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0. The summary. Let A be a finite set of positive integers and let A∗

be the set of all subset sums of A. We show that if A is dense enough (say,
A ⊆ [1, l] and |A| ≥ 5(l ln l)1/2), then A∗ contains a long block of consecutive
integers or at least a long homogeneous arithmetic progression. This refines
earlier results due to Freiman and Sárközy.

1. The background. Most problems in additive number theory share,
with some deviations, the same common pattern: given a set A of positive
integers, show that the set of all numbers representable as a sum of elements
of A is “large”. The exact meaning of “large” can vary: one may actually
count the numbers representable, or may wish to prove that there are, say,
perfect squares, or prime numbers among them. Here we are concerned with
the situation when A is finite, the summands are pairwise distinct, and any
number of summands is allowed. (For the case of A infinite see Appendix;
for representations with repetitions see [S89, Le97]; for representations with
a fixed number of summands see Section 4.)

We let

A∗ := {a1 + . . .+ ak : a1 < . . . < ak, a1, . . . , ak ∈ A},
the set of all integers representable as a sum of a number of pairwise distinct
elements of A. Plainly, A∗ ⊆ [0, σ(A)], where σ(A) is the sum of all elements
of A; moreover, A∗ is symmetric about σ(A)/2, the midpoint of the interval:
s ∈ A∗ if and only if σ(A) − s ∈ A∗. It is the set A∗ which is to be shown
“large”.

Perhaps, the most radical approach is to prove that A∗ contains long
blocks of consecutive integers, provided that A is sufficiently dense. It is
easily seen, however, that A∗ may fail to contain such blocks; this happens,
for instance, if all or almost all elements of A have a common divisor d > 1.
For this reason, instead of a block of integers one may seek in A∗ an arith-
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metic progression of the form

{(m+ 1)d, (m+ 2)d, . . . , (m+M)d}.
Such progressions are called homogeneous; they are just sets of consecutive
multiples of an integer number d.

Two results in this direction were established independently and almost
simultaneously by Freiman and Sárközy.

Theorem A (Freiman, [Fr93]). There exist absolute positive constants
c1 and c2 with the following property. Let A ⊆ [1, l] be a set of n = |A|
integers satisfying n > c1(l ln l)1/2. Write σ(A) =

∑
a∈A a. Then there is a

positive integer d ≤ 3l/n such that A∗ contains all multiples of d which fall
into the interval

[1
2 σ(A)− c2dn

2, 1
2 σ(A) + c2dn

2
]
.

Theorem B (Sárközy, [S94, Theorem 4]). Let A ⊆ [1, l] be a set of
n = |A| integers satisfying

l > 2500, n > 200(l ln l)1/2.

Then there are integers y, z, and d ≥ 1 such that

d < 104 l

n
, z > 7−110−4n2,

z

y
> 7−110−4 n

2

l
,

and {yd, (y + 1)d, . . . , zd} ⊆ A∗.
Both theorems impose similar density restrictions on A, both give similar

bounds for the difference d and the number of terms of the progression. The
minor discrepancy is that Theorem A guarantees that the progression is
centered about σ(A)/2, while Theorem B provides, instead, a lower bound
for the “logarithmic length” (z/y) of the progression.

There are a number of papers where other results of this kind are ob-
tained; we mention [AF88, Li89, C90, EF90, GM91, Le98, C99]. Theorems
A and B, however, are most applicable and strongest up to date in the
sense that the assumption n� (l ln l)1/2 is less restrictive than those made
elsewhere. (The only exception is [C99, Corollary 2.9] which is based on
Theorem A and inherits its assumption.)

2. The results. We develop Theorems A and B in the following direc-
tions.

First, we extend significantly the length of the progression which is guar-
anteed to exist in A∗ and show that in fact this progression stretches almost
onto the whole interval [0, σ(A)].

Second, we formulate an arithmetic condition such that if A satisfies
this condition, then the progression in question has difference one and is,
therefore, a block of consecutive integers. Our condition is, in a sense, the
weakest possible.
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Third, we get rid of unspecified or excessively large constants replacing
them by reasonably small ones.

For y and z real, y ≤ z, we denote by [y, z] the set of all integer numbers
between y and z. Given a positive integer q, by Nq(A) we denote the number
of elements of A not divisible by q.

Theorem 1. Let A ⊆ [1, l] be a set of n = |A| ≥ n0 integers, where n0
is a sufficiently large absolute constant. Suppose that

n ≥ 20(l lnn)1/2

and that for any positive integer q < 2l/n we have Nq(A) ≥ q − 1. Then

[λσ(A), (1− λ)σ(A)] ⊆ A∗,
where σ(A) is the sum of all elements of A and λ = 280l/n2.

We postpone the proof of this and other results of this paper (that will
be presented shortly) until Sections 4–7.

Remarks. 1. The value of λ cannot be replaced by λ0 = l/(2n2): for
any l and n such that 3n ≤ l ≤ n2/6 there exist an n-element set A ⊆ [1, l]
satisfying Nq(A) ≥ q − 1 for any q < 2l/n and an integer s ∈ [λ0σ(A),
(1 − λ0)σ(A)] such that s 6∈ A∗. To see this, take A = [l − (n − 1), l], h =
bl/(n − 1)c − 1 > l/(2(n − 1)) > l/(2n) and s = hl, so that λ0σ(A) ≤
s ≤ (1 − λ0)σ(A) (as follows by an easy verification). Then s cannot be
represented as a sum of h+ 1 or more distinct elements of A, for any such
sum is greater than (h+ 1)(l − (n− 1)) = s+ (l − (h+ 1)(n− 1)) ≥ s; and
similarly, s cannot be represented as a sum of h or less distinct elements
of A.

2. If A contains less than q− 1 elements not divisible by q for an integer
q ≥ 1, then it can happen that some residue classes modulo q are not
represented in A∗. (For instance, consider the situation when each a ∈ A
is either zero or one modulo q.) Clearly, in this case A∗ does not contain q
consecutive integers.

3. It is easily seen that for any fixed ε > 0 and n large enough, the
condition n ≥ 20(l lnn)1/2 follows from n ≥ (10

√
2 + ε)(l ln l)1/2. Thus, we

have in effect replaced Freiman’s constant c1 and Sárközy’s constant 200 by
the constant 10

√
2. It will be seen later that 10

√
2 can be further reduced

to a value smaller than 5, but this comes at the expense of decreasing the
block length.

As a corollary, we show that even if A fails to satisfy Nq(A) ≥ q − 1
for all q < 2l/n, the subset sum set A∗ still contains a long homogeneous
progression. Let σ(A), λ, and Nq(A) be as in Theorem 1.
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Corollary 1. Let A ⊆ [1, l] be a set of n = |A| ≥ n0 integers, where
n0 is a sufficiently large absolute constant. Suppose that

n ≥ 20(l lnn)1/2.

Then there exists a positive integer d < 2l/n such that A∗ contains all
multiples of d that fall into the interval

IA := [λσ(A), (1− λ)σ(A)].

Moreover , if Nq(A) ≥ q− 1 for any positive integer q < 2l/n, then one can
take d = 1. Otherwise, one can take d to be the maximal number q < 2l/n
for which Nq(A) < q − 1; in this case the set of all multiples of d that fall
into IA is contained already in A∗d, where Ad = {a ∈ A : a ≡ 0 (modd)}.

In applications, one is often less concerned with the block (or progression)
length and cares more about the density requirement and small values of n.
For this reason we also provide a result which merely sharpens the constants
of Theorem B.

Theorem 2. Let A ⊆ [1, l] be a set of n = |A| integers satisfying

n > 10(l lnn)1/2

(equivalently , l < 0.01n2/lnn). Then there are integers y, z, and d ≥ 1 such
that

d < 6
l

n
, z − y > n2

20
,

z − y
y

>
n2

115l
,

and {yd, (y + 1)d, . . . , zd} ⊆ A∗.
Since the factor 10 (in the condition n > 10(l lnn)1/2) is often more

important than other constants, we give yet another version of this theorem.

Theorem 2′. Let A ⊆ [1, l] be a set of n = |A| ≥ 3803 integers satisfying

n > 7(l lnn)1/2.

Then there are integers y, z, and d ≥ 1 such that

d < 5
l

n
, z − y > n2

405
,

z − y
y

>
n2

2425l
,

and {yd, (y + 1)d, . . . , zd} ⊆ A∗.
Remark. Observe that for any fixed ε > 0 and n large enough, the

condition n > 7(l lnn)1/2 follows from n > (7/
√

2+ε)(l ln l)1/2; furthermore,
7/
√

2 ≈ 4.949.

3. The method. We prove Theorems 2 and 2′ in Section 5 and then
derive Theorem 1 in Sections 6 and 7. Our proof of Theorems 2 and 2′ follows
the lines of [S94] where their prototype, Theorem B, is established.
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To prove Theorem B, Sárközy uses a result about arithmetic progressions
in the set

h ·A := {a1 + . . .+ ah : a1 < . . . < ah, a1, . . . , ah ∈ A}
(all integers representable as a sum of precisely h pairwise distinct elements
of A).

Theorem C (Sárközy, [S94, Theorem 3]). Let A ⊆ [1, l] be a set of n =
|A| integers such that

l > 2500, n > 100(l ln l)1/2.

Write L = ln(13l/n). Then for every integer M satisfying

l ≤M ≤ 10−4 n
2

L
there exist positive integers d and h such that

d < 4828
l

n
, h < 8496

M

n
and the set h ·A contains an M -term homogeneous arithmetic progression
of difference d.

As shown in [S94], this theorem is best possible save for the constants
and logarithmic factors.

To upgrade Theorem B to Theorems 2 and 2′ we establish in Section 4
a refined version of Theorem C.

Theorem 3. Let A ⊆ [1, l] be a set of n = |A| integers. Write L =
ln(4l/n). Then for every M satisfying

4l ≤M ≤ n2

12L
there exist positive integers d and h such that

d < 4
l

n
, h < 6

M

n
,

and the set h ·A contains a homogeneous arithmetic progression of difference
d and at least M + 1 terms. Moreover , d and h can be so chosen that 2d
divides h.

Remarks. 1. Though in Theorem 3 we do not impose any explicit re-
strictions on l or n, some are implied by the assumptions. For instance, from
l ≥ n it follows that L ≥ ln 4 > 4/3, whence n2 ≥ 48lL > 64n, n > 64; we
use this observation in the proof in Section 4.

2. Some further minor improvements of the constants are possible. Also,
there is the usual trade-off: some of the constants can be improved at the
expense of the others. In fact, for any ε > 0 we can find c = c(ε) > 0 and
C = C(ε) > 0 such that if cl ≤ M ≤ n2/(CL), then d and h exist so that
d < (1 + ε)l/n and h < (1 + ε)M/n.
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Once Theorem 3 is proven, Theorems 2 and 2′ are relatively easy to
deduce; this is done in Section 5.

Theorem 1 is derived from Theorem 2 in Sections 6 and 7. The proof
uses some ideas from [AF88, C99]. Corollary 1 is proven in Section 8.

The reason why we believe that strengthening Theorems A and B is
worthwhile is that they are used in the proofs of many important results
in additive number theory. Replacing these theorems with Theorems 1, 2,
and 2′ can lead to improvements in these results. We give an example in the
Appendix.

Notation. Throughout the rest of the paper we continue to use the above
introduced notation, unless indicated otherwise. Specifically, A is a finite,
non-empty set of positive integers; l is a real number such that A ⊆ [1, l];
the cardinality of A is n = |A|; the sum of the elements of A is denoted
by σ(A); the number of elements of A not divisible by an integer q ≥ 1 is
denoted by Nq(A); the set of all numbers representable as a sum of precisely
h distinct elements of A is h ·A, and A∗ =

⋃n
h=0 h ·A is the subset sum

set of A; finally, λ = 280l/n2. Also, we write hA for the set of all numbers
representable as a sum of precisely h not necessarily distinct elements of A:

hA = {a1 + . . .+ ah : a1, . . . , ah ∈ A}.

4. Fixed number of summands: proof of Theorem 3. Our proof
of Theorem 3 employs the same idea as that of Theorem C. However, we
replace the key component of the proof, Sárközy’s theorem [S89, Theorem 1],
by the following result of ours.

Theorem 4 (Lev, [Le97, Theorem 3(ii)]). Let S ⊆ [0, l] be a set of |S|
≥ 3 integers such that 0, l ∈ S and gcd(S) = 1. Write

k =
⌊
l − 1
|S| − 2

⌋
, % = (k + 1)(|S| − 2) + 2− l.

Suppose that h ≥ 3k is an integer number. Then hS contains a block of
(h− k)l + k%+ 1 consecutive integers.

Another new ingredient we introduce in the proof is the following lemma.

Lemma 1. Let A be a set of n = |A| integers. For t = 1, 2, . . . denote
by St the set of all integers s ∈ 2A which have at least t representations as
s = a1 + a2 (a1, a2 ∈ A), and let Nt = |St| be the cardinality of St. Then

N1 + . . .+Nτ ≥ 2nτ − τ 2

for any τ = 1, . . . , n.

Remark. The case τ = n is immediate (with equality sign) and was
utilized in the original argument of Sárközy. The case τ = 1 is easy.
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Proof of Lemma 1. The shortest way to prove the lemma is to derive it
from a result of Pollard [P74] which says that if p is a prime number, A1
and A2 are non-empty sets of residues modulo p, and Nt is the number of
residues modulo p with at least t representations as a1 + a2 (ai ∈ Ai), then

N1 + . . .+Nτ ≥ τ min{|A1|+ |A2| − τ, p}
for any τ = 1, . . . ,min{|A1|, |A2|}. Now choose A1 = A2 to be the canonical
image of A in Z/pZ, where p is a sufficiently large prime number.

From now on, we adopt St and Nt (not to be confused with Nq(A)!) as
a standard notation.

Corollary 2. Let A,n, l, and L be as in Theorem 3. Then there exists
t ∈ [1, n] such that

Nt >
n

2
max

{
n

tL
, 1
}

+ 2.(1)

Proof. Assume the opposite:

Nt ≤
n

2
max

{
n

tL
, 1
}

+ 2, t = 1, . . . , n.(2)

Set τ = b3n/4c. Taking into account that Nt < 2l for any t, by Lemma 1
and (2) we get

2nτ − τ 2 ≤ N1 + . . .+Nτ

<
∑

1≤t≤n2/(4lL)

2l +
∑

n2/(4lL)<t≤n/L

(
1
2
· n

2

tL
+2
)

+
∑

n/L<t≤τ

(
1
2
n+2

)

≤ n2

2L
+ 2(τ − 1) +

1
2
· n

2

L

(
4lL
n2 + ln

4l
n

)
+

1
2
n

(
τ + 1− n

L

)

=
1
2
n2 +

1
2
nτ +

(
2l +

1
2
n+ 2τ − 2

)
.

(We use here the estimate
∑

P<t≤Q t
−1 ≤ P−1 +ln(Q/P ). Also, the number

of summands in
∑

n/L<t≤τ is at most τ + 1− n/L, as τ + 1 > 3n/4 > n/L

in view of L > 4/3.) This implies that

1
16
n2 <

(
τ − 3

4
n

)2

+
(

2l +
1
2
n+ 2τ − 2

)
< 2l +

1
2
n+ 2τ − 1

≤ 2l + 2n− 1,

l >
n2

32
− n > n2

64
>

n2

48L
,

contrary to the assumption that 4l ≤M ≤ n2/(12L).

Our next lemma is parallel to [S94, Lemma 1].
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Lemma 2. Let A be a set of integers, and suppose that h < d(t+ 3)/4e
is a positive integer. Then hSt ⊆ 2h ·A.

Sketch of the proof. Use induction on j = 1, . . . , h to show that jSt ⊆
2j ·A. Let s1 + . . . + sj−1 + sj be an element of jSt. By the induction
hypothesis, there is a representation s1 + . . . + sj−1 = a1 + . . . + a2j−2
with ai ∈ A all distinct, and the assumption on h ensures that sj has a
representation sj = a′ + a′′ with a′ 6= a′′ and both a′ and a′′ distinct from
all ai.

Proof of Theorem 3. We choose t ∈ [1, n] satisfying (1), and we put

d := gcd(St − St), S′t := {d−1(s−min(St)) : s ∈ St}, l′ := max(S′t).

Thus, S′t ⊆ [0, l′], 0, l′ ∈ S′t, gcd(S′t) = 1, and |S′t| = Nt. Set

k :=
⌊
l′ − 1
Nt − 2

⌋
, % := (k + 1)(Nt − 2) + 2− l′.

For future reference we note that

k(Nt − 2) < l′ ≤ 1
d

(max(St)−min(St)) <
2l
d
,(3)

hence by (1) and 4l ≤M ≤ n2/(12L),

d <
2l

k(Nt − 2)
<

4l
kn

min
{
tL

n
, 1
}
,(4)

k <
4l
dn

min
{
tL

n
, 1
}
,(5)

t >
kdn2

4lL
≥ 3kdM

l
≥ 12kd.(6)

We now define

h0 := max
{

2k,
⌈
M − k%

l′

⌉}
+ k + δ, h = 2h0,

where δ ∈ [0, d−1] is chosen so that d |h0. As h0 ≥ 3k, by Theorem 4 the set
h0S

′
t contains a block of at least (h0−k)l′+k%+1 ≥ d(M−k%)/l′el′+k%+1 ≥

M + 1 consecutive integers, hence h0St contains a homogeneous arithmetic
progression of difference d and at least M + 1 terms. To complete the proof
it suffices to show that

h0 < min
{
t

4
, 3

M

n

}
(7)

(the estimate d < 4l/n was already established in (4)): then by Lemma 2 we
have h ·A = 2h0 ·A ⊇ h0St, whence h ·A contains a homogeneous arithmetic
progression of difference d and at least M + 1 terms.
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Evidently, (7) will follow from

3k + d− 1 < min
{
t

4
, 3

M

n

}
,(8)

and
M − k%

l′
+ k + d < min

{
t

4
, 3

M

n

}
.(9)

To prove (8) we observe that by (4),

3k + d− 1 < 3k +
4l
kn

min
{
tL

n
, 1
}
− 1.

We consider the right-hand side as a function of k ∈ [1,K], where

K :=
4l
n

min
{
tL

n
, 1
}

(cf. (5)) and we denote this function by f(k). Now (8) follows from the fact
that f is convex,

f(1) =
4l
n

min
{
tL

n
, 1
}

+ 2 ≤ min
{
t

12
+ 2,

M

n
+ 2
}
≤ min

{
t

4
, 3

M

n

}

(notice that t > 12 by (6)), and

f(K) =
12l
n

min
{
tL

n
, 1
}
≤ min

{
t

4
, 3
M

n

}
.

Finally, to prove (9) we consider two cases: k = 1 and k ≥ 2.
If k = 1 then by (3) and (1),

M − k%
l′

+ k + d <
M − %+ 2l

l′
+ 1 =

M − (2Nt − 2− l′) + 2l
l′

+ 1

≤ 3M/2− 2(Nt − 1)
l′

+ 2 <
3M/2
Nt − 2

< 3
M

n
min

{
tL

n
, 1
}
≤ min

{
t

4
, 3

M

n

}
.

If k ≥ 2 then by (3) and (5),

M − k%
l′

+ k + d <
M + 2l
l′

+ k <
M + 2l
n

min
{
tL

n
, 1
}

+ k

<
M + 6l
n

min
{
tL

n
, 1
}
< 3

M

n
min

{
tL

n
, 1
}

≤ min
{
t

4
, 3

M

n

}
.
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5. Proof of Theorems 2 and 2′. We only sketch the proof of Theo-
rem 2, which essentially follows that of Theorem B, and indicate how it is
to be modified to obtain Theorem 2′.

We need a lemma which is a minor variation of [S94, Lemma 3].

Lemma 3. Let U, V , and d be positive integers and let B ⊆ [U, V ] be a
set of integers. Then for any s ∈ B∗ such that d | s, s ≤ U(|B| − d) there
exists s′ ∈ B∗ satisfying

d | s′, 0 < s′ − s ≤ V d.
Proof. Choose S ⊆ B such that s =

∑
b∈S b. As

U |S| ≤ s ≤ U(|B| − d),

we have |B \ S| ≥ d, and therefore there is a set S0 ⊆ B \ S of cardinality
0 < |S0| ≤ d such that

∑
b∈S0

b ≡ 0 (modd). We define S ′ := S ∪ S0 and
s′ :=

∑
b∈S′ b; then

s′ − s =
∑

b∈S0

b ≤ V |S0| ≤ V d

and the validity of d | s′ is obvious from the construction.

To prove Theorem 2 we write A = {a1, . . . , an} (the elements being
numbered in increasing order) and set

j := b0.7nc, A1 := {a1, . . . , aj}, A2 := {aj+1, , . . . , an}.
(For Theorem 2′, set j := b0.99nc.) We apply Theorem 3 to the set A1 ⊆
[1, aj] of cardinality j = |A1| and with M = 4l. (Verification of the condition
M ≤ |A1|2/(12L), or equivalently j2 ≥ 48l ln(4aj/j), is left to the reader;
hint: 4aj/j < 4l/j ≤ n, and j2 > 0.49n2 − 1.4n.) We conclude that there
exist integers d, h ≥ 1 and y such that

{yd, (y + 1)d, . . . , (y + 4l)d} ⊆ h ·A1(10)

and

d < 4
aj
j
, h < 24

l

j
;(11)

we observe, moreover, that (11) implies

d < 4
l

j
< 6

l

n

and

yd ≤ haj < 24
laj
j
.(12)

Next, applying Lemma 3 to the set B = A2 ⊆ [aj, l] we see that for any
s ∈ A∗2 such that d | s and s ≤ aj(n − j − d) there exists s′ ∈ A∗2 such that
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d | s′ and s′ − s ≤ ld. Along with (10) this shows that

{yd, (y + 1)d, . . . , (baj(n− j − d)/dc+ 1)d+ (y + 4l)d} ⊆ A∗1 + A∗2 = A∗.

We put

z :=
⌊
aj(n− j − d)

d

⌋
+ 1 + (y + 4l),

so that by (11),

z − y > aj(n− j)
d

+ (4l − aj) >
aj(n− j)

d

>
1
4
j(n− j) ≥ 0.21

4
n2 >

1
20
n2.

It remains to notice that by (12),

z − y
y

>
aj(n− j)

yd
>
j(n− j)

24l
≥ 0.21

24
· n

2

l
>

n2

115l
.

Remark. It is clear that the above argument actually gives slightly
better constants than those indicated in the formulation of Theorems 2
and 2′. In particular, the reader can easily verify that our proof of Theorem 2
remains valid if the assumption n ≥ 10(l lnn)1/2 is relaxed to n ≥
9.95(l lnn)1/2. This observation will be used in Section 7 to avoid further
loss of accuracy.

6. Auxiliary results on addition in Zq. We say (modifying slightly
the terminology of [C90, C99]) that a set of integers A is q-complete if A∗

(mod q) = Zq; in other words, if all residues modulo q are represented in A∗.
In the spirit of the two papers just mentioned, we establish here a sufficient
condition for q-completeness.

Lemma 4. Let A be a finite set of integers and let q ≥ 1 be an integer.
Suppose that Nd(A) ≥ d− 1 for any d | q. Then A is q-complete.

Proof. We can assume that A is finite, and we use induction by n = |A|.
Write A = {a1, . . . , an} and Ai = {a1, . . . , ai} (1 ≤ i ≤ n) and let overlined
characters denote canonical images in Zq. Suppose that ai are so numbered
that A∗1  . . .  A∗j and that either Aj = A, or (Aj ∪ {a})∗ = A∗j for any
a ∈ A \Aj . In the former case we have j = n and accordingly

|A∗| = |A∗j | ≥ j + 1 = |A|+ 1 ≥ Nq(A) + 1 ≥ q,
which proves the assertion. We assume, therefore, that the second possibility
holds, which translates easily into A∗j + a = A∗j (for any a ∈ A \ Aj).

Consider the subgroup of all g ∈ Zq satisfying A∗j +g = A∗j and write this
subgroup as dZq, where d is a divisor of q. (This subgroup is often called the
period or stabilizer of A∗j .) The condition A∗j + a = A∗j means that a ∈ dZq,
that is, d | a, and it follows that δ | a for any divisor δ | d. This shows that
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Nδ(Aj) = Nδ(A) ≥ δ − 1, provided δ | d. By the induction hypothesis, Aj
is d-complete; that is, A∗j contains representatives of all dZq-cosets. Now
A∗j = A∗j + dZq = Zq, implying the result.

Corollary 3. Suppose that A ⊆ Z satisfies Nq(A) ≥ q − 1 for any
q ≤ Q. Then A is q-complete for any q ≤ Q.

Lemma 5 (Chaimovich, [C99, Lemma 2.3]). If A is q-complete then there
is a subset A0 ⊆ A of cardinality |A0| ≤ q − 1 which is also q-complete.

Proof. As in the proof of the previous lemma, we use overlined characters
to denote canonical images in Zq. Let A0 = {a1, . . . , ak} ⊆ A be a subset
of minimum cardinality such that A∗0 = Zq, and let Aj = {a1, . . . , aj} (j =
1, . . . , k). If A∗1  . . .  A∗k then q = |A∗k| ≥ k + 1, as required. Otherwise,
there is an index j ≤ k− 1 such that A∗j = A∗j+1. But in this case we would
have

A∗0 = A∗j+1 + {aj+2, . . . , ak}∗ = A∗j + {aj+2, . . . , ak}∗

= {a1, . . . , aj , aj+2, . . . , ak}∗

contradicting minimality of A0.

7. Proof of Theorem 1

Lemma 6. For any C, ε > 0 and K ≥ 2 there exists n0 = n0(C, ε,K)
with the following property. Let Q ≥ 2 and let A ⊆ [1, l] be a set of integers
of cardinality n = |A| ≥ C(l ln l)1/2, n ≥ n0, satisfying Nq(A) ≥ Kq for all
q ∈ [2, Q]. Then there is a subset A0 ⊆ A such that

(i) K−1n < |A0| < (1 + ε)K−1n;
(ii) σ(A0) < (1 + ε)K−1σ(A);

(iii) Nq(A0) ≥ q for all q ∈ [2, Q].

Proof. Fix arbitrarily p ∈ (K−1, (1 + ε)K−1), p < 1 and set

δ :=
1
2

min{1− (pK)−1, (1 + ε)(pK)−1 − 1}.

Define P (q) := e−δ
2pKq/2. As the series

∑∞
q=2 P (q) converges, there is an

integer Q0 = Q0(p,K) such that
∑∞

q=Q0+1 P (q) < 0.1.
The set A0 will be comprised of two parts. First, for each integer q ∈

[2, Q0] we choose q arbitrary elements of A, not divisible by q, and we denote
by A1 the set of all elements chosen. Plainly, |A1| < 1

2 Q0(Q0 + 1). Second,
we let A2 be the random subset of A to which any a ∈ A belongs with
probability p (with all a ∈ A being selected independently). Thus |A2| is
distributed binomially with parameters n and p, and E|A2| = pn. Eventually,
we define A0 := A1 ∪A2.
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Using an estimate for the right tail of binomial distribution (see, for
instance, [JŁR, Theorems 2.1 and 2.10]) we get

Pr{|A2| ≤ (1− δ)pn} = Pr{|A2| ≤ (1− δ)E|A2|} ≤ e−δ
2E|A2|/2 = e−δ

2pn/2.

As (1− δ)p > K−1, for n large enough this implies

Pr{|A0| ≤ K−1n} ≤ Pr{|A2| ≤ (1− δ)pn} < 0.1.

Similarly, in view of |A1| = Op,K(1) we have

Pr{|A0| ≥ (1 + ε)K−1n} ≤ Pr{|A2| ≥ (1 + δ)pn} < 0.1;

therefore, (i) fails with probability at most 0.2.
Furthermore, σ(A2) :=

∑
a∈A2

a is a random variable with expectation
Eσ(A2) = pσ(A) and variance

Varσ(A2) = p(1− p)
∑

a∈A
a2 < plσ(A).

By Chebyshev’s inequality we have

Pr{σ(A2) ≥ (1 + δ)pσ(A)} = Pr{σ(A2) ≥ (1 + δ)Eσ(A2)}

<
plσ(A)

(δEσ(A2))2 = (δ2p)−1 l

σ(A)
< 2(δ2p)−1 l

n2 < 0.1,

provided that n is large enough. As (1 + δ)p < (1 + ε)K−1 and in view of
σ(A1) = O(l) = o(σ(A)) this implies that

Pr{σ(A0) ≥ (1 + ε)K−1σ(A)} < 0.1;

that is, (ii) fails with probability at most 0.1.
Finally, we take care of (iii). For any integer q ∈ [Q0 + 1, Q] the random

variable Nq(A2) is distributed binomially with parameters Nq(A) and p,
whence in view of q ≤ K−1Nq(A) = (Kp)−1ENq(A2) < (1− δ)ENq(A2) we
get

Pr{Nq(A2) < q} ≤ Pr{Nq(A2) < (1− δ)ENq(A2)}
< e−δ

2ENq(A2)/2 ≤ e−δ2pKq/2 = P (q)

(estimating the left binomial tail). It follows that the probability that there
is a value of q ∈ [Q0 + 1, Q] such that Nq(A2) < q, and therefore the
probability that there is a value of q ∈ [2, Q] such that Nq(A0) < q, is at
most

∑∞
q=Q0+1 P (q) < 0.1 (by the choice of Q0). Therefore, (iii) fails with

probability 0.1 at most.
We see that the probability that any of conditions (i)–(iii) fails to hold

is 0.2 + 0.1 + 0.1 < 1 at most. Hence, with a positive probability A0 satisfies
all the properties required.
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Proposition 1. There exist positive constants K and n0 with the fol-
lowing property. Let A ⊆ [1, l] be a set of n = |A| ≥ n0 integers such that

n ≥ 9.96(l lnn)1/2

and Nq(A) ≥ Kq for any integer q ∈ [2, 7l/n]. Then there are integers y
and z such that [y, z] ⊆ A∗ and

z − y > n2

21
,

z − y
y

>
n2

138l
.

Proof. Choose positive K and ε so that the former is sufficiently large
and the latter is sufficiently small. By Lemma 6 and Corollary 3 there is
a subset A0 ⊆ A of cardinality |A0| < (1 + ε)K−1n < 0.001n which is q-
complete for any q ≤ 7l/n. Write A1 := A\A0, so that n1 := |A1| > 0.999n.
We have

n1 > 0.999 · 9.96(l lnn)1/2 > 9.95(l lnn1)1/2

and by Theorem 2 as applied to the set A1 (see also the Remark at the
end of Section 5), there exist integers y1, z1, and d ≥ 1 such that {y1d,
(y1 + 1)d, . . . , z1d} ⊆ A∗1 and

d < 6
l

n1
< 7

l

n
, z1 − y1 >

n2
1

20
>
n2

21
,

z1 − y1

y1
>

n2
1

115l
>

n2

116l
.

If d = 1 the assertion follows. Assuming that d ≥ 2, find B0 ⊆ A0 which is
d-complete and such that |B0| ≤ d− 1: this is possible by Lemma 5. Notice
that to any integer r ∈ [0, d− 1] there corresponds kr ∈ [0, l − 1] such that
r + krd ∈ B∗0 . Now set y := (y1 + l)d and z := z1d; then

z − y = (z1 − y1 − l)d > z1 − y1 > n2/21,

as z1−y1 > n2/21 > 2l ≥ ld/(d−1). Furthermore, let κ = 116/21. If y1 ≥ κl
then

z − y
y

=
z1

y1 + l
− 1 ≥ κ

κ+ 1
· z1

y1
− 1 >

κ

κ+ 1
· n

2

116l
− 1 >

n2

138l
,

and if y1 ≤ κl then

z − y
y

=
z1

y1 + l
− 1 ≥ 1

κ+ 1
· z1

l
− 1 >

1
κ+ 1

· n
2

21l
− 1 >

n2

138l
.

To complete the proof we show that [y, z] ⊆ B∗0 +A∗1. Indeed, given x ∈ [y, z]
write x = r + kd where r ∈ [0, d − 1] and y1 + l ≤ k ≤ z1. Then x =
(r+krd) + (k−kr)d and it suffices to notice that y1 ≤ k− l < k−kr ≤ z1.

As a next step, we show that the condition Nq(A) ≥ Kq of Proposition 1
can be relaxed considerably.
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Proposition 2. Let A ⊆ [1, l] be a set of n = |A| ≥ n0 integers, where
n0 is a sufficiently large absolute constant. Suppose that

n ≥ 9.96(l lnn)1/2

and that Nq(A) ≥ q − 1 for any integer q < 2l/n. Then there are integers y
and z such that [y, z] ⊆ A∗ and

z − y > n2

21
,

z − y
y

>
n2

138l
.

Proof. Let K be the constant of Proposition 1. If Nq(A) ≥ Kq for all
integer q ∈ [2, 7l/n] then the result follows from Proposition 1. Otherwise,
denote by q the maximal number such that 2 ≤ q ≤ 7l/n and Nq(A) < Kq.
Let A0 be the set of all elements of A, not divisible by q, and let A1 be
the set of integers such that A \ A0 = {qa : a ∈ A1}. Evidently, we have
A1 ⊆ [1, l1] where l1 = bl/qc ≤ l/2. Furthermore, the cardinality of A1
satisfies n1 := |A1| > n − Kq, and if n is large enough then q < 0.1K−1n
and n1 > 0.9n.

We want to apply Proposition 1 to the set A1. We have

n1 > 0.9n ≥ 0.9 · 0.96(l lnn)1/2 > 0.96((l/2) lnn1)1/2 ≥ 0.96(l1 lnn1)1/2

and for Proposition 1 to be applicable it is necessary and sufficient that
Nq1(A1) ≥ Kq1 for any q1 ∈ [2, 7l1/n1]. Assume that this does not hold
for some q1. Then q1 ≤ 7l/(0.9n) ≤ 0.1K−1n (again, assuming that n is
sufficiently large), hence K(q + q1) < 0.2n and therefore

l

q
≥ l1 > (n1 −Kq1)q1 > (n−K(q + q1))q1 > 0.8nq1, qq1 < 2

l

n
.

Along with Nqq1(A) < Kq +Kq1 ≤ Kqq1 this contradicts maximality of q.
We see that the conditions of Proposition 1 are fulfilled and there exist

integers y1 and z1 such that

z1 − y1 >
n2

1

21
>
n2

26
,

z1 − y1

y1
>

n2
1

138l1
>

n2

86l

and [y1,z1]⊆A∗1. Notice that the latter inclusion yields {y1q,(y1+1)q, . . . , z1q}
⊆ (A \ A0)∗.

We have assumed that q ≤ 7l/n and we now observe that in fact, q < 2l/n
holds, for bl/qc = l1 ≥ n1 > 0.9n. It follows that A, and therefore A0 also, is
q-complete and, as in the proof of Proposition 1, we conclude that [y, z] ⊆ A∗
with y = (y1 + l)q and z = z1q. Finally, we have

z − y ≥ 2(z1 − y1 − l) ≥ 2(n2/26− l) > n2/21

and to estimate (z − y)/y = z1/(y1 + l) − 1 one can define κ = 86/26 and
act as in the proof of Proposition 1.



138 V. F. Lev

Proposition 3. Let A ⊆ [1, l] be a set of n = |A| ≥ n0 integers, where
n0 is a sufficiently large absolute constant. Suppose that

n ≥ 20(l lnn)1/2

and that Nq(A) ≥ 3q for any integer q ∈ [2, 5l/n]. Then

[λσ(A), (1− λ)σ(A)] ⊆ A∗.
Proof. Set K = 2.008, fix ε positive and small enough and find a subset

A0 ⊆ A satisfying conditions of Lemma 6. Write A1 := A \A0. We have

n0 := |A0| > K−1n ≥ 9.96(l lnn)1/2 ≥ 9.96(l lnn0)1/2

and Nq(A0) ≥ q−1 for any q ≤ 5l/n, hence for any q < 2l/n0. Proposition 2
shows, therefore, that there is an interval [y, z] ⊆ A∗0 such that z − y >
n2

0/21 > n2/(21K2) > l and (z − y)/y > n2
0/(138l). Since the gaps between

consecutive elements of A∗1 do not exceed l, it follows that [y, σ(A1) + z] ⊆
A∗0 + A∗1 = A∗. We now observe that

y < 138
l

n2
0
z < 138K2 l

n2 σ(A0) < 138(1 + ε)K
l

n2 σ(A) < λσ(A)

and that

σ(A1) + z ≥ σ(A)− σ(A0) > (1− (1 + ε)K−1)σ(A) > σ(A)/2.

Hence, [λσ(A), σ(A)/2] ⊆ A∗ and it remains to notice that A∗ is symmetric
about σ(A)/2: if s ∈ A∗ then also σ(A)− s ∈ A∗ for any integer s.

Finally, we are ready to prove Theorem 1. For this, we “improve” Propo-
sition 3 in the same spirit as we did with Proposition 1.

Proof of Theorem 1. The beginning of the proof runs as that of Propo-
sition 2. If for any q ∈ [2, 5l/n] we have Nq(A) ≥ 3q, then the result follows
at once by Proposition 3. Otherwise, let q ∈ [2, 5l/n] be the maximal integer
satisfying Nq(A) < 3q. Define A0 to be the set of all elements of A not
divisible by q (thus |A0| = Nq(A) < 3q), and let A1 be the set of integers
such that A \ A0 = {qa : a ∈ A1}. Evidently, we have A1 ⊆ [1, l1], where
l1 = bl/qc, and n1 := |A1| > n − 3q ≥ 0.9n for n large enough, as then
q ≤ 5l/n ≤ 0.03n. Therefore,

n1 > 0.9n ≥ 18(l lnn)1/2 > 20((l/2) lnn1)1/2 ≥ 20(l1 lnn1)1/2

and also Nq1(A1) ≥ 3q1 for q1 ∈ [2, 5l1/n1], as in the proof of Proposition 2.
By Proposition 3 we have [y, z] ∈ A∗1 with y and z integer and satisfying
y ≤ dλ1σ(A1)e, z ≥ b(1 − λ1)σ(A1)c, where λ1 = 280l1/n2

1. Furthermore,
q≤ l/l1≤ l/n1< 2l/n, whence A0 is q-complete. It follows that [(y+l)q, zq]
∈ A∗. Next, we have

lq = 2
l

n2
1
· n

2
1

2
q < 3

l

n2 σ(A1)q ≤ 3
l

n2 σ(A),(13)
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implying

(y + l)q ≤ (λ1σ(A1) + l + 1)q ≤ 280
l

qn2
1
σ(A) + 2lq

≤ 200
l

n2 σ(A) + 6
l

n2 σ(A) ≤ λσ(A)

and
zq ≥ ((1− λ1)σ(A1)− 1)q ≥ (1− λ1)σ(A)− σ(A0)− q
≥ (1− λ1)σ(A)− 4lq ≥ (1− 280l1/n2

1 − 12l/n2)σ(A)

≥ (1− 212l/n2)σ(A) > (1− λ)σ(A).

8. Proof of Corollary 1. We can assume that q < 2l/n with the
property that Nq(A) < q− 1 do exist, and let d denote the maximal such q.
Furthermore, let A0 be the set of all elements of A not divisible by d (so
that |A0| = Nd(A) < d − 1), and let A1 be the set of integers such that
A \ A0 = {ad : a ∈ A1}; thus, n1 := |A1| = |Ad| > n − d. We have
A1 ⊆ [1, l1], where l1 = bl/dc, and we set λ1 := 280l1/n2

1. If n is large
enough, then d < 2l/n < 0.1n and

n1 > 0.9n ≥ 18(l lnn)1/2 > 20(l1 lnn1)1/2.

As in Proposition 2, maximality of d implies that Nq(A1) ≥ q − 1 for any
q < 2l1/n1; hence [λ1σ(A1), (1 − λ1)σ(A1)] ⊆ A∗1 by Theorem 1, and A∗d
contains all multiples of d from the interval [λ1dσ(A1), (1 − λ1)dσ(A1)]. It
remains to observe that

λ1dσ(A1) ≤ 280
l

dn2
1
σ(A) ≤ 200

l

n2 σ(A)

and that, in view of ld < (3l/n2)σ(A) (cf. (13)),

(1− λ1)dσ(A1) ≥ (1− λ1)σ(A)− σ(A0)

> (1− 200l/n2)σ(A)− ld > (1− 203l/n2)σ(A).

Appendix. Infinite progressions in subset sums set. Let A be
a (strictly increasing, infinite) sequence of positive integers. Write A(n) =
|A∩ [1, n]|, the counting function of A. A beautiful result of Folkman [Fo66,
Theorem 1.3] is that A∗ contains an infinite arithmetic progression, provided
that A(n) > n1/2+ε for some fixed ε > 0 and all n large enough. In a strik-
ing development, Łuczak and Schoen showed recently that the progression
can be chosen to be homogeneous and even under a somewhat relaxed as-
sumption on A(n); their result is, in fact, the infinite version of Theorems A
and B.

Theorem 5 (Łuczak and Schoen, [ŁS00, Theorem 2]). Let A be a se-
quence of positive integers satisfying A(n) ≥ 402

√
n lnn for all n large

enough. Then there exists an integer d such that {d, 2d, 3d, . . .} ⊆ A∗.
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In this context we also mention a paper of Hegyvári [H00] where under a
similar restriction on A(n) it is shown thatA∗ contains an infinite arithmetic
progression. However, the progression is not guaranteed to be homogeneous.

An almost immediate consequence of Theorem 5, indicated in [ŁS00],
is a (nearly sharp) estimate of the maximum possible density of a strongly
sum-free sequence of integers.

Theorem 6 ( Luczak and Schoen, [ŁS00, Theorem 3]). Let A be a se-
quence of positive integers such that the equation a1 + . . . + ak = a0 has
no solutions in ai ∈ A (for any k ≥ 2). Then A(n) ≤ 403

√
n lnn for all n

large enough.

Using Theorem 2′ one can reduce the constants as follows.

Theorem 5′. Let A be a sequence of positive integers satisfying A(n) ≥
5
√
n lnn for all n large enough. Then there exists an integer d such that

{d, 2d, 3d, . . .} ⊆ A∗.
Theorem 6′. Let A be a sequence of positive integers such that the equa-

tion a1 + . . . + ak = a0 has no solutions in ai ∈ A (for any k ≥ 2). Then
A(n) < 5

√
n lnn for all n large enough.

Theorem 6′ can be deduced from Theorem 5′ exactly in the same way as
Theorem 6 is deduced from Theorem 5, and we refer the reader to [ŁS00]
for this deduction (1). On the other hand, modifications to be made to the
original proof of Theorem 5 (to upgrade it to Theorem 5′) are minor but
numerous, and for this reason we provide a sketch of the modified proof.

Sketch of the proof of Theorem 5 ′. Write A = {a1, a2, . . .}, set ϕ(i) :=
bi ln1/4(i+ 1)c and consider the decomposition A = A0 ∪ A1 defined by

A1 := {aϕ(1), aϕ(2), . . .}, A0 := A \ A1.

Evidently,

A1(n) = #{i : ϕ(i) ≤ A(n)} = #{i : i ln1/4(i+ 1) ≤ A(n)}

=
A(n)

ln1/4A(n)
(1 + o(1))

whence for n large enough we have A1(n)� √n ln1/4 n and A0(n) = A(n)−
A1(n) ≥ 4.99

√
n lnn.

From [Fo66, Lemma 2.2] it follows that the condition

lim sup
n→∞

A1(n)/
√
n =∞

(1) We have simplified the logic for the sake of clarity. In fact, to deduce Theorem 6′

one needs a version of Theorem 5′ with a constant strictly less than 5. The reader will see,
however, that the argument we present below allows one to obtain any constant greater
than 7/

√
2 = 4.949 . . .
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guarantees that for any fixed integer d ≥ 1 the subset sum set A∗1 has
bounded gaps on the sequence of all multiples of d. That is, to any d there
corresponds a constant Cd such that {(y + 1)d, (y + 2)d, . . . , (y + Cd)d} ∩
A∗1 6= ∅ for any integer y. On the other hand, we show that the condition
A0(n) ≥ 4.99

√
n lnn ensures the existence of d such that A∗0 contains a

homogeneous progression with difference d of any pre-assigned length. This
will imply that A∗ = A∗0 + A∗1 contains an infinite progression of the form
{(m+ 1)d, (m+ 2)d, . . .} and therefore the infinite progression {d′, 2d′, . . .}
where d′ = (m+ 1)d.

We need a lemma which is, essentially, [ŁS00, Fact 5].

Lemma 7. Let P1 and P2 be homogeneous arithmetic progressions with
differences d1 and d2 and at least m1 and m2 terms, respectively. Suppose
that m2 ≥ d1, m1 ≥ d2, and d1 ≤ d2. Then P1 +P2 contains a homogeneous
arithmetic progression of difference d1 with at least m1 +m2 − 2d2 terms.

For the proof observe that P2 contains a homogeneous progression P ′2
of difference d1d2 with bm2/d1c ≥ 1 terms, and the sum of P1 and P ′2 is a
homogeneous progression of difference d1 with at least (bm2/d1c − 1)d2 +
m1 ≥ m1 +m2−2d2 terms. (We use here the observation that the difference
between consecutive terms of P ′2 does not exceed the “length” of P1.)

Back to the proof of Theorem 5′, for i = 0, 1, . . . we define li := 22i (so
that li+1 = l2i ) and we set Ai := A0∩ (li−1, li], ni := |Ai|. For i large enough
we then have Ai ⊆ [1, li] and

ni = A0(li)−A0(li−1) ≥ 4.99
√
li ln li −

√
li ≥ 4.98

√
li ln li,

n2
i

49 lnni
≥ 4.982 li ln li

49 (ln li)/2
(1 + o(1)) ≥ 1.01(1 + o(1)) li > li,

ni > 7(li lnni)1/2.

Thus Theorem 2′ is applicable and A∗i contains a homogeneous progression of
difference di < 5li/ni < 2

√
li/ln li and with at least n2

i /405 > (li ln li)/20 >
4li terms.

Fix an integer j such that the above conclusions hold true and moreover,
di ≥ dj for i ≥ j. Using induction and Lemma 7 it is easy to verify that
for any i ≥ j the set A∗j + . . . + A∗i contains a homogeneous progression of
difference dj with at least 4li terms: put P1 = A∗j + . . .+A∗i−1, P2 = A∗i and
observe that

di < 2
li−1√
2i ln 2

< 2li−1, dj < 2
√
lj/(2 ln 2) < 2li,

4li−1 + 4li − 2di = 4li + 2(2li−1 − di) > 4li.

Therefore A∗0 contains arbitrarily long homogeneous progressions of differ-
ence d = dj , as required.
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