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1. Introduction
1.1. History. Poincaré [13] showed that to each orientation preserving

homeomorphism f of the circle S1 = R/Z is associated a unique real param-
eter α ∈ [0, 1), called the rotation number, so that the orbit structure of f is
the same as that of the rigid rotation Rα, where Rα(t) = (t+α) mod 1, pro-
vided that α is irrational. More precisely, Poincaré showed that f and Rα are
semi-conjugate, meaning there exists an orientation preserving self-mapping
h of the circle so that h ◦ f = Rα ◦ h.

We say that f is minimal if for each x ∈ S1, the orbit under f is dense. (In
this setup, density of the orbit for a single x ∈ S1 is equivalent to density
for all x.) More generally, for a homeomorphism f the set Ω is minimal
if Ω is non-empty, compact, invariant and minimal with respect to these
properties. This is equivalent to saying that Ω is non-empty, f(Ω) = Ω
and each forward f -orbit in Ω is dense in Ω. It follows from Poincaré’s
Theorem that if f is minimal, then f is conjugate to the rotation by α. That
is, there exists an orientation preserving homeomorphism of the circle h so
that f = h−1 ◦Rα ◦h. We assume throughout that all rotation numbers are
irrational, even when not explicitly stated.

Half a century later, Denjoy [3] showed that if the derivative of f is of
bounded variation, then f is minimal and so conjugate to a rotation. Denjoy
also constructed examples of C1 diffeomorphisms that are not conjugate to
rotations. Herman [6] constructed C1+δ maps that are not conjugate to
rotations for any 0 < δ < 1. In these examples, the minimal set of f is
necessarily a Cantor set Ω and is the set of accumulation points of the
forward f orbit of every point t ∈ S1. We refer to any orientation preserving
map that is not conjugate to a rotation as a Denjoy map.
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1.2. Summary of results. The rotation number has a strong effect on
properties of the diffeomorphism. One area that has been well understood
is the relation between the differentiability of f , the differentiability of the
conjugation and the arithmetic properties of the rotation number. (See,
for example, Herman [6], Yoccoz [14] and Katznelson and Ornstein [8].)
Without stating any precise theorem, we note that the results differ sharply
for Diophantine and for Liouville rotation numbers.

Here we study the effect of the rotation number on a C1+δ Denjoy exam-
ple. In particular, we consider the relation between the arithmetic properties
of the rotation number and the Hausdorff dimension of the minimal set Ω
of a C1+δ example. See Section 2 for the definitions.

We prove:

Theorem 1.1. Assume that 0 < δ < 1 and that α ∈ (0, 1) is of Diophan-
tine class ν ∈ (0,∞). Then an orientation preserving C1+δ diffeomorphism
of the circle with rotation number α and minimal set Ωδ

α satisfies

dimBΩ
δ
α ≥ δ and dimHΩ

δ
α ≥ δ/ν.

Furthermore, these results are sharp.

Norton [11] proved a preliminary result along these lines, showing that
the upper box dimension of the minimal set of a C1+δ Denjoy map is
bounded from below by δ. Katznelson and Ornstein [9] have shown that
for some specific Denjoy maps, the Hausdorff dimension of the minimal set
depends on the differentiability. Pinto [12] proved the special case when the
rotation number is the golden mean. Our results include these and show
that while the box dimension does not depend on the rotation number of
the Denjoy example, the more subtle Hausdorff dimension does.

The estimates on dimension give a stronger version of Denjoy’s original
theorem about conjugacy that takes the arithmetic of the rotation number
into account. Namely, we have the following immediate corollary to Theo-
rem 1.1:

Corollary 1.2. Assume that f is an orientation preserving homeomor-
phism of the circle with rotation number α ∈ (0, 1) and that α is of Dio-
phantine class ν ∈ (0,∞). Let Ω denote the minimal set of f . If dimΩ =
δ/ν ∈ (0, 1), then f 6∈ C1+β for any β > δ.

2. Preliminaries
2.1. Construction of Denjoy maps. We review the construction of the

classic Denjoy map. (See [7] for details of the construction.) The classic
Denjoy map is used to show that the estimates in Theorem 1.1 are sharp.
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Definition 2.1. A Denjoy sequence Dδ of class δ is an infinite collection
{`n}n∈Z of lengths (non-negative numbers) so that

∑

n∈Z
`n ≤ 1

and

lim
n→±∞

log |`n − `n+1|
log `n

= 1 + δ.

Definition 2.2. The classic Denjoy sequence, denoted by Dδ
0, consists

of the lengths
`n = cδ(|n|+ 1)−1/δ,

where c−1
δ =

∑
n∈Z(|n|+ 1)−1/δ.

We denote the set of all Denjoy sequences of class δ by Dδ.
Let α ∈ (0, 1) be irrational and let δ ∈ (0, 1). Let Dδ be a Denjoy

sequence of class δ. In order to obtain a Denjoy map, we “blow up” each
point nα of the orbit of 0 under the rotation by α to an open interval Jn
of length `n ∈ Dδ. At each step we rescale the remaining part of the circle,
maintaining the total length equal to 1.

A Denjoy map f is defined by mapping the interval Jn diffeomorphically
to Jn+1 with derivative of absolute value 1 at the endpoints. By continuity,
f is defined on the entire circle and by choice of the sequence `n, f can be
chosen to be C1+δ. By placement of the intervals Jn in the same order as
the rotation by α, the resulting f has rotation number α.

We set
Ωδ
α = Ωδ

α(Dδ) = S1 \
⋃

n∈Z
Jn.

For x, y ∈ S1, we let (x, y) denote the shorter of the two arcs on the
circle determined by x and y. (If this interval is not unique, we take the
interval in the positive orientation.) For real x, let ‖x‖ denote the distance
to the nearest integer. For an interval J ⊂ S1, |J | denotes the length of the
interval.

Let h : Ωδ
α → S1 be the semi-conjugacy determined by Poincaré’s The-

orem. For x, y not in the orbit of α (meaning x, y ∈ S1 \ {nα : n ∈ Z}), h−1

is well defined and we have

dΩδα(h−1(x), h−1(y)) =
∑

{n:nα∈(x,y)}
|Jn|+

(
1−

∑

n∈Z
|Jn|

)
‖x− y‖.(1)

If x ∈ {nα : n ∈ Z} (similarly for y), h−1(x) consists of two points and
we choose the appropriate preimage. For example, if the interval (x, y) is
positively oriented for h−1(x) we take the right preimage (equivalently, the
point closer to h−1(y)).
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We note that the total length
∑
`n may be strictly less than 1. In this

case, the invariant measure associated to Ωδ
α has positive Lebesgue measure

and the dimension properties are not relevant.
We also have some preliminary estimates on sizes of complementary in-

tervals for general Denjoy maps, and not just for the classic Denjoy map.
These bounds are summarized in the following lemma:

Lemma 2.3. If Dδ ∈ Dδ, then for all 0 < θ < δ < 1 there exists nθ such
that for all n > nθ,

|Jn| > n−1/θ.

Proof. We note that if f is a C1+δ diffeomorphism then f−1 is also a
C1+δ diffeomorphism.

Assume that Dδ ∈ Dδ. Then for 0 < θ < δ < 1 there exists nθ such that
for all n ≥ nθ,∣∣∣∣
|Jn|
|Jn+1|

−Dh−1((n+1)α)f
−1
∣∣∣∣ ≤ | max

x∈Jn+1
Dxf

−1 −Dh−1((n+1)α)f
−1| ≤ |Jn+1|θ.

Rewriting, we have

|Jn| ≤ |Jn+1|(Dh−1((n+1)α)f
−1 + |Jn+1|θ).(2)

Setting
an = |Jn|nβ,

where β = θ−1 > 1, it suffices to show that for n sufficiently large, an is
bounded away from 0. Inequality (2) becomes

an
nβ
≤ an+1

(n+ 1)β

(
1 +

aθn+1

n+ 1

)
.

Equivalently, for n > nθ and bounded an+1 we have

an
an+1

≤
(

1 +
aθn+1

n+ 1

)
·
(

n

n+ 1

)β
≤ exp

(
aθn+1 − β
n+ 1

)
.(3)

For aθn+1 < β the right side of inequality (3) is less than 1, again for suffi-
ciently large n. Hence an is bounded away from 0.

2.2. Dimension. Let Y be a bounded subset of a compact metric
space X. Let N(ε) denote the minimal number of ε balls needed to cover Y .

Definition 2.4. For a subset Y of a compact metric space X, the upper
box dimension of Y , denoted by dimUB Y is given by

lim
ε→0

logN(ε)
log(1/ε)

.

The lower box dimension dimLB is defined similarly, with the lim re-
placed by lim.
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If dimUB Y and dimLB Y both exist and are equal, we define the box
dimension of Y to be this value, and write dimB Y = dimUB Y = dimLB Y .

For a subset U of a metric space, we let diam(U) denote the diameter of
the set U .

Definition 2.5. Let s ∈ [0,∞]. The s-dimensional Hausdorff measure
Hs(Y ) of a subset Y of a metric space X is defined by

Hs(Y ) = lim
ε→0

inf
{ ∞∑

i=1

(diam(Ui))s : Y ⊂
∞⋃

i=1

Ui and sup
i=1,...,∞

diam(Ui) ≤ ε
}
.

It is easy to see that there exists a unique s0 = s0(Y ) such that

Hs(Y ) =
{
∞ for s < s0,
0 for s > s0.

(4)

Definition 2.6. The unique number s0 given by (4) is defined to be the
Hausdorff dimension of Y and is denoted by dimH Y .

Standard arguments show that for a subset Y of a metric space X,

dimH Y ≤ dimLB Y ≤ dimUB Y

and that these inequalities may be strict.
The box dimension can also be defined in terms of covering sums, as in

the case of the Hausdorff dimension, with the only change being that the
covering intervals all have equal length. We note that in order to estimate
the box dimension, it suffices that the lengths of the covering intervals tend
to 0 along a geometric sequence.

Lastly, we define the Hausdorff dimension of a measure:

Definition 2.7. Let µ be a Borel probability measure on X. Then the
Hausdorff dimension of the measure µ is defined by

dimH µ = inf
Y
{dimH Y : µ(Y ) = 1}.

A survey of the methods and results in dimension theory can be found
in [4].

2.3. Diophantine classes. Discriminating the Denjoy sets necessitates
the following number-theoretic definitions. See Cassels [2] for an overview
of Diophantine classes.

Definition 2.8. An irrational number α is of Diophantine class ν =
ν(α) ∈ R+ if

‖qα‖ < 1/qµ(5)

has infinitely many solutions in integers q for µ < ν and at most finitely
many for µ > ν.
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If α is not of any Diophantine class ν ∈ R+ then α is said to be a Liouville
number .

If α is of Diophantine class ν, we write α ∈ Dioph(ν). In a slight abuse
of terminology, we say that a Liouville number α ∈ (0, 1) has infinite Dio-
phantine class and write α ∈ Dioph(∞).

We denote by [a1, a2, . . .] the (standard) continued fraction expansion of
α. We use {qn} to denote the sequence of denominators of the corresponding
finite approximants. Then

1
qn(an + 2)

≤ ‖qnα‖ ≤
1

anqn
(6)

and
qn+1 = anqn + qn−1.(7)

3. Statement of results. We now have the notation for stating our
results in detail.

Theorem 3.1. Let 0 < δ < 1. Assume that the irrational α ∈ (0, 1)
and that {qn} is the sequence of the denominators for the continued fraction
convergents. Then

min
Dδ∈Dδ

dimHΩ
δ
α(Dδ) = δ lim

n→∞

log qn
log qn+1

.

Furthermore, the minimum dimension is attained for the classic Denjoy
sequence Dδ

0 of class δ.

We postpone the proof of Theorem 3.1 until Section 5, and instead state
and prove several corollaries of the theorem.

Corollary 3.2. Let 0 < δ < 1. If α ∈ (0, 1) is of Diophantine class
ν ∈ R+, then

min
Dδ∈Dδ

dimHΩ
δ
α(Dδ) = δ/ν and dimHΩ

δ
α(Dδ

0) = δ/ν.

Proof. If α is of Diophantine class ν, then

lim
n→∞

log qn
log qn+1

= lim
n→∞

log qn
log(anqn + qn−1)

= lim
n→∞

log qn
log(anqn)

· log(anqn)
log(anqn + qn−1)

= lim
n→∞

log qn
log qνn

=
1
ν
.

Hence by Theorem 3.1 minDδ∈Dδ dimHΩ
δ
α(Dδ) = δ/ν.
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Corollary 3.2 proves the statements of Theorem 1.1 on Hausdorff di-
mension. The remaining part of Theorem 1.1, concerning box dimension, is
proved in Section 4.

Corollary 3.3. Let 0 < δ < 1 and let α ∈ (0, 1) be irrational. Then

min
Dδ∈Dδ

dimHΩ
δ
α(Dδ) = δ and dimHΩ

δ
α(Dδ

0) = δ

for Lebesgue almost all α.

Proof. This follows immediately from Corollary 3.2, since almost every
number (with respect to Lebesgue measure) is of Diophantine class 1+ε for
any ε > 0.

Another immediate consequence of Corollary 3.2 is the following:

Corollary 3.4. Let 0 < δ < 1. If α ∈ (0, 1) is a Liouville number then

min
Dδ∈Dδ

dimHΩ
δ
α(Dδ) = 0.

4. The box dimension of Ωδ
α(Dδ

0). We start by computing the box
dimension for the classic map.

For simplicity, we do not give the optimal result in the following estimate,
as the constants do not affect our results. We use [x] to denote the integer
part of x.

Lemma 4.1. Let {ai} be a sequence of positive numbers and let n ∈ N.
Then

n∑

k=1

([
nak∑n
i=1 ai

]
+ 1
)
≤ 3n.

Proof. Without loss of generality, we assume that a1 ≤ . . . ≤ an. Let

m =
∣∣∣
{

1 ≤ i ≤ n : ai <
n∑

k=1

ak/n
}∣∣∣.

Clearly m < n. Then
n∑

k=1

([
nak∑n
i=1 ai

]
+ 1
)
≤ m+

n∑

k=m+1

([
nak∑n
i=1 ai

]
+ 1
)

≤ m+ 2
n∑

k=m+1

nak∑n
i=1 ai

≤ m+ 2n ≤ 3n.

Theorem 4.2. Let 0 < δ < 1 and let α ∈ (0, 1) be irrational. Then

dimBΩ
δ
α(Dδ

0) = δ.
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Proof. Throughout, we maintain the notation introduced in Section 2.1
when defining the classic Denjoy map. For simplicity of notation, we write
Ω = Ωδ

α(Dδ
0).

First we show that dimBΩ ≤ δ. For n ∈ N, consider the set

Jn = S1 \
( ⋃

−n≤k≤n
Jk

)
.

It consists of 2n+ 1 disjoint intervals of total length

1−
∑

−n≤k≤n
|Jk| = cnn

(δ−1)/δ,

where the cn are uniformly bounded. Letting {Ik}2n+1
k=1 denote the 2n+ 1

complementary intervals of Jn, we have Ω ⊂ ⋃1≤k≤2n+1 Ik. The δ+ε cover-
ing sum of Ω can be estimated by covering the union by intervals of the aver-
age length, and so by intervals of length n1−1/δ/(2n+ 1). Using Lemma 4.1,
we have

2n+1∑

k=1

([ |Ik|(2n+ 1)∑2n+1
i=1 |Ii|

]
+ 1
)(

n1−1/δ

2n+ 1

)δ+ε
≤ 6n+ 3

(2n+ 1)δ+ε
nδ−1+ε−ε/δ

= Kn−ε/δ

for a uniformly bounded constant K.
As it suffices to consider a geometric sequence of lengths, we have

dimBΩ ≤ δ.
For the lower bound, let {Uk} be a finite cover of Ω consisting of intervals

of uniform length. Without loss of generality, we may assume that there exist
m,n ∈ N such that no Uk intersects

⋃
−m≤l≤n Jl. The orbit segment

{rα : −m− n− 1 ≤ r ≤ m+ n+ 1}
contains at least one point in each of the m + n + 1 contiguous intervals
Ik of S1 \ ⋃−m≤l≤n Jl. This means that the length of any Ik is bounded
from below by cδ(2n+2m+3)−1/δ. Moreover, the distance between any two
intervals Ik and Ij with k 6= j is at least cδ(max(n,m))−1/δ.

Thus in order to cover Ω by intervals of length cδ(2n+ 2m+ 3)−1/δ, we
need at least m+ n+ 1 intervals. Hence, the covering sum is bounded from
below by

0 < cδ−εδ ≤ (m+ n+ 1)cδ−εδ (2n+ 2m+ 3)(ε−δ)/δ ≤
∑

k

|Uk|δ−ε.

This proves the other direction.

Combining the computation in the second half of the proof of Theo-
rem 4.2 and Lemma 2.3, we obtain:
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Theorem 4.3. Let 0 < δ < 1 and let α ∈ (0, 1) be irrational. Then

min
Dδ∈Dδ

dimLBΩ
δ
α(Dδ) ≥ δ.

Proof. We apply Lemma 2.3 for all β < δ.

5. Proof of Theorem 3.1

5.1. Beatty sequences

Definition 5.1. Let α ∈ (0, 1) be irrational and assume that {qn} is
the sequence of denominators for the continued fraction expansion of α. For
n0 ∈ N, the n0-hitting sequence of α is defined to be the subsequence {rk}k∈Z
of integers so that rkα ∈ [0, qn0α].

It is a classic result that:

Lemma 5.2 (Hedlund and Morse [5]). Let α ∈ (0, 1) be irrational , let
n0 ∈ N and assume that {rk} is the n0-hitting sequence of α. Then there
exist λ > 1 and θ > 0 so that rk = [kλ+ θ].

In symbolic dynamics terminology, this means that the sequence {rk} is
a Beatty sequence. It is easy to see that a Beatty sequence B is close to being
arithmetic. More precisely, if rk, rk+1 ∈ B are two consecutive elements in
the Beatty sequence defined by the parameters λ > 1 and θ > 0, then
rk+1 − rk takes on only one of two values, either [λ] or [λ] + 1.

Maintaining notation as before, we write

Ωδ
α(Dδ) = S1 \

⋃

n∈Z
Jn.

The semi-conjugacy h given by Poincaré’s Theorem is two-to-one at the
endpoints of the intervals Jn. We write gl(nα) and gr(nα) for the left and
right preimages under h on the orbit of α, i.e. if h(x) = h(y) = nα and x, y
are the standard representatives of the equivalence classes (x), (y) ∈ R/Z
with x < y then gl(nα) = x and gr(nα) = y. Formally, we should write the
equivalence class instead of a representative of this class, but for simplicity
we avoid this notation.

5.2. Lower bound for the Hausdorff dimension. We now prove the lower
bound in Theorem 3.1.

Proof (first part of Theorem 3.1). Let I = {Ik} be a covering of Ω =
Ωδ
α(Dδ) by intervals and choose t ∈ R so that the covering sum

St(I) =
∑

k

|Ik|t > 1.

Without loss of generality, we may assume that each interval Ik has the form
Ik = [gr(nα), gl(mα)], where n = n(k),m = m(k) ∈ Z and n < m. (If not,



332 B. Kra and J. Schmeling

the boundary points of the interval Ik fall into an interval Jl ∈ Dδ and so
we could shrink the interval while still covering Ω with a smaller covering
sum.)

Given such a covering of Ω, its image under h covers S1. Thus we es-
timate the distortion of the intervals in the covering of Ω with respect to
the map h. If the distortion is not too large, the Hausdorff dimension of
the cover cannot be too small, giving a lower bound on the dimension. The
asymptotic distortion of a point by taking intervals containing the point and
shrinking to it, is nothing but the local Hölder exponent of the map h.

Therefore, we need a lower bound for the number

log |(nα,mα)|
log |(gr(nα), gl(mα))| .(8)

In order to estimate the distances in (8), we use (1). To bound the first term
on the right hand side of (1), we use the leading term in the sum and so
need

% = inf{|r| ∈ N : rα ∈ [nα,mα]}.
We note that rα ∈ [nα,mα] if and only if (r − n)α ∈ [0, (m − n)α].

Let n0 ∈ N be the smallest natural number such that qn0α ∈ [0, (m− n)α].
Let p ∈ N be the largest number so that p‖qn0α‖ ≤ ‖(m − n)α‖. We note
that both p and qn0 depend on the difference n−m rather than on n. Thus
for 0 ≤ s ≤ p − 1 all the intervals [sqn0α, (s + 1)qn0α] are contained in the
interval [0, (m − n)α]. Using the fact that [0, qn0−2α] ⊃ [0, (m − n)α] and
applying (6) twice, we have, for large n0,

1 ≤ p ≤ |[0, qn0−2α]|
|[0, qn0α]| ≤

qn0+1 − qn0−1 + 2qn0

qn0−1 − qn0−3
≤ 2

qn0+1

qn0−1
.

By Lemma 5.2 the n0-hitting sequence of α is of the form rk = [kθ + γ]
for some θ > 1 and γ > 0. For this sequence, r0 = qn0 and r1 = qn0+1 + qn0 .
Indeed, to find the value of r1 we note first that (qn0+1 + qn0)α ∈ [0, qn0α],
as ‖qn0+1α‖ ≤ ‖qn0α‖ and this is the first such occurrence. On the other
hand, any point mα ∈ [0, qn0α] satisfies m− qn0 > qn0+1.

More generally, since a Beatty sequence is close to being arithmetic, we
see that, for k > 0,

qn0 + k(qn0+1 − 1) < rk < qn0 + k(qn0+1 + 1)(9)

and a similar equation holds for k < 0. Furthermore, it follows that hit-
ting sequences are defined for more general intervals. Namely, each interval
[sqn0α, (s+ 1)qn0α] has the hitting sequence rk + sqn0 . Thus the hitting set
for the interval [0, p‖qn0‖] ⊂ [0, (n−m)α] is the set

⋃

k

⋃

0≤s≤p
{rk + sqn0}
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and for the interval [0, (p+ 1)‖qn0‖] ⊃ [0, (n−m)α], the hitting sequence is
the set ⋃

k

⋃

0≤s≤p+1

{rk + sqn0}.

Write n = rk + b for suitable k and some b with 0 ≤ b ≤ qn0+1. Using
the above description of the hitting sets for the intervals [0, p‖qn0‖] and
[0, (p+ 1)‖qn0‖], we estimate % so that

min
0≤s≤p

(|b− sqn0 |, |b− rk+1|) ≤ % ≤ min
0≤s≤p+1

(|b− sqn0 |, |b− rk+1|).

To do so, we define

%(n, p) = min
0≤s≤p+1

{r − n ∈ {rk + sqn0}k∈Z}.

We note that p actually depends on n−m, and so %(n, p) is just a function
of n and m.

By (1), the quantity in (8) is greater than or equal to

log ‖(m− n)α‖
log %−1/δ

= δ
log ‖(m− n)α‖

log %−1 .(10)

Thus a lower bound for (10) is obtained at the same value which maximizes
the function

f(n, p) = ‖(m− n)α‖%(n, p).

If n0 is large enough and so (nα,mα) is small, the definition of p implies
that

‖(m− n)α‖ ≤ ‖(p+ 1)qn0α‖ = (p+ 1)‖qn0α‖ ≤ (p+ 1)(qn0+1 − qn0−1)−1

and

‖(m− n)α‖ ≥ ‖pqn0α‖ = p‖qn0α‖ ≥ p(qn0+1 − qn0−1 + 2qn0)−1

by using (6) and (7). Moreover,

[(qn0+1 − 1− (p+ 1)qn0)/2] ≤ max
n

%(n, p)(11)

≤ [(qn0+1 + 1− (p+ 1)qn0)/2].

For n0 sufficiently large, the maximum of f(n, p) is attained at some

p0 ∈ [qn0+1/(4qn0), 3qn0+1/(4qn0)],

and so p0 ≤ 2qn0+1/qn0−1. Combining these estimates we have

‖(m− n)α‖ ≤
(

3qn0+1

4qn0

+ 1
)

(qn0+1 − qn0−1)−1 = Cq−1
n0

for some constant C. Thus by (11) there exist constants c1 > c2 so that

c1qn0+1 ≥ %(n, p0) ≥ c2qn0+1.
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This implies that

log ‖nα−mα‖
log ‖gr(nα)− gl(mα)‖ ≥

log ‖(n−m)α‖
log %(n, p0)−1/δ

≥ log(Cq−1
n0

)

log(c1qn0+1)−1/δ
= δ

logC−1qn0

log c1qn0+1
.

This shows that for any ε > 0 there exists a constant C(ε) so that

|h(Ik)| < C(ε)|Ik|κ,
where

κ = δ lim
n→∞

log qn0

log qn0+1
− ε.

Since I covers Ωδ
α, the collection {h(Ik)}k covers S1. Hence

1 = dimH S
1 ≤

(
δ lim
n→∞

log qn0

log qn0+1

)−1

dimHΩ.(12)

Hence we have the lower bound for the Hausdorff dimension of the min-
imal set.

Let λ denote Lebesgue measure. With a slight modification, the same
proof shows:

Corollary 5.3. Let 0 < δ < 1. Assume that {qn} are the denominators
in the continued fraction expansion of an irrational α ∈ (0, 1). If λ◦h is the
(unique) invariant measure on Ωδ

α(Dδ), then

dimH λ ◦ h ≥ δ lim
n→∞

log qn
log qn+1

.

Proof. The only change needed is that in (12), we replace 1 = dimH S
1

by 1 = dimH λ.

5.3. An upper bound for the dimension of the classic Denjoy map. We
now prove that the bounds in Theorem 1.1 are sharp. For the lower bounds
in the proof of Theorem 1.1, we used distortion estimates on the semi-
conjugating map. We showed that for x in a C/qm neighborhood of cqm+1α,
the distortion is maximized. Unfortunately, this distortion estimate does not
suffice for computing an upper bound for the Hausdorff dimension because
these intervals only cover a set of full measure and not the whole circle. (See
also Section 5.4 for an application.)

To find an upper bound for the Hausdorff dimension, we also need to
consider points with less distortion and estimate the dimension for such
points.
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Proof (second part of Theorem 1.1). If α ∈ Dioph(1), then by the pre-
vious sections

δ = dimBΩ
δ
α(Dδ

0) ≥ dimHΩ
δ
α(Dδ

0) ≥ δ,
and so it suffices to consider α ∈ Dioph(ν) with ν > 1.

Let {qn} denote the sequence of denominators in the continued fraction
expansion of α ∈ Dioph(ν). We have

qn+1 − qn−1 ≥ qn+1 − qn
and by passing to a subsequence {nk}, since ν > 1 for ε > 0 such that
1/(ν − ε) < 1, we can assume that

qnk+1 − qnk−1 ≥ qnk+1(1− q1−ν+ε
nk

).

By passing to a further subsequence if necessary, we can assume that

q1−ν+ε
nk

< 1/k.

The proof is divided into two parts. First we estimate the Hausdorff
dimension of level sets with a fixed small Hölder exponent and then we
estimate the dimension of the remaining set.

Fix a number s with 1/(ν − ε) < s < 1. Consider the positive integers

s(k)
m ∈ (εkqnk+1, (1− εk)qnk+1) ∩ N,

where εk = q
(s−1)/s
nk . Define intervals

I
s
(k)
m

= (s(k)
m α− 1/qnk , s

(k)
m α+ 1/qnk),(13)

Î
s
(k)
m

= (s(k)
m α− 1/(2qnk), s(k)

m α+ 1/(2qnk)).(14)

Since s > 1/(ν − ε), we find that

lim
k→∞

εkqnk+1

qnk
=∞.

By similar calculations to those in Section 5.2, since

min{|r| ∈ N : rα ∈ I
s
(k)
m
} ≥ εkqnk+1,

each of the intervals I
s
(k)
m

has a preimage g(I
s
(k)
m

) with length bounded above
by

|g(I
s
(k)
m

)| ≤ (εkqnk+1)−1/δ.(15)

Let
Fs =

⋂

K∈N

⋃

k≥K
Î
s
(k)
m
.

This set represents those points whose distortion is not too small and in-
cludes points where the distortion is not maximized.

For x ∈ Fs there exist infinitely many intervals I
s
(k)
m

containing x with

the distance of x to the endpoints larger than 1
4 |Is(k)

m
|. By the Besicovitch
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covering lemma, there is a subcover of Fs of multiplicity at most 3 consisting
of intervals I

s
(k)
m

. By (15) we can estimate the distortion:

lim
k→∞

log |I
s
(k)
m
|

log |g(I
s
(k)
m

)| ≥ lim
k→∞

log(2/qnk)
log(εkqnk+1)−1/δ

(16)

= lim
k→∞

δ log qnk
((s− 1)/s) log qnk + log qnk+1

= lim
k→∞

δ log qnk
log qnk+1

(
1
ν
· s− 1

s
+ 1
)−1

=
sδ

s− 1 + sν
.

Next we estimate the dimension of the complement S1\Fs. The intervals
I
s
(k)
m

cover a part of the circle avoiding the points 0, α, . . . , qnkα. For l, r ∈
[0, qnk), d(lα, rα) ∼ 1/qnk , where by ∼ we mean that the ratio of the two
quantities is bounded from above and from zero uniformly in all parameters.
Moreover, d(qnkα, 0) ∼ 1/qnk+1.

Fig. 1

The gaps between these points are filled up from the left (or from the
right, depending on which side of 0 the point qnkα lies) by points at distance
∼ 1/qnk+1 for l ∈ [qnk , qnk+1). For 0 ≤ l < qnk , each point lα has a new
(not necessarily immediate) “neighbor” at the qnkth step, until the gaps are
filled. This filling process stops before the last εkqnk+1 iterates, omitting the
qnk gaps which are filled by the remaining iterates with frequencies differing
by at most one. This means that the set

⋃
I
s
(k)
m

omits qnk gaps of length at
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most ([
εkqnk+1

qnk

]
+ 1
)

1
qnk+1

≤ 2εk
qnk

.

Hence, the upper box dimension of S1 \ Fs is bounded by

dimB(S1 \ Fs) ≤ lim
k→∞

(
− log qnk

log(2εk/qnk)

)
(17)

= lim
k→∞

(
− log qnk

log(2q(s−1)/s
nk /qnk)

)
= s.

Therefore for τ sufficiently small, dimB(Fs \Fs+τ ) ≤ s. This and (16) imply

dimB g(Fs \ Fs+τ ) ≤ s · sδ

s− 1 + sν
≤ δ

ν
.(18)

We remark that this estimate holds for all 1/(ν−ε) < s < 1 and by the choice
of sufficiently small ε, it holds for all 1/ν ≤ s < 1. Since dimH F1 = δ/ν by
Section 5.2 it suffices to show that dimB g(S1 \F1/ν) ≤ δ/ν. But we already
know from (17) that dimB(S1 \ F1/ν) ≤ 1/ν.

By Minkowski’s Theorem ([2, p. 48]), the intervals

{(nα, (n+ qm/4)α) : 0 ≤ n ≤ qm, m ∈ N}
cover all points in the circle that are not linearly independent of α and 1 over
the rationals. Using the intervals {(nα, (n+ qm)α) : 0 ≤ n ≤ qm, m ∈ N} in
the distortion estimates, we have bounds on the distortion

lim
n→∞

log q−1
n+1

log(n+ qn+1 + qn)−1/δ
= δ.

Therefore the dimension drops by a factor of at least δ and this implies that
dimB g(S1 \ F1/ν) ≤ δ/ν.

Corollary 5.4. Let 0 < δ < 1 and let α ∈ Dioph(ν). Assume that h
is the semi-conjugacy given by Poincaré’s Theorem for a C1+δ Denjoy map
with rotation number α. Then

dimH λ ◦ h = δ/ν.

Proof. The lower bound is contained in Corollary 5.3. The measure can-
not have larger dimension than its support and so we have equality.

5.4. An application to discrepancy. For a sequence {x1, . . . , xN} of N
numbers in S1 and a subset Y ⊂ S1, let

A(Y ;N) =
N∑

n=1

χY (xn)

count the number of n with xn ∈ Y .
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Definition 5.5. The discrepancy DN of the N numbers {x1, . . . , xN}
in S1 is defined to be

DN = sup
J

∣∣∣∣
A(J ;N)

N
− |J |

∣∣∣∣,

where the supremum is taken over all subintervals of S1.

The discrepancy arises in many situations as an error estimate. Kuipers
and Niederreiter [10] prove the following theorem, attributed to Behnke.
(This is an exact bound on the discrepancy: the upper estimate is attributed
to Hecke and Ostrowski.)

Theorem 5.6 (Behnke [1]). If α ∈ (0, 1) is irrational of Diophantine
class ν, then the discrepancy DN of the fractional parts of the sequence
{α, 2α, . . .} satisfies

DN ≥ cN−1/ν+τ(19)

for every τ > 0 and some constant c > 0.

Proof. We maintain all the same notation as in Section 5.3.
Since the discrepancy DN is always at least 1/N , it suffices to consider

ν > 1.
We show that for sufficiently large N , the estimate in (19) holds with an

arbitrary constant c. Accounting for the initial portion of the sequence DN ,
we then obtain the estimate of (19) for some c > 0.

We proceed by contradiction. Assume instead that for some τ > 0 and
some c > 0, we have

DN ≤ cN−1/ν+τ .(20)

Assume ε/(ν − ε) < τν. We proceed using a similar method to that used in
the proof of Theorem 1.1. Choose the sequence {qnk} (as in the proof of the
second part of Theorem 1.1) so that qnk ≤ q

1/(ν−ε)
nk+1 .

Consider the positive integers

s(k)
m ∈

(1
4qnk+1,

3
4qnk+1

)
∩ N.

Define intervals

I
s
(k)
m

= (s(k)
m α− 1/(2qnk), s(k)

m α+ 1/(2qnk)).(21)

By similar calculations to those in Section 5.2, we find that for some
c3 > 0 independent of k,

c3qnk+1 ≥ min{|r| ∈ N : rα ∈ I
s
(k)
m
} ≥ c4qnk+1.

Therefore each of the intervals I
s
(k)
m

has a preimage g(I
s
(k)
m

) with length
bounded by (

1
c3qnk+1

)−1/δ

≤ |g(I
s
(k)
m

)| ≤
(

1
c4qnk+1

)−1/δ

.(22)
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Let
F (k)
s =

⋃

m

I
s
(k)
m
.

We claim that (20) implies that for sufficiently large k, the set F (k)
s covers

the whole circle and hence g(F (k)
s ) ⊃ Ω.

Indeed, (20) implies that for any interval J of length 1/qnk

A
(
J, 1

2qnk+1
)
≥ qnk+1

2qnk
− c21/ν+τ−1q

1−1/ν+τ
nk+1

≥ 1
2q

1−1/(ν−ε)
nk+1 − c21/ν+τ−1q

1−1/ν+τ
nk+1 ≥ c̃q1−1/(ν−ε)

nk+1

for some constant c̃ > 0. Thus for sufficiently large k, the sequence
{nα}0≤n≤(1/2)qnk+1 hits any interval of length 1/qnk and so does the se-
quence {(1/2)qnk+1α+ nα}0≤n≤(1/2)qnk+1 . This proves the claim.

Now we estimate the distortion by using (22):

lim
k→∞

log |I
s
(k)
m
|

log |g(I
s
(k)
m

)| = lim
k→∞

− log qnk
log q−1/δ

nk+1

=
δ

ν
.

Since by (22) the intervals g(I
s
(k)
m

) have approximately the same length
for fixed k, the above distortion estimate implies that using the coverings
{g(I

s
(k)
m

)} we have

1 = dimB S
1 ≥ ν

δ
dimBΩ,

a contradiction with Theorem 4.2 for ν > 1.
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J. Math. Pures Appl. (3) 7 (1881), 375–422; II, 8 (1882), 251–286; III , (4) 1 (1885),
167–244; IV , 2 (1886), 151–217.
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