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An infinite family of totally real number fields
by

Huwmio IcHIMURA (Yokohama) and FumMINORI KaAwAMOTO (Tokyo)

1. Introduction. This is a continuation of [7]. Let F' be a totally real
number field of degree n (>2) and ¢; (1 < ¢ < n) all real embeddings
of F. We denote by [; the real prime of F' corresponding to ¢; and put
lo =lp(F) :=lla...[,. For [] [y, F(I) denotes the ray class field of F' mod .
In particular, F'(1) is the Hilbert class field of F'. Let K/F be a subextension
of F(I)/F and G its Galois group. We denote by or and ox the rings of
integers in F' and K, respectively. If there exists some x in ox such that
{s(x)}sec is a free op-basis of ok, then we say that the tamely ramified
abelian extension K/F has a normal integral basis (abbreviated NIB). Such
an element x is called a generator of NIB of K/F. We ask whether K/F has
an NIB. For this, we consider a subgroup of an elementary abelian 2-group

05 /0%
N'=NY(F)
= {[n] € 05/05% | € 0F,n=1mod 4,:(n) >0 for all [;| [H["}.
Here, for a ring R, R* denotes the group of units in R and [] is the residue

class of 1. We denote by Z the ring of all rational integers and put Fy :=
7./27. Then we can regard N'" as a vector space over Fy with dimension < n.

Furthermore, we put
L':=F({yn | eN'}).

By Kummer theory, L' is a subfield of F(I) and L'/F is an elementary
abelian 2-extension of degree gdim N K, where dim V' is the dimension of an Fa-

vector space V. In [7], we proved the following theorem, using Brinkhuis [2,
Corollary 2.10] (or [3, Corollary 2.1]) and Childs [4, Theorem B].

THEOREM 1. Let F be a totally real number field and [|1p.

(i) The extension L'/F is the maximal subextension of F(I)/F which
has an NIB. Furthermore, if {[m],.-., 0]} is an Fa-basis of N with n; =
1 mod 4, then = :=[[;_;((1 4+ /7:)/2) is a generator of NIB of L'/F.
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(ii) Let K/F be a subextension of F(I)/F. Then K/F has an NIB if and
only if K C L'. If the condition is satisfied, then Ter/K(m) is a generator
of NIB of K/F. In particular, F(I)/F has an NIB if and only if hp =
INVYIF(1) : F(1)]7'. Here, Trp i is the trace map from L' to K and hp
denotes the class number of F.

In view of this theorem, the Fo-vector space A'' is naturally of interest.
In [7], we determined an Fy-basis of N for all real quadratic fields and
all cyclic cubic fields. The main purpose of this article is to determine an
Fa-basis of N' and a generator = of NIB of the abelian extension L'/F for a
certain family of totally real number fields F' which are defined by Eisenstein

polynomials
n

70 =[x —an) -2
i=1

Here, a;’s are integers satisfying 8 |a; and some other conditions. (These
types of polynomials are also dealt with in [5].) We state the main result
(Proposition 3) in Section 2, and show it in Section 3. Applying Proposition 3
and Theorem 1, we examine whether F'(I)/F has an NIB in (Proposition 6
of) Section 4. The final section is of supplementary nature. First, we show
that the above mentioned family of totally real number fields of degree n
contains infinite ones (Proposition 7). Next, we give an assertion (Proposi-
tion 9) on Galois extensions of prime power degree. As its consequence, we
see that when n = 3, the cubic fields in this article are not cyclic ones which
are dealt with in [7].

Acknowledgments. The second author expresses his appreciation to
Yoshitaka Odai for suggesting Proposition 9.

2. Main result. We introduce a family of totally real number fields of
Eisenstein type. Let n > 2 be a positive integer and take n — 1 odd primes
p; (2 <i < n) such that

(2.1) pi=5mod8, pif(2n—1).

Furthermore, let aq,...,a, be integers which satisfy the conditions (2.2)—
(2.5):

(2.2) 1<i<j<n = a;—a;>2V2,

and for each i (1 <i <mn),

(2.3) a; = 0 mod 8,

(2.4) a; =—1modp; ifi#1,

(2.5) a; =0mod p; forallj (2<j<n, j#1i).
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Then we put

n

FX) =X —ai) -2

i=1

Since f(X) = X" — 2mod 4 by (2.3), f(X) is an Eisenstein polynomial
for 2. Let 6 be a root of f(X), and define

(2.6) F=Q),

where Q denotes the field of all rational numbers. As we shall show at the
end of this section, (2.2) and the intermediate value theorem imply that
f(X) has n distinct real roots 0; (1 <1i < n) satisfying the following: when
n is even,

(2.7) Oi1<a1<aa<by<bl3<...<bp_9<0Oph_1<an_1<ap<0p;
when n is odd,

(28) a1 <P <br<az<az<...<BOp9<O0p1<an_1<a,<0,

In particular, F' is totally real. Also, 2 is totally ramified in F: 20 = p™. As
a; (1 <i<n)is even, we have ord, () = 1 < ordy(a;), so that ord, (6 — a;)
= 1; also, we have [[" (0 — a;) = 2 since f(#) = 0. Hence, p = (6 — a;)op
for all i (1 <14 <n). Therefore,

9—(11'
2. = —
(2.9) S

(2 < i < n) are elements of oy, and (2.3) implies that &; = 1 mod 4. By
(2.1), (2.4) and (2.5), Lemma 2 follows from the same argument as in the
proof of [5, Lemma].

LEMMA 2. Under the above setting, {[—1], [e;] | 2 < i < n} is an Fa-basis
of of/ox2.
For each i (1 < i < n), we define a real embedding ¢; of F' by putting

ti(0) = 6;. Let [; be the real prime of Zi corresponding to ¢;. We have
lo = lily...1,. For [| [y, we define a group E' by

E':={[n) € 0f o | n €0, ti(n) >0 for all ;] oI},

which we also regard as a vector space over Fy. The vector space N'is a
subspace of E'. We determine Fa-bases of ' and of E', respectively, in
Proposition 3 which we show in the next section.

DEFINITION 2.1. Let [|ly. When n is even (resp. odd), we define
S=8"={k|1<k<(n—2)/2 (resp. (n—1)/2),
i = 2k or 2k 4 1 (resp. 2k — 1 or 2k) with some [; | [p["1}
and put o = o' := |S|. We write S = {k1,...,ko} with k1 < ... < ko.
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PROPOSITION 3. Let F be a totally real number field as in (2.6) of degree
n and ¢ (2 < i1 < n) units of F as in (2.9). Let [|ly. Then, under the
notation of Definition 2.1, we have dim N' = n — 1 — ¢'. Furthermore, the
following hold (when n = 2, we put ko :=0 and €1 :=1):

(i) Suppose that n is even, and put

6] |2 <i <2k},
leigon, 1) | 1< s <o —1,2ks+1<1i<2kgy — 1},
[-
[

gi] | 2ks +1 < i <n},
gien) | 2k +1<i<n-—1}.

{
{
{
{

If L1l, | I, then Ag U Bg U Cy (resp. Ag U Bg U Dy) is an Fa-basis of E'
(resp. N'Y). In particular, dim E' = n — o'. If 1,11, then E' = N, and
Ao U ByU Dy is an Fo-basis of N*.

(ii) Suppose that n is odd, and put

A= {[81] |2<Z<2k1—1}

By: = {[eicon,1-1) | 1 <s <0 —1, 2k <i < 2kgyq — 2},
Cy: ={[—¢&i] | 2ks <i < n},
Dy: = {[eien] | 2k < i <n—1}.

If 1, |1, then AluBlucl (resp. AJUB1UDy) is an Fa-basis of E" (resp. N').
In particular, dim E' = n — o'. If 1,11, then E' = N, and Ay UB1UD; is
an Fy-basis of N

Since ¢; = 1 mod 4 for all 4, Theorem 1(i) and Proposition 3 yield:

COROLLARY 4. Let the assumption and notation be as in Proposition 3.
Then an element x of the following form is a generator of NIB of L'/F :
when n is even,

o—12ks 1 _
ﬁ<1+\/_) Hl ﬁ (1+w/azezks:> ’ﬁ (1—1—\2/6@'6”);
s=1i=2ks+1 1=2ks+1

when n is odd,

x_2‘h1<1+f>‘hl%‘“ﬁ <1+¢7) I (),

1=2

s=1 =2k, i=2ko

EXAMPLE 2.2. When n is even and 1 < k < (n — 2)/2, we list dim A"
for some [ in Table I.
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Table I
[ o' dim A*
lo 0 n—1
ol 11t 0 n—1
lal3lg...lopr1 (R—2)/2—k n/2+k
(olals .. . Loy, (n—2)/2 n/2
l10n (n—2)/2 n/2
1 (n—2)/2 n/2

EXAMPLE 2.3. When n (> 3) is odd and 1 < k < (n — 1)/2, we list
dim NV' for some [ in Table II.

Table II
( o' dim A
lo 0 n—1
ol ! 0 n—1
llals. .. I n—1)/2—k (n—1)/2+k
[10305 ... lop—_1 (n—1)/2 (n—1)/2
[ (n—1)/2 (n—1)/2
1 (n—1)/2 (n—1)/2

In order to prove (2.8), we assume that n is odd, and let 1 <7 < n. Then
f(a;) = —2 < 0. If ¢ is odd, since n — i is even, (2.2) implies that

f(ai—i— {l/i)zn(ai—a]w- W) H (aj—ai— {1/5)—2
j=1 j=it+1

> Y232y (V)i —2> (V2)n —2=0.

Hence, the intermediate value theorem shows that f(X) has a real root in
the open interval (a;,a; + ¥/2). If i is even, since n — (i — 1) is even, the
same argument implies that f(a; — ¥/2) > 0. Consequently, f(X) has a
real root in (a; — {/2, a;). This implies the condition (2.8), and similarly we
obtain (2.7).

3. Proof of Proposition 3. In this section we prove Proposition 3.
Let 2 < i < n. Then we claim the following: when n is even and 1 < k <

t1(gi) >0, tn(gi) >0;  1ox(ei) >0, togy1(e;) >0 if i < 2k;

3.1
( ) tor(€i) <0, tops1(gi) <0 if i > 2k + 1;
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when n isodd and 1 <k < (n—1)/2,

Ln(Ei) > 0; Lgk_l(f-:i) > 0, Lgk(Ei) >0 ifi<2k-—1;

3.2
( ) Lgkfl(é‘i) <0, LQk(&L’) <0 ifi>2k.

These are shown as follows. For each j (1 < j < n), we have ¢(g;) =
(0; —a;)/(0; — a1). Assume that n is even and 1 < k < (n — 2)/2. Since
01 < a1 < az < a; by (2.7), we obtain ¢1(g;) > 0; also, a; < a; < 0, implies
that ¢,,(g;) > 0. Furthermore, we have

agg < b, < Oap11 < agpy1 < k42

from (2.7). Hence, if i < 2k (resp., i > 2k), as a1 < Oax, we have tor(g;) > 0
and op41(g5) > 0 (resp., tor(g;) < 0 and tox41(g;) < 0). Thus (3.1) holds.
Similarly, (3.2) follows from (2.8).

Lemma 2 shows that

n

(33) Ao =TIl and o}/of2 = ([~1]) x N,

i=2
because ¢, = 1mod 4 (2 < i <n) and —1 Z 1 mod 4. In the remainder of
the proof, we let [n] € 0}/0}%, and write [n] = [~1]° [[},[ei]* with some
e1,e; in {0,1}. It follows immediately from (3.3) that
(3.4) M eN' (CNY®) = e =0.

If 1 < j <mn, then [¢;(n)] = [-1]* [[;5[¢;j(e:)]%. We prove only the asser-
tion (i) of Proposition 3, since the same argument implies (ii). By (3.1), if
j =2k or 2k + 1, then

n
ti(n) >0 & e+ Z e; = 0 mod 2.
i=2k+1

It follows from this and the definition of S' that

n
(35) [ €E" < e+ Z ei=0mod 2 for all s (1 <s <o)
i=2ks+1
2ks41
= Z e;=0mod2foralls (1<s<o-1),
i=2ks+1

n
and e + Z e; = 0 mod 2.
i=2k,+1

First, assume that [1[, | [, and [] € E' (resp., € N'"). Then (3.5) and (3.4)

imply that eg,,, = Z?izzﬂ ej for all s (1 < s < o —1), and e
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n _ n—1
> ieok,+1 € mod 2 (resp., en = ) iy, 1 e; mod 2). Hence,

2k o—12ks41—1 n
=T TT 1T Eewnl < T] e
=2 s=11i=2ks+1 1=2ks+1
n—1
(resp. x H [eien]).
1=2ks+1

Also, all elements of AgU By U Cy (resp. AgU BgU Dy) are in E' (resp. N')
by (3.5), and are linearly independent over Fy by (3.3). Therefore this set
constitutes an Fa-basis of E' (resp. N'). So,
o—1
dim E' = (2ky — 1) + ) (2kor1 — 2ks — 1) + (n — 2ko) =n — 0.
s=1
Similarly, we have dimAN'=n—-1-0.

Next, assume that [l and [7] € E'. Then t1(n) > 0 or ta(n) > 0;
therefore we have e; = 0 by (3.1). Hence, (3.3) implies that E' = N
By the same argument as above, Ao U By U Dy is an Fy-basis of N'. This
proves (i). m

4. NIB of F(I)/F. In this section, using Proposition 3, we examine
whether F(I)/F has an NIB. We assume that F' is a totally real number
field as in (2.6) of degree n, and [; (1 < ¢ < n) is the real prime of F
corresponding to the real embedding ¢;, defined in Section 2. For [|[, let
o1 denote the number of distinct prime divisors of [. Then the Galois group
Gal(F(I)/F(1)) is an elementary abelian 2-group, which is also regarded as
a vector space over 9. We have

(4.1) 5 := dim Gal(F(I)/F(1)) = dim """ — g =1
(cf. [7, Section 3]).

LEMMA 5. Let []lg.

(i) When n is even, if 1|l ;! then & = oy — o', and otherwise
5[:Q[—0'[0[71—1. .

(i) When n is odd, if [|lpl;! then & = or — o' | and otherwise § =
or — 0[0(_1 — 1.

Proof. Using Proposition 3, we can calculate ¢; from (4.1). If [| [0[1_1[7;1,
since [ [, | [oI™%, we have & = (n—o'! ") — O1p1-1 = 01 — ot If (ol e,
then 6, = (n—1—c"' ') — Orp-1 = 01 — o' — 1. Hence we obtain (i); the
proof of (ii) is similar. m

PROPOSITION 6. We have 2-rank Gal(F(1)/F) > [n/2], where [o] de-
notes the largest integer not exceeding a real number a. Furthermore, let
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[|lp. Then:

(i) When ‘n is even and il {17, or n is odd, we have: F(I)/F has an
NIB if and only if hp = 2/2,
(ii) When n is even and 10, |l, F([)/F has no NIB.

Proof. Since L! is a subfield of F(1), we have
2-rank Gal(F(1)/F) > 2-rank Gal(L'/F) = dim N'*.

Examples 2.2 and 2.3 imply that dimAN*! = [n/2]. Therefore we obtain
2-rank Gal(F(1)/F) > [n/2]. If we write [N'[F(I) : F(1)]7! = 2 with
some integer e[, then Proposition 3 yields

(42) e(:n—l—(a[—l—é[).

As before, let S = S' and ¢ = ¢'. For brevity, put S := Shl™ o5l = |57,
and t := [S N S’|. To show Proposition 6, we first write o and gy, -1 in
terms of o,0’,t (and next calculate e;). For this, the following remark is
useful. When n is even, we see from the definition of S and S’ that (I) if
k € SNS then either “lgy |lpl™! and lopy 1 |17, or “lopyy |lol™! and loy | 17,
and that (IT) if k € S — (SN S’) (resp., € S’ — (SN S")), then loglopy | lol™!
(resp., loglok41]l). A similar assertion holds for n odd.

(A) The case where n is even. When [f[ol7 '[!, we put w := [{1,n} N
{i; L0 IE O Lol M (vesp., [l 1Y), by the above remark, we have
Oi-1 = t+2(c—t)+2and oy = t+2(c’ —t) (resp., o1 = t+2(0—t)+2—u
and o = t + 2(¢0’ —t) + u). Consequently, o, -1 — 01 = 2(0c —0') + 2
(resp., o1y-1 — 01 = 2(0 — 0’) +2 — 2u). On the other hand, we clearly have
O1o1-1 + o1 = n. Therefore, we obtain

(4.3) (n—2)/2 (resp. n/2+u—1) =g +0—0'.

By (4.2) and Lemma 5(i), we obtain e = n — 1 — (0 + o1 — ¢’) (resp.,
=n—(o+o—0’)). Hence, (4.3) implies that e = n/2 (resp., = n/2—(u—1)).
Since u =1 or 2, if [; [, (resp., 11, | ) then e; = n/2 (resp., =n/2 —1).
(B) The case where n is odd. If [| Il 1 (resp., [{lol;}), by the above
remark, we have g; -1 = t+2(c —t)+ 1 and o = t + 2(¢’ — t) (resp.,
Oi-1 =t+2(0c —t) and oy =t + 2(c’ —t) + 1); consequently, o;,-1 — 01 =
2(0c — ') + 1 (resp., o;-1 — 01 = 2(0 — ¢') — 1); therefore,
(4.4) (n—1)/2 (resp. (n+1)/2) = o+ 0 —0'.
By (4.2) and Lemma 5(ii), we obtain e, = n — 1 — (0 + o — o’) (resp.,
=n— (04 o — 0’)). Hence, (4.4) implies that e; = (n — 1)/2.
Theorem 1(ii) shows that F(I)/F has an NIB if and only if hp = 2°.
When “n is even and [11, 117, or n is odd, (A) and (B) imply that e; = [n/2].
Hence the assertion (i) holds. When n is even and 1, | I, since 2(*/2 | hp, it
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follows from (A) that
9et — 2n/2—1 < 2[n/2] < hp.
Hence F(I)/F has no NIB. This proves our proposition. =

Assume that hp = 202, When n is even, Proposition 6 implies that
F(1)/F has an NIB if and only if [;,{[. Also, when n is odd, F(l)/F has
an NIB for all [|ly. On the other hand, if hp # 20*/? then F(I)/F has no
NIB for all [|ly. Thus the existence of NIB of F([)/F is determined by the
condition on the class number hr and an integral divisor I.

REMARK 4.1. Suppose that n = 2. Let £ (> 1) be the fundamental unit
of F' and g the order of € mod 4 in (0p/40r)*. By Lemma 2, we see that
the index (07 : (—1) x (g2)) is odd, where the unit e is defined in (2.9).
This implies that g is odd and ¢ is totally positive. Hence, Proposition 6 for
n = 2 also follows from [7, Corollaries 11 and 12].

ExaMPLE 4.2. Let Clp be the ideal class group of F. For a positive
integer m, we denote by C,, a cyclic group of order m. We consider a real
quadratic field F' which is defined by a polynomial of the form f(X) =
X(X — a2) — 2, where ay is an integer such that a; = 0 mod 8 and ay =
—1 mod pa, p2 being a prime with po = 5 mod 8. For all fields F' in Table
III, by using PARI [1], we see that F'(1)/F has a relative integral basis,
that is, op(1) has a free op-basis; we can also obtain the same result by
using KASH [8] (cf. [7, Section 5]). But, as hr # 2, F(1)/F has no NIB by
Proposition 6.

Table ITI

D2 a2 Clp hp
5 224 02 X 02 4
5 424 Cs 6
5 54744 Co x Cq 4
5 138944 (9 x (9 4
5 156624 Cy x C9 4
13 168 Ce 6
13 13896 Ce 6
29 11512 C9 x Co 4
157 23392 (2 x Oy 4

5. Supplements. In this section we prove Propositions 7 and 9.

PROPOSITION 7. For each positive integer n > 2, there exist infinitely
many totally real number fields F as in (2.6) of degree n.

For the proof, we need:
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LEMMA 8. Let n > 2 be a positive integer and 8 € Z, B # 0. Then there
exist infinitely many primes [ that satisfy the following two conditions:

(i) 14PBn(n —1).

(ii) There is some a(l) in Z such that ord;(d(gs)) = 1 for all integers a
with a = a(l) mod [, where we put go(X) := X" —aX""! — 3 and denote
by d(ga) the discriminant of go(X).

Proof. Let (, be a primitive nth root of unity, and put
K:=Q(y/—p(n—1)) and N :=K(()-

Since N/Q is Galois, by the Dirichlet density theorem, there exist infinitely
many primes [ such that [t/Sn(n —1) and [ is completely decomposed in N.
Take such a prime [ and let £ be a prime ideal of 0k lying above [. Since [
is a prime element of £, we have

or /L% = {(ap + a1l) mod L? | ap,ay € Z/IZ}.

Therefore there is some b in Z such that

(5.1) b= /—B(n—1) —— mod L2

n—1
Since It fn(n — 1), we have [1b. Put a(l) := b+ 1. Let a be an integer with
a = a(l) mod 12 and put g(X) := X" —aX""! — 3. By Swan [9, Theorem 2],
we have
(5:2) d(g) = (1" VA=) {(=1)"" (n = )"} (~a)" —n"B}
— (_1)(n+2)(n71)/26n72{(n _ 1)n71an + nnﬂ}

As the definition of a and (5.1) imply that

a"=a)" ="+ nb" = —-p(n—-1)(n/(n—1)" +nb" 'l mod I?,
we obtain (n—1)""ta"+n"B = n(n—1)""16""1 mod I%. Hence, (5.2) yields

d(g) = (_1)(n+2)(n—1)/2ﬂn—2n(n _ 1)n—1bn—1l mod I2.

As I1pn(n — 1)b, we have ord;(d(g)) = 1. This proves our lemma. =

Proof of Proposition 7. Let Fi,..., F; be finitely many distinct fields as
in (2.6). It follows from Lemma 8 for 5 = 2 that there exist some odd prime
[ and some a(l) in Z such that ord;(d(g)) = 1 and [ is unramified in each
F; (1 <i<t), where we put g(X) := X" —a([)X" ! — 2. Take n — 1 odd
primes p; (2 < ¢ < n) with p; # [ satisfying (2.1), and let ay,...,a, be
integers which satisfy (2.2)—(2.5),
(5.3) a1 =a(l) mod?>, and a;=0mod?® foralli(2<i<n).
Then we define a field F' as in (2.6). Since (5.3) implies that f(X) =
g(X) mod 12, we have ord;(d(f)) = 1. If dp is the absolute discriminant
of F, then d(f) = dF - (o : Z[0])?. Hence, I | dp. Therefore, [ is ramified in
F,and F # Fy,...,F;. =
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When the degree n is a power of odd prime, Proposition 9 implies that
a field F' as in (2.6) is not Galois over Q, because 2 is (totally) ramified in
F. In particular, when n = 3, we see that F' is not a cyclic cubic field.

PROPOSITION 9. Let F/Q be a Galois extension of prime power degree,
say I'. Suppose that p is a prime such that p # 1 and p # 1 mod . Then p
is unramified in F. In particular, if | is odd then 2 is unramified in F.

Proof. Let G := Gal(F/Q) and p a prime ideal of op lying above p. For
each non-negative integer m, we put

Gm = {s € G| s(z) =z mod p™ " for all z in op}.

Then it is known that |Go/G1||(Np — 1), and |Gy, /Gm+1| | Np for each
m > 1 (cf. Iwasawa [6, Proposition 2.19]), where Np is the absolute norm of
p. As p # [, we obtain G,, = {1} for all m > 1. Hence, |Go|| (Np — 1). Let
f be the residue degree of p in F/Q: Np = pf. Since F/Q is Galois, both
f and |G| divide I!. By Fermat’s little theorem, we obtain Np = p mod I.
Then, since the assumption implies that {1 (Np —1), we have [{|Gy|. Hence,
Go = {1}, therefore p is unramified in F. This proves our proposition. m
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