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1. Introduction. Let K be a real quadratic field of discriminant D,
ζ(s,A) a class zeta function of an ideal class A of K. In [9], Zagier obtained
his Kronecker limit formula by using the decomposition

Ds/2ζ(s,B−1) =
∑

k

ZQk(s), Re(s) > 1,

of the class zeta function for a narrow ideal class B into the finite sum of
zeta functions ZQk(s) associated to indefinite quadratic forms Qk. In view
of the above decomposition, getting a Kronecker limit formula amounts to
evaluating the constant term of the Laurent expansion of the zeta function

(1.1) ZQ(s) =
∞∑

p=1

∞∑

q=0

1
Q(p, q)s

,

where Q(p, q) = ap2 + bpq+ cq2, with a, b, c > 0, b2− 4ac = 1 at s = 1, after
analytic continuation. For this purpose Zagier introduced the function

(1.2) F (x) =
∞∑

p=1

ψ(px)− log px
p

=
∞�

0

(
1

1− e−t −
1
t

)
log(1− e−xt) dt,

where ψ(x) denotes the digamma function, i.e. ψ(x) = (logΓ (x))′, and
obtained the explicit evaluation

lim
s→1

(
ZQ(s)−

1
2 log(w/w′)

s− 1

)
= P0(w,w′),

where

P0(x, y) = F (x)−F (y)+Li2

(
y

x

)
− π

2

6
+log

x

y
·
(
γ− 1

2
log(x−y)+

1
4

log
x

y

)
,
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and w > w′ are the roots of the quadratic equation cw2 − bw + a = 0.
This, combined with the above-mentioned decomposition, leads to Zagier’s
formulation of the Kronecker limit formula:

(1.3) lim
s→1

(
Ds/2ζ(s,B)− log ε

s− 1

)
=
∑

k

P0(wk, w′k),

where ε > 1 denotes the smallest unit of K of norm 1. Indeed, the func-
tion F was introduced earlier by Herglotz [4] and was used in a similar set-
ting, however, Herglotz’s evaluation does not contain the continued fractions
but Dedekind sums. Zagier’s argument has been simplified considerably by
Egami [2] owing to his decomposition (3.3).

Motivated and encouraged by these investigations we shall be concerned
in this paper with the evaluation of all the Laurent coefficients of ZQ(s)
at s = 1 in closed form. The main result, Theorem 3, provides an explicit
formula for the successive kth coefficients Pk(w,w′), and in Corollary of
Theorem 3, explicit formulas are given for k = −1, 0, 1. The formula for
k = 0 leads immediately to Zagier’s formula.

Of course, as in all the formulations of the Kronecker limit formulas, our
formulas also undergo the criticism that they are not in final form, involving
transcendental integrals, but our method refining those of Zagier and Egami,
makes lucid the underlying complexities in evaluating the further Laurent
coefficients, and, with some effort, one can in principle compute the higher
coefficients Pk, k = 2, 3, . . . , by means of Theorem 3.

The idea is to replace ψ(x) in the definition of the Herglotz–Zagier func-
tion F (x) by the derivative of Rk-functions (2.3) to construct a sequence of
higher order Herglotz–Zagier functions Φk(x) (viewing ψ(x) = (logΓ (x))′

as R′1(x)). After Gut’s preliminary investigation on the R2-function [3],
Deninger [1] introduced the Rk-functions as the principal solution of the
difference equation (2.1) in the spirit of Artin and extensively developed
the theory of the R2-function for his study on the Chowla–Selberg formula.
Rk-functions (k ≥ 2) were also studied and exploited by Kanemitsu [6] to
express the higher order derivatives of Dirichlet L-functions L(s, χ) at s = 1
(see also Ishibashi–Kanemitsu [5]). After expressing the Laurent coefficients
Pk(w,w′) in terms of Φk-functions in Section 3, we go on in Section 4 to
study the arithmetical interpretation of the sum Pk(B) =

∑
B Pk(w,w′) over

all narrow ideal classes, thus giving pre-Chowla–Selberg formulas. We affix
“pre” because if we succeed in some way or other in summing

∑
B Pk(B)

(as in the case of k = −1 ), then we will get a Chowla–Selberg formula. We
hope to study this problem elsewhere.

2. Higher order Herglotz–Zagier functions. We begin with the def-
inition of Rk(x) by Deninger mentioned in Section 1, which in turn is based
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on Artin’s treatment of the gamma function. He introduced the function
Rk(x) as the principal solution of the difference equation

(2.1) f(x+ 1)− f(x) = logk x, f(1) = λ,

which is convex on some interval (A,∞), A > 0, and used mainly R2(x) in
order to calculate L′(1, χ), the first derivative of the Dirichlet L-function at
s = 1, thereby proving the Chowla–Selberg formula.

The unique solution fk(x) of (2.1) with initial condition fk(1) =
(−1)k+1ζ(k)(0), denoted by Rk(x), admits two equivalent expressions:

(2.2) Rk(x) = lim
n→∞

(
(−1)k+1ζ(k)(0) + x logk n− logk x

−
n−1∑

ν=1

(logk(x+ ν)− logk ν)
)
,

(2.3) Rk(x) = (−1)k+1 ∂
k

∂sk
ζ(0, x),

where ζ(s), ζ(s, x) denote the Riemann zeta function and the Hurwitz zeta
function respectively. We note that the Bohr–Mollerup theorem, which char-
acterizes the gamma function by a difference equation and convexity, asserts
that R1(x) = log(Γ (x)/

√
2π), making our idea to replace ψ by R′k legiti-

mate. The analytic continuation of Rk(x) to the whole complex plane ex-
cept the origin and the negative real axis is accomplished by the Hurwitz
zeta-expression (2.3).

Deninger proved many analytic properties of R2(x) in order to familiarize
and assimilate it as one of most commonly used number-theoretic special
functions, and among other things, he proved for R2 an analogue of Plana’s
formula for logΓ :

(2.4) R2(x) = −ζ ′′(0)− 2
∞�

0

(
(x− 1)e−t +

e−xt − e−t
1− e−t

)
(γ + log t) d log t,

x > 0.
We find it convenient to have a similar formula for Rk(x):

Theorem 1. For x > 0,

(2.5) Rk(x)

= (−1)k+1
(
ζ(k)(0) + k

∞�

0

(
(x− 1)e−t +

e−xt − e−t
1− e−t

)
Sk(t) d log t

)
,

where Sk(t) =
∑k−1
j=0 ak,j logj t, ak,j are defined recursively by

ak,j = −
k−2∑

r=0

(
k − 1
r

)
Γ (k−r−1)(1)ar+1,j , 0 ≤ j ≤ k − 2,

starting from a1,0 = 1, and ak,k−1 = 1.
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Proof. First we need a formula

(2.6)
∞�

0

(e−βt− e−αt)Sk(t) d log t =
(−1)k

k
(logk β − logk α) for α, β > 0,

which is a generalization of formula (2.13) of [1]. From this, we have

x logk n− logk x = (−1)k+1k

∞�

0

((x− 1)e−t − xe−nt + e−xt)Sk(t) d log t,

n−1∑

ν=1

(logk(x+ ν)− logk ν)

= (−1)k+1k

∞�

0

(
e−nt − e−t

1− e−t e−xt +
e−t − e−nt

1− e−t
)
Sk(t) d log t.

Substituting these in (2.2), we conclude that Rk(x) is equal to the right-hand
side of (2.5) plus

lim
n→∞

(−1)kk
∞�

0

e−nt
(
x− 1− e−xt

1− e−t
)
Sk(t) d log t,

which is seen to be 0 by Lebesgue’s lemma.
It remains to prove (2.6). First we have

∞�

0

(e−βt − e−αt) logk t d log t = −
β�

α

(∞�

0

logk t · e−ut dt
)
du.

The inner integral can be evaluated by means of the kth derivative of

u−xΓ (x) =
∞�

0

e−uttx−1 dt

at x = 1 as
∞�

0

logk t · e−ut dt =
k∑

r=0

(
k

r

)
Γ (k−r)(1)(− log u)r

1
u
.

Thus

(2.7)
∞�

0

(e−βt − e−αt) logk t d log t

=
k∑

r=0

(−1)r+1

r + 1

(
k

r

)
Γ (k−r)(1)(logr+1 β − logr+1 α),

which, after inversion, leads to (2.6).

Next, we shall prove an integral representation of R′k(x), the case k = 1
of which was used by Zagier to derive an integral representation of F (x).
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Theorem 2. For x > 0,

(2.8) R′k(x)− logk x = (−1)kk
∞�

0

(
1

1− e−t −
1
t

)
Sk(t)e−xt dt.

Proof. Differentiating both sides of (2.5) with respect to x, and substi-
tuting x+ 1 for x, we have

R′k(x+ 1) = (−1)k−1k

∞�

0

(
e−t

t
− e−xt

et − 1

)
Sk(t) dt

= (−1)k−1k

∞�

0

[
e−t − e−xt

t
−
(

1
et − 1

− 1
t

)
e−xt

]
Sk(t) dt.

Note that the differentiation under the integral sign is justified by Lebesgue’s
theorem applied to the last expression.

From (2.6), we also have

(2.9) R′k(x+ 1) = logk x+ (−1)kk
∞�

0

(
1

et − 1
− 1
t

)
Sk(t)e−xt dt.

On the one hand, (2.1) yields

(2.10) R′k(x) = R′k(x+ 1)− k logk−1 x

x
,

and on the other hand, by differentiating (2.6) with α = 1 with respect to
x (= β), we get

(2.11)
∞�

0

Sk(t)e−xt dt = (−1)k+1 logk−1 x

x
.

Hence, substituting (2.9) and (2.11) in (2.10), we get the assertion.

We are now ready to introduce the kth order Herglotz–Zagier function
Φk(x).

Definition. For x > 0,

Φk(x) =
∞∑

n=1

R′k(nx)− logk(nx)
n

(2.12)

= (−1)k−1k

∞�

0

(
1

1− e−t −
1
t

)
Sk(t) log(1− e−xt) dt.

We note that Φ1(x) coincides with the Herglotz–Zagier function F (x) of
Section 1.
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3. Laurent expansion of ZQ(s). It is known by Zagier’s theorem that
ZQ(s) has an analytic continuation to the half plane Re(s) > 1/2, with a
single pole at s = 1. The following two functions will play a fundamental
role in the evaluation of the Laurent coefficients of ZQ(s). For a, b, c ∈ N0,
let

(3.1) Ia,b,c(u, v) =
u�

v

loga x logb(u− x) logc(x− v)
x

dx, u > v > 0,

and

(3.2) H(u, v) =
∞�

0

tv−1 log(1− e−ut)
(

1
1− e−t −

1
t

)
dt, u, v > 0.

The integral (3.1) can be computed in terms of elementary functions of u
and v involving the polylogarithm functions if one of the exponents a, b, c
is zero, but in general, it is not the case (see [7], [8]). We hope to study
this type of integrals in its full generality elsewhere. Here, we give a few
examples for later use.

Lemma 1. We have

I0,0,0 = log u− log v,

I0,0,1 = log v log
u

v
+

1
2

log2 v

u
+ Li2

(
v

u

)
− π2

6
,

I0,1,0 = log u log
u

v
+ Li2

(
v

u

)
− π2

6
,

I1,0,0 =
1
2

log2 u− 1
2

log2 v,

I2,0,0 =
1
3

log3 u− 1
3

log3 v,

I0,0,2 = − log2(u− v) log
v

u
− 2 log(u− v) Li2

(
1− v

u

)
+ 2 Li3

(
1− u

v

)
,

I0,2,0 = log2(u− v) log
u

v
+ 2 log(u− v) Li2

(
1− u

v

)
− 2 Li3

(
1− u

v

)
,

I0,1,1 =
π2

6
log

v

u
− π2

3
log(u− v)− log u log v log(u− v)

+
log3 v − log3 u

6
+

1
2

log2 u log(v(u− v)3) + log2(u− v) log
v

u

− 1
2

log2 v log(u(u− v)) + 2 log(u− v) Li2

(
v

u

)

+ Li3

(
1− v

u

)
− Li3

(
1− u

v

)
,
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I1,0,1 = − π2

6
log v +

log3 u− log3 v

3
+ log u Li2

(
v

u

)
+ Li3

(
v

u

)
− ζ(3),

I1,1,0 = − π2

6
log u+

1
2

log3 u− 1
2

log2 v log u

+ log v Li2

(
v

u

)
− Li3

(
v

u

)
+ ζ(3),

where Lik(z) (k ≥ 2) denote the polylogarithm functions:

Li2(z) = −
z�

0

log(1− z)
z

dz, Lik(z) =
z�

0

Lik−1(z)
z

dz, k ≥ 3.

Proof. See Chapters 1, 6, 8 of [7], especially pp. 5, 154–159, 221, 224,
270, 271.

The following lemma, which follows easily from the definitions (2.12)
and (3.2), gives a close relationship between H(u, v) and Φk(x).

Lemma 2. We have

Φk(x) = (−1)k−1k
k−1∑

j=0

ak,j∂
j
vH(x, 1),

or conversely

∂kvH(x, 1) =
k∑

j=0

bk,j+1Φj+1(x),

where bk,j+1 (0 ≤ j ≤ k − 1) are defined recursively by

bk,j+1 = −
k−1∑

r≥j
ak+1,rbr,j+1,

starting from b0,1 = 1, bk,k+1 = (−1)k(k + 1)−1, and ak,j are as defined in
Theorem 1.

Now we are in a position to state the main result of the paper.

Theorem 3. Let w, w′ be the roots of the quadratic equation cw2 − bw
+ a = 0, labelled so that w > w′ > 0. Then ZQ(s) has a Laurent expansion

ZQ(s) =
∞∑

k=−1

Pk(w,w′)(s− 1)k, Pk(w,w′) =
∑

i+j=k

ai(bj + cj),
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where

ai =
∑

l+m=i

(−1)l

l!

∑

s1+2s2+...
+msm=m

( m∏

j=1

(sj + 1)
(−Γ (j)(1)

j!

)sj)
logl(w − w′),

i ≥ 0,

bj =
2j

j!

j∑

r=0

bj,r+1(Φr+1(w)− Φr+1(w′))

+
j−1∑

r=0

(
j

r

)
2r

j!

w�

w′

logj−r{(w − u)(u− w′)}∂rv∂uH(u, 1) du, j ≥ 0,

cj =
∑

l+m+n=j
m≥−1

∑

q+r≤n

(−1)r2l+m+rγmΓ
(l)(1)

l!n!

(
n

r

)(
n− r
q

)
Ir,q,n−q−r(w,w′),

j ≥ −1,

and γm denotes the generalized Euler constant , i.e. the mth Laurent coeffi-
cient of the Riemann zeta function.

Proof. The evaluation of Laurent coefficients in the form given above is
based on the following decomposition obtained by Egami [2]:

(3.3) ZQ(s) = A(s)(B(s) + C(s)),

where

A(s) =
(w − w′)1−s

Γ 2(s)
,

B(s) =
∞�

0

t2s−1
(

1
1− e−t −

1
t

) w�

w′

{(w − u)(u− w′)}s−1 e−ut

1− e−ut du dt,

C(s) = Γ (2s− 1)ζ(2s− 1)
w�

w′

u1−2s{(w − u)(u− w′)}s−1 du.

The formula for ai, the ith Taylor coefficient of A(s), follows by noting that

dk

dxk

(
1

Γ 2(x)

)

|x=1
= k!

∑

s1+2s2+...+ksk=k

k∏

j=1

(sj + 1)
(−Γ (j)(1)

j!

)sj
.

We need the function H(u, v) for the evaluation of bj . The following
formula enables us to express bj in terms of higher order Herglotz–Zagier
functions (with some additional integrals):

B(s) =
w�

w′

{(w − u)(u− w′)}s−1∂uH(u, 2s− 1) du.
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Finally, the formula for cj , when viewed as the Cauchy product of the
Laurent coefficients of the first two factors Γ (2s− 1), ζ(2s− 1), and of the
Taylor coefficients of the last integral C1(s), say, of C(s), follows from the
remark that

C
(k)
1 (1) =

k∑

r=0

k−r∑

j=0

(−2)r
(
k

r

)(
k − r
j

)
Ir,j,k−r−j(w,w′),

which completes the proof.

Corollary. For the first three coefficients, we have

P−1(w,w′) =
1
2

log
w

w′
,

P0(w,w′) = Φ1(w)− Φ1(w′) + Li2

(
w′

w

)
− π2

6

+ log
w′

w
·
(
γ0 −

1
2

log(w − w′) +
1
4

log
w′

w

)
,

P1(w,w′) = (Φ2(w)−Φ2(w′))−(γ− log(w−w′))(Φ1(w)−Φ1(w′))− γ
3
π2

+
(

2γ−log(w−w′) + log
a

(w−w′)2

)
Li2

(
w′

w

)
−Li3

(
1− w

w′

)

+ Li3

(
1− w′

w

)
+

4γ1 + ζ(2)
2

log
w

w′
+
π2

6
log(w − w′)

+
1
4

log a logw logw′ − γ log
w

w′
log(w − w′)

+
log3 w − 7 log3 w′

12
+
π2

12
log

ww′3

(w − w′)4

+
1
4

logw log(w − w′) log
w5

w′3(w − w′)3

+
1
4

logw′ log(w − w′) log
w(w − w′)3

w′3

+
w�

w′

log{(w − u)(u− w′)}∂uH(u, 1) du.

Proof. The formulas for P−1 and P0 are essentially due to Zagier and
Egami. Even for these, our method is more transparent and gives immedi-
ately

P−1(w,w′) =
∑

i+j=−1

ai(bj + cj) = a0c−1 = 1
2I0,0,0,

and similarly



68 M. Ishibashi

P0(w,w′) =
∑

i+j=0

ai(bj + cj)

= H(w, 1)−H(w′, 1) + 1
2 (I0,0,1 + I0,1,0 − 2I1,0,0)

+
(
γ − 1

2 log(w − w′)
)
I0,0,0,

whence the result follows from Lemmas 1 and 2.
For P1, we have

P1(w,w′) =
∑

i+j=1

ai(bj + cj)

= 2(∂vH(w, 1)− ∂vH(w′, 1))

+
w�

w′

log{(w − u)(u− w′)}∂uH(u, 1) du

+ (2γ0 − log(w − w′))
{

(H(w, 1)−H(w′, 1))

+ 1
2 (I0,0,1 + I0,1,0 − 2I1,0,0)

}

+ 1
4 (I0,0,2 + 2I0,1,1 + I0,2,0 − 4I1,0,1 − 4I1,1,0 + 4I2,0,0)

+ (Γ (2)(1) + 2Γ ′(1)γ0 + 2γ1)I0,0,0.

Using Lemma 1, Lemma 2 and the functional equation for polylogarithms
([7, Chapters 1, 6]), we obtain the final form of P1.

4. Pre-Chowla–Selberg formula. Now coming back to the setting
from which we started in Section 1, we consider the class zeta function
ζ(s,B) of a narrow ideal class B of the real quadratic field K of discrimi-
nant D. According to Zagier, we have the decomposition

(4.1) Ds/2ζ(s,B−1) =
l(B)∑

l=1

ZQl(s),

where l(B) denotes the length of the period of the continued fraction ex-
pansion of the number w ∈ K such that {1, w} constitutes a basis of some
fractional ideal of B (not depending on the choice of w) and w > 1 > w′ > 0
( ′ means the conjugate) and Ql is an indefinite quadratic form with positive
real coefficients given by

Ql(x, y) =
1

wl − w′l
(y + xwl)(y + xw′l),

wl (1 ≤ l ≤ l(B)) being the elements of K obtained by the cyclic permuta-
tion of the cycle of continued fraction expansion of w (see Zagier [9] for all
of this).

It is well known that the Dedekind zeta function ζK(s) of K admits two
representations, one as the sum of class zeta function ζ(s,B), and the other
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as the product of ζ(s) and the Dirichlet L-function:

(4.2) ζK(s) =
∑

B

ζ(s,B) = ζ(s)L(s, χD),

where B runs over the narrow ideal class group of K and χD is a primitive
Dirichlet character mod D attached to K.

We shall compute the Laurent coefficients of Ds/2ζK(s) in two ways
based on (4.2) to obtain

Theorem 4. Let Pi(B) =
∑l(B)
k=1 Pi(wk, w

′
k), i = −1, 0, 1. Then

(1)
∑

B

P−1(B) = 2hK log ε0,

(2)
∑

B

P0(B) = 2
(

2γ0 +log 2π+
logD

2

)
hK log ε0−

D−1∑

ν=1

χD(ν)R2

(
ν

D

)
,

(3)
∑

B

P1(B)

= 2
{

3 log 2π
2

γ0 +
5
4
γ2

0 + γ1 +
log2 D

8

+
logD · (log 2π + 2γ0)

2
+
ζ(2) + log2 2π

4
− π2

16

}
hK log ε0

− logD + 2γ0

2

D−1∑

ν=1

χD(ν)R2

(
ν

D

)

+
γ0 + log 2π

2

D−1∑

ν=1

χD(ν) logR2

(
ν

D

)
+

1
6

D−1∑

ν=1

χD(ν)R3

(
ν

D

)
,

where B runs over the narrow ideal class group of K, hK denotes the class
number of K, and ε0 the positive fundamental unit.

Proof. Substituting (4.1) with B−1 replaced by B (as we may, since
ζ(s,B−1) = ζ(s,B)) into (4.2), we have

∑

B

( l(B)∑

l=1

ZQl(s)
)

= Ds/2ζK(s).

Then, comparing the Laurent expansions of both sides of the above equality
gives ∑

B

P−1(B) =
√
DA−1,
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∑

B

P0(B) =
√
D

(
A0 +

logD
2

A−1

)
,

∑

B

P1(B) =
√
D

(
A1 +

logD
2

A0 +
log2 D

8
A−1

)
,

where the Ai denote the Laurent coefficients of ζK(s) at s = 1, i.e.

ζK(s) =
A−1

s− 1
+ A0 +A1(s− 1) + . . .

On the other hand, we can compute the coefficients Ai from the second
representation for ζK(s) of (4.2) as

A−1 = L(1, χD), A0 = γ0L(1, χD) + L′(1, χD),

A1 = γ1L(1, χD) + γ0L
′(1, χD) + 1

2L
′′(1, χD),

where we used the expansions

ζ(s) =
∑

m≥−1

γm(s− 1)m, L(s, χD) =
∑

m≥0

L(m)(1, χD)
m!

(s− 1)m.

Now the results follow from the next lemma.

Lemma 3 ([1], [5]). For a Dirichlet character χD attached to a real
quadratic field , we have

(1) L(1, χD) = − 1√
D

D−1∑

ν=1

χD(ν) log 2 sin
πν

D
=

2hK log ε0√
D

,

(2) L′(1, χD)

= −γ + log 2π√
D

D−1∑

ν=1

χD(ν) log 2 sin
πν

D
− 1√

D

D−1∑

ν=1

χD(ν)R2

(
ν

D

)
,

(3) L′′(1, χD)

=
1√
D

[
1
3

D−1∑

ν=1

χD(ν)R3

(
ν

D

)
+ (γ + log 2π)

D−1∑

ν=1

χD(ν) logR2

(
ν

D

)

−
(
ζ(2) + γ2 + log2 2π + 2γ log 2π

2
− π2

8

)D−1∑

ν=1

χD(ν) log 2 sin
πν

D

]
.

Proof. This is the special case of χ = χD in [1], [5]. We notice that χD
is even and since we treat real quadratic fields, the Gauss sum attached to
χD is equal to

√
D .
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Remark. Formula (1) can be proved directly from

P−1(B) =
l(B)∑

l=1

P−1(wl, w′l) = log ε =
{

log ε0 if h∗K = 2hK ,
2 log ε0 if h∗K = hK ,

where h∗K denotes the class number of K in the narrow sense, ε being the
smallest totally positive unit > 1 (see [9]).
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