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The large sieve inequality in the form

q 2
Yoy X am Yl < V@)Y laf
q<Q a=1 n<N n<N n<N
n=a (mod q)

is essentially optimal. However, in several applications many of the a,, van-
ish, and one might expect better estimates then. In fact, such estimates were
given by P. D. T. A. Elliott [1]. He showed the following estimate:

THEOREM 1. Let N and () be integers, a, be complex numbers for all
primes p < N. Then we have the estimate
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Under GRH, Q**/' may be replaced by Q**¢. In analogy to the large
sieve, he conjectured that one may replace this term by Q%*¢.
Using a completely different approach, Y. Motohashi [4] showed that

1) S Y < 2o

- 1/2

for 2 > Q¢, where 7(x,x) = 3 ,<, x(p). He also conjectured that Q°*

may be replaced by Q*¢.
Here we will combine the large sieve principle with Selberg’s sieve to
prove the conjecture of Elliott and give a version of (1) valid for z > Q?*¢,
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I would like to thank D. R. Heath-Brown for his help with Proposition 9
which allowed me to reduce the exponent to 2+¢, and the referee for pointing
out some mistakes.

THEOREM 2. Let N and Q be integers with N > Q**¢, ap be complex
numbers for any prime p < N, and let 2 < R < /N be an integer. Then

N
> ’Z%X ’<<e@p;v|ap|2~

q<Q x (mod q) p<N

As this estimate is the analogue of the large sieve estimate, we can give
analogues of Haldsz-type inequalities, too. As there are a variety of different
large value estimates, the same is true for these bounds. However, since the
optimal estimate depends on the particular application, we only mention
the following:

THEOREM 3. Let q be an integer. Let C be a set of characters (modq),
and ap, be complex numbers for any prime p < N. Then for k= 2,3 or, if q
s cubefree, for any integer k > 2, we have the estimates

2 N _
Z‘Z apX(p)‘ < <@ +Ck,5N1 l/kq(k+1)/(4k2)+6’C|R2/k> Z ’ap|2

X€EC p<N p<N
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and

If C is a set of characters to moduli ¢ < @Q, the same bounds apply with g
replaced by Q?, where k can be chosen arbitrarily if all occurring values of
q are cubefree, and k = 2,3 otherwise.

From this we conclude immediately
COROLLARY 4. For x > Q**¢ we have the estimate

Y Y reor<o b

q<Q x (mod q)

log? z

Moreover, for x > Q3¢ this can be made completely explicit:

q;? X%;dq)w,x) < p T Tn /G

We can also consider a single character:

COROLLARY 5. Let x be a complex character. Then

7, 0] < ((%)m +0(1)> e s

where a = logx/logq and ¢ = 1/4 if q is cubefree, and ¢ = 1/3 otherwise.
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Note that this estimate is nontrivial if > ¢3/* resp. > ¢, depending

on whether ¢ is cubefree or not. With a little more work, we obtain the
following statement.

COROLLARY 6. Let D,xz,Q be parameters with x > Q'T¢D?. Let N be
the number of moduli ¢ < Q) such that there is some primitive character x
of order d < D and some dth root of unity ( such that there is no prime
p < x with x(p) = (. Then N <. D.

This was proven by Elliott with D = 3 under the condition = > Q54/1+¢

We begin the proof of our theorems with the following two sieve princi-
ples.

LEMMA 7 (Bombieri). Let V,(-,-) be an inner product space, v; € V.
Then for any @ € V we have

1@ vl < 2] max 3 |(vi, ).
% J

This is Lemma 1.5 of [3].

LEMMA 8 (Selberg). Let R, N be integers such that R?> < N. Then there
is a function g which has the following properties:

1.g(1)=1,|g(n)| <1 forn <R, g(n) =0 forn > R.

2. 3 ,<n((1%9)(n))? < N/log R+ R?.

This is the usual formulation of Selberg’s sieve when used to count the
set of primes < N (see e.g. [2, Chapter 3, especially Theorem 3.3]). In what
follows, we will denote by ¢ the function given by Lemma 8 and set f =

(1% g)2. We will have to bound character sums involving f; these computa-
tions are summarized in the following proposition.

PROPOSITION 9. Let x (modgq) be a character, R,N,f and g as in
Lemma 8, and define S =%, - f(n)x(n).

1. If x is principal, we have |S| < N/log R + R?.

2. Assume that x is nonprincipal. Then for any fixed A we have the
estimate

0o N —A
S )X )e E N « 4 B2V ()
v=1 , R q

3. If x is nonprincipal, we have the bounds |S| < RQ\/G logq and |S| <
ck,ERz/klequ(kﬂ)/(‘“l“zprE for k = 2,3, or, if q is cubefree, for k > 2
arbitrary.

Proof. The first assertion is already contained in Lemma 8.
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Assume now that x is nonprincipal. Then

3 S| =[5 (Sta)

n<N dn

:’ Z g(d1)g(d2)X([d17d2D Z X(n)‘

di,do<R n<N/[d1,dsa)
< Y Jgldg@)l | Y xm)
dy,d2<N ngN/[dl,dz}

> m)|

d1,d2<R n<N/[d1,d2]

The inner sum can be estimated using either the Pélya—Vinogradov in-
equality or Burgess estimates, leading to |S| < R2\/§ log g, resp. |S| <
ck,ERz/klel/kq(kﬂ)/(‘lkz)*s; thus we obtain the third statement.

To prove the second statement, we begin as above to obtain the inequality

‘i f(n)X( ~log*(n/N) ‘ < Z ‘ZX —log?([d1,d2]n/N) .
n=1

d1,ds<R n=1
Write d = [dy, d2]. Using the Mellin transform

_ 2
Sx ss/4d8_6 log :)3?

1
NCT
VTG

the inner sum can be expressed as

> 1 2
—log?(dn/N) _ s2/4 s
gxm v S L(s, x)e™/*(N/d)* ds

Now we shift the path of integration to the line ®¥s = —A with A > 0.
Denote by x1 the primitive character inducing x. Then

L(s,x) = [ (1 = xa(@)p~*)L(s, x1)-
plaz

For A > 2, the first factor is < qé“, whereas using the functional equation
the L-series can be estimated to be < (q1(]t| + 2))AT'/2, hence the right

hand side is N N
N\~ N\~
12 V. <2
A <dq> =4 <RQQ> '

Hence the whole sum can be bounded by ¢(A4)R2¢'/2(N/(R%q))~4

To prove Theorem 2, we follow the lines of the proof of the large sieve
resp. the Haldsz inequality; however, we apply Lemma 7 to a different eu-
clidean space. Consider the subspace V < [*° consisting of all bounded
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sequences (ay) such that a, = 0 whenever f(n) = 0, where f is defined as
in Lemma 8. On this space define a product as

( Zf —log? n/N)a b

Now we apply Lemma 7 to this space and the set of vectors & = (a,,), where
ap = apelogQ(p/ N) | for prime numbers p in the range R2 < p < N, and @,, = 0
otherwise, and v; = (X(n)), where similarly Y(n) = x(n), if f(n) # 0, and 0
otherwise. Now the inequality reads as

ZZ)Z%X\

q<Q x (mod q) R2<p<N

< mx(3 £m)e 0 4 T[S flae ()
n=1

X'#Xx n<N
2
% § : ‘ap’2€210g (p/N)

p<N

where the maximum is taken over all characters with moduli at most Q.
From Lemma 8 it follows that the first term inside the brackets is < N/log R
provided that R < N3, say. For the second term, let y be a character
(mod ¢) and x’ a character (mod ¢’). Then xx’ is a character (mod [g, ¢']). By
Proposition 9, each term in the outer sum can be bounded by ¢(A)R?[q, ¢']'/?
x (N/(R%q,q']))™4, hence the whole sum is < c(A)Q>R?(N/(R?Q?))~4
Since by assumption N > Q*t¢, we can choose R = Q</4, A = 6/c+1 to
bound this by some constant depending only on €. Thus we get the estimate

> XY ) < (51£N+05>2|apy2.

q<Q x (mod q) R2<p<N p<N

The range n < R? can be estimated using the usual large sieve inequality,
which gives (R? + Q?) D op<N lap|?, which is negligible. Hence Theorem 2 is
proven.

The proof of Theorem 3 is similar, but simpler. First, assume that all
characters in C are characters to a single modulus g. We consider the vector
space V' < CV consisting of the sequences (a,))_; with a,, = 0 for all n with
f(n) = 0 and the scalar product ((ay), (bn)) := Y., <y f(n)anb,. Applying
Lemma 7 as above, we obtain the estimate

Z( > apX(p)‘Q < <logiR +R?+(/C| — 1)A(R, N, q)> >l

x€C p<N
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where A(R, N, q) is the bound obtained by Proposition 9, i.e. A(R, N, q) <
R?,/qloggq, resp. A(R,N,q) < ck75q(k+1)/(4k2)+5N1_1/kR2/k. The term R?
can be neglected in comparison with A(R, NV, q). This is obvious in the first
case. In the second case, we may assume that A(R, N,q) < N, since oth-
erwise Theorem 3 is an immediate consequence of the Cauchy—Schwarz in-
equality. This implies R < N1/2¢=*+1)/(F) which in turn implies

R? < N\ Vkg=1=Vk « A(R, N, q).

Hence we obtain Theorem 3 for sets of characters belonging to a single
modulus.

The proof for the case that the characters belong to different moduli is
similar; note that [g1, g2 is cubefree if both ¢; and gy are cubefree.

In the range Q**¢ < z < @Q**¢, Corollary 4 follows from Theorem 2
by choosing a, = 1 for all prime numbers p < N, whereas in the range
x > Q37¢ it follows from Theorem 3. Similarly we obtain Corollary 5 from
Theorem 3. We choose C = {x0, X, X} to obtain the estimate

x
[m(@)]? + 2|7 (2, x)|* <

= log(cpex1/2qk+D/ER)Fe) ()

and choosing either £ = 3 or k " oo we obtain the result by solving for
|7 (2, X)|-

To prove Corollary 6, let P be the set of prime numbers p, such that
there is some character x of order d as described in the corollary. For every
such p, choose such a character x; together with all its powers, and denote
the set of all these characters with C. Let ¢ be a dth root of unity. We have

d
Ym0 =d)
a=1

x4=x0
XFX0

2
#{p <z |xi(p) =¢"} - éﬂ(w, Xo0)

Since by assumption, one of the terms on the right hand side is large, the

right hand side is
z? x
7. 2 2,
dlog“x = Dlog”x

Now we have |C| < D - |P|; thus we get

P

>

$2 2

Dlog? z < logzlog R

+ zDR?|P|Qlog Q.

If D?Qlog@ < x'~¢, we can choose R = /%, and the second term on the
right hand side is still of lesser order than the left hand side. With this
choice the inequality can be simplified to |P| <. D.



Primes in short arithmetic progressions 149

References

[1] P.D. T. A. Elliott, Subsequences of primes in residue classes to prime moduli, in:
Studies in Pure Mathematics to the Memory of P. Turén, P. Erdés (ed.), Akadémiai
Kiadé, Budapest, 1983, 157-164.

[2] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monographs
4, Academic Press, 1974.

[3] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math.
227, Springer, 1971.

[4] Y. Motohashi, Large sieve extensions of the Brun—Titchmarsh theorem, in: Studies
in Pure Mathematics to the Memory of P. Turdn, P. Erdés (ed.), Akadémiai Kiadd,
Budapest, 1983, 507-515.

Mathematical Institute Current address:
University of Oxford Mathematisches Institut
24-29 St. Giles’ Street Eckerstr. 1
Oxford, OX1 3LB, U.K. 79111 Freiburg, Germany
E-mail: puchta@maths.ox.ac.uk E-mail: jep@arcade.mathematik.uni-freiburg.de

Received on 13.6.2001
and in revised form on 22.4.2002 (4051)



