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A third derivative test for mean values of exponential
sums with application to lattice point problems
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O. Robert and P. Sargos (Nancy)

1. Introduction and statement of the result

1.1. Third derivative test for exponential sums. Let M be a large integer
(say M ≥ 10) and λ be a small positive number (say 0 < λ < 1/10). Let
f : [1,M ]→ R be a C3 function which satisfies van der Corput’s hypothesis:

(1.1) λ ≤ f ′′′(x)� λ for 1 ≤ x ≤M,

where the Vinogradov symbol u� v means that v is positive and |u| ≤ Cv
for some positive absolute constant C.

The exponential sum SM =
∑M
m=1 e(f(m)), where we have set e(x) =

e2iπx, can be bounded by means of van der Corput’s classical “third deriva-
tive test” (cf. [1, Theorem 2.6]):

(1.2) SM �Mλ1/6 +M3/4 +M1/4λ−1/4.

For “short” exponential sums (say M � λ−2/3), this bound has been
sharpened to

(1.3) SM �Mλ1/6 + λ−1/3,

independently by Gritsenko [3] and the second author [8]. But the exponent
1/6 in (1.2) has never been improved, even for “long” exponential sums (say
M � λ−1). In fact, the second author has conjectured [9] that the bound

(1.4) SM �Mλϑ,

whenever f satisfies (1.1), under the restriction M � λ−1, does not hold for
any ϑ > 1/6.

1.2. Third derivative test for the distribution of fractional parts. Now,
we consider the analogous problem in terms of fractional parts. For any
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real x, we set ψ(x) = {x} − 1/2. We introduce the sum

(1.5) τM =
M∑

m=1

ψ(f(m)).

Giving upper bounds for τM is the key point in many lattice points
problems (cf. [6], [1], [4]). For instance, under the assumption (1.1), one
deduces from (1.3) that

(1.6) τM �Mλ1/7 + λ−1/3,

and, without additional hypothesis, nothing more is known.
As above, the question whether the exponent 1/7 can be increased (at

least under some restrictions on the relative size ofM and λ) arises naturally.
For comparison, in the same problem, but with the second derivative instead
of the third one, the corresponding exponent is 1/3 and a counter-example,
due to Grekos [2], shows that, even in a much weaker problem, this last
exponent can never be increased.

The aim of this paper is to show that the exponent 1/7 can be increased
to 3/19. This is a consequence of a slightly more general problem that we
describe now.

1.3. A third derivative test for mean values of exponential sums. Let
f,M, λ be as above. Let H be a positive integer. We consider the following
mean value of exponential sums:

(1.7) S =
1
H

2H∑

h=H+1

∣∣∣∣
Mh∑

m=1

e

(
h

H
f(m)

)∣∣∣∣,

where the integers Mh satisfy 1 ≤Mh ≤M for each h ∈ [H + 1, 2H].
A rough application of (1.3) yields the bound

(1.8) S �Mλ1/6 + λ−1/3.

Our main result may be stated as follows:

Theorem 1. With the above notations, and assuming (1.1), we have

(1.9) S �ε M
ε

(
Mλ1/6

H1/9
+Mλ1/5 +M3/4

)
+ λ−1/3.

Here and in what follows, the notation �ε means that the bound holds
for each ε > 0 and that the implied constant depends at most on ε and on
the previous implied constants.

The proof relies on the same mean value theorem for quadruple expo-
nential sums as in [7]. But this one works much stronger here, because the
phase function in (1.7) is now linear in h. In return, the optimization, with
respect to the various parameters introduced in the proof, becomes intricate.
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From Theorem 1, we derive our main application in a standard way:

Theorem 2. If we assume (1.1), then

(1.10)
M∑

m=1

ψ(f(m))�ε M
1+ελ3/19 +M3/4+ε + λ−1/3.

Remark. The problem of giving upper bounds for
∑M
m=1 ψ(f(m)) is

mostly studied with more hypotheses on f , namely under the hypotheses
of the method of exponent pairs (cf. [1, §3.3]). All best results to date have
been obtained by Huxley (cf. [4, §18.5]), combining deep methods stemming
from Bombieri and Iwaniec’s method, and are summed up in Tables 18.1
of [4].

If we restrict our Theorem 2 to such functions, then our bound (1.10) is
not entirely contained in Huxley’s result: our bound is slightly better when
α is close to 1.450 in Table 18.1 of [4].

Moreover, additional hypotheses on f would yield stronger estimations
in the “second spacing problem” with the corresponding improvement in
Theorems 1 and 2. This will be done by the first author in a forthcoming
paper.

Notations. We only use classical notations:

u � v or u = O(v) means that u is a complex number, v is a positive
number and there exists an absolute constant C which depends at most on
previous constants such that |u| ≤ Cv;

u �ε v or u = Oε(v) means furthermore that the bound holds for each
ε > 0 and that the constant C may depend on ε.

u � v means that both u� v and v � u.
We denote by ‖x‖ the distance of x to the nearest integer.
The symbol means that the proof is finished or has been omitted.
The function ψ is defined on R by the formula ψ(t) = {t} − 1/2 =

t− [t]− 1/2, where [t] is the integer part of t, and {t} is the fractional part
of t.

2. Lemmas from the previous paper. Our method is quite similar
to that of our previous paper [7]. We sum up the exact results we need by
means of independent lemmas.

2.1. A Diophantine system. Let R,Q,H,N be positive integers and δ
be a positive number. We denote by N (R,Q,H,N ; δ) the number of integer
points (r1, r2, q1, q2, h1, h2, n1, n2) ∈ Z8 lying in the domain:

(2.1)
{

0 < |ri| ≤ R, Q ≤ |qi| < 2Q, H ≤ hi < 2H,
1 ≤ ni ≤ N for i = 1, 2, q1q2 > 0
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and satisfying the system of two equations and an inequality:

(2.2)

{ r1 = r2,
r1n1 + h1q1 = r2n2 + h2q2,
|r1n

2
1 + 2h1q1n1 + h1q

2
1 − (r2n

2
2 + 2h2q2n2 + h2q

2
2)| ≤ δHQ2.

Lemma 1. If R ≤ H/2, then we have the bound

N (R,Q,H,N ; δ)�ε (RQHN)1+ε(1 + δQ).

This is Theorem 2 of [7].

2.2. The “second spacing lemma”. According to Huxley’s terminology
[4], the double large sieve method for exponential sums uses two spacing
lemmas. Here, the first one is Lemma 1, and the second one is the following.

Let f : [1,M ] → R be a C3 function. We set B = B(R,Q,H,N ; f) =
the number of (m1,m2) ∈ {1, . . . ,M}2 which satisfy the system of three
inequalities:

(2.3)




|f ′′(m1)− f ′′(m2)| ≤ (QN)−1,
‖(f ′(m1)− f ′(m2))/H‖ ≤ (HQ)−1,
‖(f(m1)− f(m2))/H‖ ≤ R−1.

Lemma 2. Suppose that the hypothesis (1.1) is satisfied. Then

(2.4) B �M +
M

λHQ2N
+

logM
Qλ

.

The proof of (2.4) goes as in Step 6 in Section 4 of [7]. We note that this
proof does not use the third inequality of (2.3). More hypotheses on f would
yield a better bound in (2.4) and thus would improve Theorems 1 and 2.

2.3. The main inequality. Let f : [1,M ] → R be a C3 function that
satisfies (1.1) and let H ≥ 2 be an integer. We want to bound S, where S is
defined in (1.7).

For this, we choose integer parameters R,Q,N which satisfy

(2.5) 1 ≤ R ≤ H/2, 1 ≤ Q� N � λ−1/3, RN � HQ, MQλ� 1.

Lemma 3. With the above hypotheses and notations we have the bound

(2.6) S �ε M
ε

(
M

(QR)1/2
+M(Qλ)1/4

( B
M

)1/4

+
(
MS1

Q

)1/2

+(MN)1/2
)
,

where we have set B = B(R,Q,H,N ; f) and

(2.7) S1 =
1
R

R∑

r=1

∣∣∣∣
M∑

m=1

e

(
r

H
f(m)

)∣∣∣∣.
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Proof. (a) We want to bound

S =
1
H

2H∑

h=H+1

∣∣∣∣
Mh∑

m=1

e

(
h

H
f(m)

)∣∣∣∣.

But we may suppose that Mh = M for each h thanks to Lemma 5.2.3 of
[4] and we only have to pay a factor logM . From now on, we suppose that
Mh = M for each h.

(b) We write

S =
1
H

2H∑

h=H+1

a(h)
M∑

m=1

e

(
h

H
f(m)

)

where a(h) is some complex number of modulus 1, and we apply van der
Corput’s lemma A×A (cf. [7, Lemma 1]) to the above double sum to get

S � M

(QR)1/2
+
(
MS1

Q

)1/2

+
(
MS2

R

)1/2

+
(
MS3

HQR

)1/2

+M1/2Q1/2

where we have set

S2 =
1
QH

∑

q 6=0

∑

h

∣∣∣∣
∑

m

e

(
h

H
(f(m+ q)− f(m))

)∣∣∣∣,

S3 =
∣∣∣∣
∑

0<|r|≤R

∑

0<|q|≤Q

2H∑

h=H+1

M−Q∑

m=Q+1

b(r, q, h)e
(
h

H
f(m+q)− h+ r

H
f(m)

)∣∣∣∣

and where S1 is defined as in (2.7). The coefficients b(r, q, h) are complex
numbers of modulus at most one; the term O(M 1/2Q1/2) in the above in-
equality comes from the O(Q) values of m which are not counted in S3.

We apply van der Corput’s inequality (cf. [1, Theorem 2.2]) to bound
the exponential sum in S2 and we get

S2 �M(Qλ)1/2 + (Qλ)−1/2 �M(Qλ)1/2.

We have

(2.8) S � M

(QR)1/2
+
M(Qλ)1/4

R1/2
+
(
MS1

Q

)1/2

+
(
MS3

HQR

)1/2

+M1/2Q1/2.

(c) Now, we have to give a bound for S3. We get a new variable by
applying Weyl’s shift on the variable m:

S3 �
1
N

M−Q−N∑

m=Q+1

∣∣∣∣
∑

r 6=0

∑

q 6=0

∑

h

N∑

n=1

b(r, q, h)

× e
(
h

H
f(m+ q + n)− h+ r

H
f(m+ n)

)∣∣∣∣+RQHN.
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By Taylor’s formula, we can write

h

H
f(m+ q + n)− h+ r

H
f(m+ n)

= − r

H
f(m) +

f ′(m)
H

(hq − rn)

+
f ′′(m)

2H
(hq2 + 2hqn− rn2) + ϕm(r, q, h, n).

The condition “1 ≤ Q � N � λ−1/3” in (2.5) implies that the term
ϕm(r, q, h, n) is small enough and can be removed by a four-dimensional
summation by parts without cost as in Lemma 2 of [7]. Splitting the sum-
mation on q according to its size, we finally get the inequality

(2.9) S3 �
logM
N

max
1≤Q1<Q

M−Q−N∑

m=Q+1

∣∣∣∣
∑

r 6=0

∑

Q1�|q|<2Q1

2H∑

h=H+1

N∑

n=1

c(r, q, h, n)

× e
(
− r

H
f(m) +

f ′(m)
H

(hq − rn) +
f ′′(m)

2H
(hq2 + 2hqn− rn2)

)∣∣∣∣

+RQHN,

where the complex numbers c(r, q, h, n) have modulus at most one.
(d) We conclude by applying Bombieri and Iwaniec’s double large sieve

to the above sum which is of the form

∑

m

∑

r,q,h,n

a(m)c(r, q, h, n)e
( 3∑

i=1

xi(m)yi(r, q, h, n)
)
.

Thus, by Lemma 7.5 of [1], or Lemma 5.6.6 of [4], we get

S3 �
logM
N
B1/2 (MλRHQ2N)1/2 max

1≤Q1�Q
N
(
R,Q1,H,N ;

1
MλQ2

1

)1/2

.

If we apply Lemma 1 and if we take (2.5) into account, we finally obtain

(2.10) S3 �ε RQ
3/2HM1/2+ελ1/2B1/2 +RQHN.

We take back (2.10) into (2.8), and this gives (2.6).

Remark. We have somewhat condensed the proof of Lemma 3. The
reader interested in more details should refer to §4 of [7]. However, Lemma 3
is not exactly contained in [7].

As said above, an improvement of Lemma 2 is still possible with more
hypotheses on f . But if we only suppose (1.1), Lemma 2 seems to be best
possible. The following lemma follows at once from Lemmas 2 and 3.
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Lemma 4. Suppose that the hypotheses of Lemma 3 are satisfied and that

(2.11) λHQ2N � 1.

Then

(2.12) S �ε M
ε

(
M

(QR)1/2
+M(Qλ)1/4 +

(
MS1

Q

)1/2

+ (MN)1/2
)
.

3. Proof of Theorem 1. We split the proof of Theorem 1 into two
steps. In the first one, we use Lemma 4 to get a slightly weaker form of
Theorem 1. In the second one, we use the above result to bound S1 in
Lemma 4. This means that Lemma 4 is iterated once to prove Theorem 1.

3.1. An intermediate step

Lemma 5. Let f : [1,M ] → R be a C3 function which satisfies (1.1).
Define S as in (1.7). Then

(3.1) S �ε M
ε

(
Mλ1/6

H1/9
+Mλ13/66 +M3/4

)
+ λ−1/3.

Proof. (a) We suppose first that M < λ−2/3. Then Lemma 5 is not
stronger than (1.3). Indeed, by (1.3), we have

S �Mλ1/6 + λ−1/3 �M3/4 + λ−1/3

and this is better than (3.1).
(b) We set H0 = λ−3/11 and we suppose now that

(3.2) M � λ−2/3 and 10 ≤ H � H0.

In Lemma 4, we fix the size of the parameters R,Q,N :

R � H2/3, Q � λ−1/3H−4/9 + (Mλ)−1,(3.3)

N � λ−1/3H−1/9 + (Mλ)−1.

For this choice of R,Q,N , it is easy to see that all conditions in (2.5)
and (2.11) are satisfied, so that Lemma 4 may be applied:

S �ε
M1+ε

(QR)1/2
+M1+ε(Qλ)1/4 + (MN)1/2+ε +

(
M1+εS1

Q

)1/2

and thus

(3.4) S �ε
M1+ελ1/6

H1/9
+M3/4+ε +

(
M1+εS1

Q

)1/2

,

with

S1 =
1
R

R∑

r=1

∣∣∣∣
M∑

m=1

e

(
r

H
f(m)

)∣∣∣∣.
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By (1.3), we get

S1 �M

(
Rλ

H

)1/6

+
(
H

Rλ

)1/3

.

We recall that Q−1/2 � min(λ1/6H2/9, (Mλ)1/2), so that
(
MS1

Q

)1/2

�Mλ1/4H
7/36
0 +Mλ1/3H

1/18
0 �Mλ13/66.

We take back this bound into (3.4) and we recover (3.1).

(c) We suppose now that

(3.5) M � λ−2/3 and H � H0.

We choose our parameters as follows:

(3.6)
R � H/H1/3

0 , Q � λ−1/3H
−4/9
0 + (Mλ)−1,

N � λ−1/3H
−1/9
0 + (Mλ)−1.

Conditions (2.5) and (2.11) are again satisfied, and Lemma 4 yields

S �ε M
1+ελ13/66 +M3/4+ε.

This completes the proof of Lemma 5.

3.2. Proof of Theorem 1. Let f : [1,M ] → R be a C3 function which
satisfies (1.1) and let S be defined by (1.7). We have to prove that

(3.7) S �ε
M1+ελ1/6

H1/9
+M3/4+ε +M1+ελ1/5 + λ−1/3.

As in the proof of Lemma 5, we may suppose that M � λ−2/3. We split
the proof into two cases.

(a) We set H1 = λ−3/10 and we assume that

(3.8) M � λ−2/3 and 10 ≤ H � H1.

In order to apply Lemma 4, we introduce the parameters R,Q,N and
we fix their size as in (3.3). The conditions (2.5) and (2.11) are satisfied and
we get (3.4) as in the previous proof.

The difference with the proof of Lemma 5 occurs here. Instead of (1.3),
we use Lemma 5 to bound S1:

S1 =
1
R

R∑

r=1

∣∣∣∣
M∑

m=1

e

(
r

H
f(m)

)∣∣∣∣

� logM max
1≤R1≤R

R1

R
· 1
R1

2R1∑

r=R1+1

∣∣∣∣
M∑

m=1

e

(
r

R1
· R1

H
f(m)

)∣∣∣∣
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�ε
R1

R
M1+ε (R1H

−1λ1/6)

R
1/9
1

+
R1

R
M1+ε(R1H

−1λ)13/66

+M3/4+ε +
R1

R

(
H

λR1

)1/3

.

In each term of the above formula, R1 appears only with positive expo-
nent so that we may take R1 = R = H2/3:

S1 �ε
M1+ελ1/6

H7/54
+
M1+ελ13/66

H13/198
+M3/4+ε +H1/9λ−1/3.

As we have chosen Q � λ−1/3H−4/9 + (Mλ)−1, we may write Q−1/2 �
λ1/6H2/9, orQ−1/2 � (λ1/3H4/9)3/8(Mλ)1/8 = M1/8λ1/4H1/6, orQ−1/2 �
(Mλ)1/2, so that we have

M1/2S
1/2
1

Q1/2
�ε M

1+ελ1/4H17/108 +M1+ελ35/132H25/132

+M1+ελ1/4H1/6 +M1+ελ1/3H1/8

�ε M
1+ελ1/4H

1/6
1 �ε M

1+ελ1/5.

We take back this bound into (3.4), and we recover (3.7) in this case.
(b) We now assume that

(3.9) M � λ−2/3 and H � H1.

The size of the parameters R,Q and N must be changed to

(3.10)
R � H/H1/3

1 , Q � λ−1/3H
−4/9
1 + (Mλ)−1,

N � λ−1/3H
−1/9
1 + (Mλ)−1.

Conditions (2.5) and (2.11) are again satisfied and Lemma 4, together
with the bound

M1/2S
1/2
1

Q1/2
�ε M

1+ελ1/5,

yield
S �ε M

3/4+ε +M1+ελ1/5

from which we deduce (3.7). Theorem 1 is now proved.

4. Application to lattice points problems

4.1. Fractional parts and exponential sums. Let g : [1,M ] → R be any
function. The sum

τM =
M∑

m=1

ψ(g(m))
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can be expressed in terms of mean values of exponential sums by means of
the following classical lemma, which is a weaker form of Theorem A.6 of [1].

Lemma 6. Let H be any positive integer. Then

(4.1) τM �
M

H
+

H∑

h=1

1
h

∣∣∣
M∑

m=1

e(hg(m))
∣∣∣.

4.2. Proof of Theorem 2. We suppose furthermore that g is a C3 function
which satisfies van der Corput’s hypothesis

(4.2) g′′′(x) � λ, 1 ≤ x ≤M,

and we have to prove that

(4.3) τM �ε M
1+ελ3/19 +M3/4+ε + λ−1/3.

Let H be a positive integer. From Lemma 6, we deduce that

τM �
M

H
+
∑

R

1
R

2R∑

h=R+1

∣∣∣
M∑

m=1

e(hg(m))
∣∣∣,

where R runs over all possible values which are powers of 2 smaller than H.
We are now in a position to apply Theorem 1. This yields

τM �ε
M

H
+
∑

R

(
M1+εR1/18λ1/6 +M1+εR1/5λ1/5 +M3/4+ε +

λ−1/3

R1/3

)

�ε
M

H
+M1+εH1/18λ1/6 +M1+εH1/5λ1/5 +M3/4+ε + λ−1/3.

The choice of H is determined by Srinivasan’s Lemma (cf. [1, Lemma
2.4]), that is, H � λ−3/19, and this implies (4.3).

4.3. Integer points close to a curve. To illustrate our Theorems 1 and 2
in terms of lattice points, we choose the problem of integer points close to
a curve. Let g : [1,M ] → R be any function, and let δ (0 < δ < 1/2) be
a real number. We set

(4.4) R(g, δ) = #{m ∈ {1, . . . ,M} | ‖g(m)‖ ≤ δ}.

Two problems can be considered. The first one consists in finding an
upper bound for R(g, δ), while the second consists in finding the asymptotic
behaviour of R(g, δ), that is, in writing R(g, δ) = 2Mδ + E, where E is an
error term.

4.3.1. An upper bound for R(g, δ). The problem reduces to exponential
sums by means of the following lemma.
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Lemma 7. Let H be a positive integer , H � δ−1. Then

R(g, δ)� M

H
+

1
H

H∑

h=1

∣∣∣
M∑

m=1

e(hg(m))
∣∣∣.

Proof. This is a weaker form of Lemma 5.3.2 of [4].

Under the assumption

(4.5) g′′′(x) � λ for 1 ≤ x ≤M,

we deduce from (1.3) and Lemma 7 that

(4.6) R(g, δ)�Mδ +Mλ1/7 +M2/3 +
(
δ

λ

)1/3

.

For small values of δ, the method of divided differences yields the better
bound (cf. [5])

(4.7) R(g, δ)�Mδ1/3 +Mλ1/6 +
(
δ

λ

)1/3

.

From Lemma 7 and Theorem 1, we deduce at once the following bound.

Corollary 1. If we assume (4.5), then

R(g, δ)�ε Mδ +M1+ελ3/19 +M3/4+ε +
(
δ

λ

)1/3

.

Proof. By Lemma 7, we reduce the problem to the estimate of exponen-
tial sums which depend on a parameter h. By Theorem 1, we arrive at the
bound

R(g, δ)�ε
M

H
+M1+ελ1/6H1/18 +M1+ελ1/5H1/5 +M3/4+ε + (Hλ)−1/3,

with the restriction 1 ≤ H � δ−1.

We optimize this bound depending on the parameter H as in Srinivasan’s
Lemma (cf. [1, Lemma 2.4]). We get

R(g, δ)�ε Mδ +M1+ελ3/19 +M3/4+ε +
(
δ

λ

)1/3

+M6/7+ελ2/21,

because the remaining terms given by Srinivasan’s Lemma are M 1+ελ1/6

and M5/8+ε and can be obviously removed. But the term M 6/7+ελ2/21 can
also be removed; indeed, we have

M6/7λ2/21 ≤M6/7λ9/133 = (M3/4)4/7(Mλ3/19)3/7 ≤M3/4 +Mλ3/19.

The proof of Corollary 1 is complete.
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4.3.2. Asymptotic behaviour of R(g, δ). In the next lemma, we reduce
the problem of the asymptotic behaviour of R(g, δ) to estimating the sum∑M
m=1 ψ(g(m)± δ).
Lemma 8. Let g : [1,M ]→ R be any function. Then for any δ ∈ [0, 1/2[,

we have

(4.8) R(g, δ) = 2Mδ + E

with

|E| ≤ 2 max
−1/2≤ϑ≤1/2

∣∣∣
M∑

m=1

ψ(g(m) + ϑ)
∣∣∣.

Proof. We set

Rϑ =
M∑

m=1

([g(m) + δ]− [g(m)− ϑ]).

It is easy to see that
R(g, δ) = lim

ϑ→δ+0
Rϑ.

We have

Rϑ =
M∑

m=1

((g(m) + δ − {g(m) + δ})− (g(m)− ϑ− {g(m)− ϑ}))

=
∑ M∑

m=1

(δ + ϑ− ψ(g(m) + δ) + ψ(g(m)− ϑ))

=
∑

M(δ + ϑ) + E1 + E2

with

|Ei| ≤ max
−1/2≤t≤1/2

∣∣∣
M∑

m=1

ψ(g(m) + t)
∣∣∣,

provided that ϑ < 1/2. By letting ϑ tend to δ + 0, we get (4.8).

The following corollary can be deduced at once from Lemma 8 and The-
orem 2.

Corollary 2. Assume that (4.5) holds. Then, for any δ ∈ [0, 1/2[, we
have

R(g, δ) = 2Mδ +Oε(M1+ελ3/19 +M3/4+ε) +O(λ−1/3).
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