗
we write ω = ωω . . . , and we let

L(ω) =
1
n

n−1∑

i=0

δSkω for ω ∈ Σn.
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For a subset C ⊆ X, n ∈ N and r > 0, let

Πn(C, r) = {ω ∈ Σn | dist(Ξ(L(ω)), C) ≤ r},

Λ(C) = lim
r↘0

lim inf
n

log |Πn(C, r)|
n logN

.

Lemma 4.1. Let K(X) = {C ⊆ X | C is closed and non-empty} and
equip K(X) with the Hausdorff metric D. Then the function Λ : K(X)→ R
is upper semicontinuous, i.e. for each C ∈ K(X) and ε > 0, there exists
δ > 0 such that

Λ(K) ≤ Λ(C) + ε for all K ∈ K(X) with D(K,C) < δ.

Proof. Let C ∈ K(X) and ε > 0. Next, choose r0 > 0 such that

lim inf
n

log |Πn(C, r)|
n logN

< Λ(C) + ε

for 0 < r ≤ r0. Let δ = r0/2. We now claim that Λ(K) ≤ Λ(C) + ε
for all K ∈ K(X) with D(K,C) < δ. To prove this, let K ∈ K(X) with
D(K,C) < δ. For all 0 < r < δ and all n ∈ N we have

(4.1) Πn(K, r) ⊆ Πn(C, r0).

Indeed, first observe that B(K, r0/2) ⊆ B(C, r0) since D(K,C) < δ = r0/2.
Hence, if ω ∈ Πn(K, r), then Ξ(L(ω)) ∈ B(K, r) ⊆ B(K, r0/2) ⊆ B(C, r0).
This proves (4.1). It follows from (4.1) that

lim inf
n

log |Πn(K, r)|
n logN

≤ lim inf
n

log |Πn(C, r0)|
n logN

< Λ(C) + ε

for all 0 < r < δ, whence

Λ(K) = lim
r↘0

lim inf
n

log |Πn(K, r)|
n logN

≤ Λ(C) + ε.

We will equip Σ with the metric dΣ(ω, σ) = N− sup{n |ω|n=σ|n}. In the
results below (Lemma 4.2 and Proposition 4.4) we will always compute the
Hausdorff dimension of a subset of Σ with respect to the metric dΣ.

Lemma 4.2. Let C ⊆ X be a closed subset of X. Then

dim{ω ∈ Σ | lim
n

dist(Ξ(L(ω|n)), C) = 0} ≤ Λ(C).

(Recall that dim denotes the Hausdorff dimension.)

Proof. For a subset E ofΣ, we let dimBE denote the lower box dimension
of E; the reader is referred to [Ed] or [Fa1] for the definition. We will use
the fact that dimE ≤ dimBE for all E ⊆ Σ (cf. [Ed]). Write M = {ω ∈ Σ |
limn dist(Ξ(L(ω|n)), C) = 0}. Also, for n ∈ N and r > 0, write

Mn(r) = {ω ∈ Σ | dist(Ξ(L(ω|k)), C) ≤ r for k ≥ n}.
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We clearly have M ⊆ ⋃nMn(r) for all r > 0, whence

(4.2) dimM ≤ sup
n

dimMn(r) ≤ sup
n

dimBMn(r)

for all r > 0. However, it is easily seen that Mn(r) ⊆ ⋃
ω∈Πk(C,r)[ω] for

k ≥ n. Hence, for k ≥ n, the family ([ω])ω∈Πk(C,r) is a covering of Mn(r) of
sets with diam([ω]) = N−k. This implies that

(4.3) dimBMn(r) ≤ lim inf
k≥n

log |Πk(C, r)|
k logN

.

Combining (4.2) and (4.3) gives

dimM ≤ lim inf
k

log |Πk(C, r)|
k logN

for all r > 0.

This completes the proof.

Lemma 4.3. Let µ ∈ PS(Σ) with suppµ = Σ. (Here suppµ denotes the
topological support of µ.) Then there exists a sequence (µn)n of probability
measures on Σ such that :

(1) µn → µ weakly.
(2) For each n, the measure µn is a Gibbs state for a Hölder continuous

function. In particular , µn is ergodic and suppµn = Σ for all n.
(3) h(µn)→ h(µ).

Proof. This lemma is proved in [Ol2] and the proof is therefore omit-
ted.

If µ is a probability measure on Σ, we define the upper Hausdorff di-
mension of µ by

dimµ = inf
µ(E)=1

dimE.

(Recall that dim denotes the Hausdorff dimension.) The next result pro-
vides a formula for the upper Hausdorff dimension of an ergodic probabil-
ity measure on Σ. This result is well known and follows easily from the
Shannon–MacMillan–Breiman theorem. However, for sake of completeness
we have included the short proof.

Proposition 4.4. Let µ be an ergodic probability measure on Σ. Then

(4.4) dimµ =
h(µ)
logN

.

Proof. Since µ is ergodic, it follows from the Shannon–MacMillan–Brei-
man theorem that

logµ([ω|n])
n

→ −h(µ) for µ-a.a. ω ∈ Σ.
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Clearly B(ω,N−n) = [ω|n] for all ω ∈ Σ and n ∈ N, and therefore

logµ(B(ω,N−n))
logN−n

=
logµ([ω|n])
−n logN

→ h(µ)
logN

for µ-a.a. ω ∈ Σ.

The desired result follows from this and the fact that

dimµ = ess sup
ω

logµ(B(ω,N−n))
logN−n

(cf. [Fa2]).

Proposition 4.5. Let C be a closed subset of X. Then

sup
µ∈PS(Σ)
Ξ(µ)∈C

− h(µ)
logN

≤ Λ(C).

Proof. Fix µ ∈ PS(X) with Ξµ ∈ C and ε > 0. It follows from Lemma
4.1 that the function K(X)→ R : K 7→ Λ(K) is upper semicontinuous with
respect to the Hausdorff metric D, and we can therefore choose δε > 0 such
that

(4.5) Λ(K) ≤ Λ(C) + ε for all K ∈ K(X) with D(K,C) < δε.

Next, choose an S-invariant measure ν on Σ such that supp ν = Σ and
let µr = (1 − r)µ + rν ∈ PS(Σ) for r ∈ (0, 1). As Ξ is continuous and
Ξ(µ) ∈ C there exists 0 < rε < 1 such that

(4.6) dist(Ξµr, C) < δε/2 for all 0 < r < rε.

Fix 0 < r < rε. It follows from Lemma 4.3 and the continuity of Ξ
that we may choose a sequence (µr,n)n of ergodic S-invariant probabil-
ity measures on Σ such that µr,n → µr weakly, suppµr,n = Σ for all n,
h(µr,n)→ h(µr) and dist(Ξµr,n, C) < δε.

Define Lm : Σ → PS(Σ) as in the proof of Proposition 3.3, i.e. Lm(ω) =
(1/m)

∑m−1
k=0 δSkω. It follows from the ergodicity of µr,n and the ergodic

theorem that µr,n({ω ∈ Σ | limm Lmω = µr,n}) = 1. Hence

dimµr,n ≤ dim{ω ∈ Σ | lim
m
Lmω = µr,n}(4.7)

≤ dim{ω ∈ Σ | lim
m

dist(ΞLmω,C ∪ {Ξµr,n}) = 0}
≤ Λ(C ∪ {Ξµr,n}) ≤ Λ(C) + ε,

where the last inequality in (4.7) follows from (4.5) and (4.6).
Also, since µr,n is ergodic, it follows from Proposition 4.4 that

(4.8) dimµr,n = −h(µr,n)
logN

.
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Finally, the properties of the sequence (µr,n)n imply that

(4.9) −h(µr,n)
logN

→ −h(µr)
logN

.

Combining (4.7)–(4.9) and using the fact that the entropy map h :
PS(Σ)→ R is affine (cf. [Wa]) we conclude that

− (1− r)h(µ) + rh(ν)
logN

= −h(µr)
logN

≤ Λ(C)+ε for all ε > 0 and 0 < r < rε.

Letting first r ↘ 0 and then ε ↘ 0 gives −h(µ)/logN ≤ Λ(C). Since
µ ∈ PS(X) with Ξ(µ) ∈ C was arbitrary, this yields the desired result.

Theorem 4.6. Let C be a closed subset of X. Then

Λ(C) ≤ lim inf
r↘0

dim(∆r(C)).

Proof. Fix ε > 0. We can thus choose r0 > 0 such that

Λ(C)− ε < lim inf
n

log |Πn(C, r)|
n logN

for all 0 < r < r0.

Hence, for each 0 < r < r0 there exists a positive integer nr such that

(4.10) Nn(Λ(C)−ε) ≤ |Πn(C, r)| for all n ≥ nr.
Next, for each n ∈ N, let kn denote the unique integer with Nkn ≤ n <

Nkn+1. It clearly follows that

(4.11) Nn(∆r(C)) ≥ NNkn (∆r(C)) ≥ |Πkn(C, r)|.
Hence, for all 0 < r < r0 and n ≥ Nnr (and so kn ≥ nr), inequalities

(4.10) and (4.11) imply that

logNn(∆r(C))
log n

≥ log |Πkn(C, r)|
logNkn+1 ≥ logNkn(Λ(C)−ε)

logNkn+1 = (Λ(C)− ε) kn
kn + 1

.

This shows that dim∆r(C) = lim infn
log |Nn(∆r(C))|

log n ≥ Λ(C) − ε for all
0 < r < r0, whence lim infr↘0 dim∆r(C) ≥ Λ(C)− ε. Finally, letting ε↘ 0
completes the proof.

Proof of the lower bound (1.14). The lower bound (1.14) follows imme-
diately from Proposition 4.5 and Theorem 4.6.

5. Proof of Theorem 7. We begin with a small lemma that allows us
to consider only N -ary primitive integers (cf. (1.18)).

Lemma 5.1. Let X be a metric space and let Ξ : P(Σ)→ X be contin-
uous with respect to the weak topology. Let C be a closed subset of X and
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r > 0. Let

n =
γ(n)∑

i=0

di(n)N i

and k ∈ N ∪ {0}, and write

m =
k∑

j=0

γ(n)∑

i=0

di(n)N i+j ,

i.e. m is the unique integer such that d(m) = d(n) . . . d(n)︸ ︷︷ ︸
k+1 times

. If n ∈ ∆r(C),

then m ∈ ∆r(C).

Proof. Recall definition (1.7) of the measures I(m) and I(n). We clearly
have

I(m) =
1

γ(m) + 1

γ(m)∑

i=0

δSi(d(m))

=
1

(k + 1)(γ(n) + 1)
(k + 1)

γ(n)∑

i=0

δSi(d(n)) = I(n).

The desired result follows from this.

Proof of Theorem 7. (i) It follows from Lemma 5.1 that

∑

n∈∆r(C)

1
γ(n) + 1

std(n) =
∑

n∈∆r(C)∩P

∞∑

k=1

1
k(γ(n) + 1)

std(n)...d(n)︸ ︷︷ ︸
k times

.

This implies that

Z∆r(C)(t; s) =
∑

n∈∆r(C)

1
γ(n) + 1

std(n)

=
∑

n∈∆r(C)∩P

∞∑

k=1

1
k(γ(n) + 1)

std(n)...d(n)︸ ︷︷ ︸
k times

=
∑

n∈∆r(C)∩P

1
γ(n) + 1

∞∑

k=1

1
k
stkd(n)

=
∑

n∈∆r(C)∩P

1
γ(n) + 1

log
(

1
1− std(n)

)

= log
∏

n∈∆r(C)∩P

(
1

1− std(n)

)1/(γ(n)+1)

.
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(ii) For k ∈ N write ak = |{n ∈ N | γ(n) + 1 = k}|. We now have

ζ∆r(C)(t; s) =
∑

∆r(C)

std(n) =
∞∑

k=1

∑

n∈∆r(C)
γ(n)+1=k

std(n) =
∞∑

k=1

aks
tk,

and

Z∆r(C)(t; s) =
∑

∆r(C)

1
γ(n) + 1

std(n)

=
∞∑

k=1

∑

n∈∆r(C)
γ(n)+1=k

1
γ(n) + 1

std(n) =
∞∑

k=1

1
k
aks

tk.

Hence
d

dt
Z∆r(C)(t; s) =

∞∑

k=1

aks
tk log s = ζ∆r(C)(t; s) log s.

This completes the proof.
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