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Sets of parts such that the partition function is even

by

F. Ben säıd (Monastir) and J.-L. Nicolas (Lyon)

1. Introduction. N0 and N denote the set of non-negative integers,
resp. positive integers. A will denote a set of positive integers, and its count-
ing function will be denoted by A(x):

A(x) = |{a : a ≤ x, a ∈ A}|.
If A = {a1, a2, . . .} ⊂ N (where a1 < a2 < . . .), then p(A, n) denotes the
number of partitions of n with parts in A, that is, the number of solutions
of the equation

a1x1 + a2x2 + . . . = n(1.1)

in non-negative integers x1, x2, . . . As usual, we shall set

p(A, 0) = 1 and p(A, n) = 0 for n < 0.(1.2)

We shall use the generating function

F (z) = FA(z) =
∞∑

n=0

p(A, n)zn =
∏

a∈A

1
1− za ·(1.3)

When A = N it seems highly probable that the number of integers n ≤ x
such that p(N, n) is even is close to x/2 as x → ∞; but the known results
are rather poor (see [7], [9], [10] and the references in them). That is the
reason for which, in [7], it was observed that there exist sets A such that
p(A, n) is even for n large enough. In this paper, we want to investigate the
properties of such sets.

For i = 0 or 1, if A ⊂ N and there is a number N such that

p(A, n) ≡ i (mod 2) for n ∈ N, n > N,(1.4)

then A is said to have property Pi(N).
If i = 0 or 1, B = {b1, . . . , bk} 6= ∅ (where b1 < . . . < bk) is a finite set

of positive integers, N ∈ N and N ≥ bk, then there is (cf. [7]) a unique set
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A ⊂ N such that

A ∩ {1, . . . , N} = B(1.5)

and having property Pi(N); we will denote it by Ai(B, N).
Let us recall the construction of Ai(B, N) as described in [7], when, for

instance, i = 0. The set A = A0(B, N) will be defined by recursion. We
write An = A ∩ {1, . . . , n} so that

AN = A ∩ {1, . . . , N} = B.
Assume that n ≥ N + 1 and An−1 has been defined so that p(A,m) is even
for N + 1 ≤ m ≤ n− 1. Then set

n ∈ A if and only if p(An−1, n) is odd.

It follows from the construction that for n ≥ N + 1, we have

p(A, n) =
{

1 + p(An−1, n) if n ∈ A,
p(An−1, n) if n 6∈ A,

which shows that p(A, n) is even for n ≥ N + 1. Note that in the same way,
any finite set B = {b1, . . . , bk} can be extended to a set A so that Abk = B
and the parity of p(A, n) is given for n ≥ N + 1 (where N is any integer
such that N ≥ bk).

It will be shown in Proposition 4 that, except in the case i = 1, B = {1},
the set Ai(B, N) is always infinite.

By the unicity of the above construction, if the setA has property Pi(M),
then, clearly, for any N ≥M and B = A ∩ {1, . . . , N} we have

A = Ai(B, N).(1.6)

If A ⊂ N, let χ(A, n) denote the characteristic function of A, i.e.,

χ(A, n) =
{

1 if n ∈ A,
0 if n 6∈ A,(1.7)

and for n ≥ 1,
σ(A, n) =

∑

d|n
χ(A, d)d =

∑

d|n, d∈A
d.(1.8)

It is relevant to consider σ(A, n), since, as shown in [7], taking the logarith-
mic derivative of F (z) = FA(z) defined by (1.3) yields

z
F ′(z)
F (z)

=
∞∑

n=1

σ(A, n)zn.(1.9)

The main purpose of this paper is to show that for any positive integer
k and any set A = Ai(B, N), the sequence

(σ(A, 2kn) mod 2k+1)n≥1 is periodic.(1.10)

(We denote by a mod b the remainder in the Euclidean division of a by b.)
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Note that (1.10) has already been proved for k = 0 in [7], and for k = 1
in [2]. The result (1.10) will be proved (Theorem 1) in Section 3, and, in the
same section, Theorem 2 will specify the smallest period qk of σ(A, 2kn) mod
2k+1; in particular, qk is always odd. Property (1.10) seems a little surprising;
the number 2 appears in it since the question we study is a parity problem.

By the Möbius inversion formula, (1.8) gives

nχ(A, n) =
∑

d|n
µ(d)σ(A, n/d)(1.11)

where µ is the Möbius function. If n is odd, by (1.10) with k = 0, we know the
value of σ(A, n) mod 2, and this allows us to determine χ(A, n) from (1.11)
for any set A = Ai(B, N). This has been done in [8] for A = A0({1, 2, 3}, 3)
and in [6] for A = A0({1, 2, 3, 4, 5}, 5). In [2], the validity of (1.10) for k = 1
has been used to determine the elements of A = A0({1, 2, 3}, 3) which are
congruent to 2 modulo 4.

Similarly, it is possible to deduce from (1.10) the value of χ(A, n) where
n is any positive integer. For that, it is convenient for m odd to introduce
the sum

S(m,k) = χ(A,m) + 2χ(A, 2m) + . . .+ 2kχ(A, 2km).(1.12)

If n = 2km with k ≥ 0 and m odd, (1.8) implies

σ(A, n) = σ(A, 2km) =
∑

d|m
dS(d, k),(1.13)

which, by the Möbius inversion formula, gives

mS(m,k) =
∑

d|m
µ(d)σ(A, n/d) =

∑

d|m
µ(d)σ(A, n/d),(1.14)

where m =
∏
p|m p denotes the radical of m. In the above sums, n/d is

always a multiple of 2k, so that, from (1.10), the value of σ(A, n/d) and
thus the value of S(m,k) are known modulo 2k+1. Therefore, from (1.12),
we can deduce the value of χ(A, 2im) for i ≤ k. But, for technical reasons,
the calculation can be difficult. We hope to return to this subject in another
article.

Finally, in Section 4, we prove in Theorem 3 that, for any B and N , there
is a set B′ such that A1(B, N) and A0(B′, N + 1) have the same elements
with the exception of powers of 2.

We are pleased to thank K. Belabas and A. Sárközy for several remarks.

2. The Graeffe transformation. Consider the ring of formal power
series C[[z]]. For an element

f(z) = a0 + a1z + a2z
2 + . . .+ anz

n + . . .
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of this ring, the product

f(z)f(−z) = b0 + b1z
2 + b2z

4 + . . .+ bnz
2n + . . .

is an even power series with

b0 = a2
0,

b1 = 2a0a2 − a2
1, . . . , bn = 2

( n−1∑

i=0

(−1)iaia2n−i
)

+ (−1)na2
n.

(2.1)

We shall write g = G(f) for the series

g(z) = G(f)(z) = b0 + b1z + b2z
2 + . . .+ bnz

n + . . .(2.2)

Note that
g(z2) = G(f)(z2) = f(z)f(−z).(2.3)

Example. If q is an odd integer and f(z) = 1−zq, we have f(z)f(−z) =
(1− zq)(1 + zq) = 1− z2q, and

G(f) = f.(2.4)

If f is a polynomial of degree n which does not vanish in 0, and if f̃(z) =
znf(1/z) is the reciprocal polynomial of f , then

G(f̃) = (−1)nG̃(f).(2.5)

It is obvious that, for any two series f and g, we have the formulas

G(fg) = G(f)G(g)(2.6)

and, if g(0) = 1,

G(f/g) = G(f)/G(g).(2.7)

We shall often use the following notation for the iterates of f under the
transformation G:

f0 = f, f1 = G(f),

f2 = G(f1), . . . , fk = G(fk−1) = G(k)(f), . . .
(2.8)

Proposition 1. Let f be a polynomial of degree n with roots z1, z2,
. . . , zn and leading coefficient an. Then the polynomial g = G(f), where G is
defined by (2.2), has leading coefficient (−1)na2

n and roots z2
1 , . . . , z

2
n.

Proof. From the relations

f(z) = an(z − z1)(z − z2) . . . (z − zn)

and
f(−z) = an(−z − z1)(−z − z2) . . . (−z − zn)

it follows that

f(z)f(−z) = (−1)na2
n(z2 − z2

1)(z2 − z2
2) . . . (z2 − z2

n)
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and therefore, from (2.3),

g(z) = G(f)(z) = (−1)na2
n(z − z2

1)(z − z2
2) . . . (z − z2

n).(2.9)

In numerical analysis (cf. [4], [1] or [11]), the Graeffe method is used
to compute an approximate value of the roots of a polynomial equation
f(x) = 0. The first step of the method is to calculate fk defined by (2.8) for
k large enough. From Proposition 1, the roots of fk are z2k

1 , . . . , z2k
n , and,

if we assume that |z1| > . . . > |zn|, the sum of the roots of fk is close to
z2k

1 which yields an approximate value for |z1|. This old method is being
revisited in computer algebra (cf. [3]).

Proposition 2. Let f(z) ∈ C[[z]], f(0) 6= 0, and

z
f ′(z)
f(z)

=
∞∑

n=1

anz
n.(2.10)

Then, for k ≥ 1, we have
∞∑

n=1

a2knz
n = z

f ′k(z)
fk(z)

=
z

fk(z)
d

dz
fk(z),(2.11)

where fk = G(k)(f) is defined by (2.2) and (2.8).

Remark. Here and in what follows, f ′k will denote the derivative of fk
(and not the k-iterate of f ′).

Proof of Proposition 2. We reason by induction on k. For k = 1 and
z = y2, from (2.10) and (2.3) we have

∞∑

n=1

a2nz
n =

∞∑

n=1

a2ny
2n =

1
2

∞∑

n=1

(anyn + an(−y)n)(2.12)

=
1
2

(
y
f ′(y)
f(y)

− y f
′(−y)
f(−y)

)
=
y

2
f ′(y)f(−y)− f(y)f ′(−y)

f(y)f(−y)

=
y

2f1(y2)
d

dy
f1(y2) = z

f ′1(z)
f1(z)

.

Further, the induction on k is easy, by substituting a2kn for a2n and fk−1
for f in (2.12).

Definition. We shall say that two power series f, g with integral coef-
ficients are congruent modulo M (where M is any positive integer) if their
coefficients of the same degree are congruent modulo M . In other words, if

f(z) = a0 + a1z + a2z
2 + . . .+ anz

n + . . . ∈ Z[[z]]

and
g(z) = b0 + b1z + b2z

2 + . . .+ bnz
n + . . . ∈ Z[[z]]
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then

f ≡ g (modM) ⇔ ∀n ≥ 0, an ≡ bn (modM).(2.13)

Congruences of formal power series may be added or multiplied. If

f ≡ g (modM)(2.14)

and
u ≡ v (modM), u ∈ Z[[z]], v ∈ Z[[z]]

then

f + u ≡ g + v (modM) and fu ≡ gv (modM).(2.15)

One may differentiate (2.14) to get

f ′ ≡ g′ (modM).(2.16)

Moreover, if f(0) = g(0) = 1, 1/f and 1/g have integer coefficients and
(2.14) holds, then

1
f
≡ 1
g

(modM).(2.17)

It is also easy to see that, for f ∈ Z[[z]] and G defined by (2.2), we have

G(f) ≡ f (mod 2).(2.18)

Proposition 3. Let f and g be two formal power series with integral
coefficients such that f ≡ g (mod 2). Then, for k ≥ 0, we have

fk ≡ gk (mod 2k+1),(2.19)

where fk = G(k)(f) and gk = G(k)(g) are defined by (2.2) and (2.8).

Proof. Let us start by proving that if u, v ∈ Z[[z]] satisfy

u ≡ v (mod 2M)(2.20)

where M is any positive integer, then u1 = G(u) and v1 = G(v) satisfy

u1 ≡ v1 (mod 4M).(2.21)

It follows from (2.20) that there exists w ∈ Z[[z]] such that

u(z) = v(z) + 2Mw(z).

Further, from (2.3),

u1(z2) = u(z)u(−z) = (v(z) + 2Mw(z))(v(−z) + 2Mw(−z))

= v1(z2) + 2M [v(z)w(−z) + w(z)v(−z)] + 4M 2w1(z2),

where w1 = G(w). But the expression in brackets is obviously congruent to 0
modulo 2 so that

u1(z2) ≡ v1(z2) (mod 4M),

which, by substituting z for z2, yields (2.21).
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We prove Proposition 3 by induction on k. For k = 0, from (2.8), (2.19)
is just our hypothesis f ≡ g (mod 2). Assume that (2.19) holds for a non-
negative value of k; then applying (2.21) with u = fk, v = gk and M = 2k

gives
fk+1 ≡ gk+1 (mod 2k+2)

and the proof of Proposition 3 is complete.

3. Periodicity of σ(A, 2kn) mod 2k+1. Let B be a finite set, and N ≥
maxB be an integer. For i = 0 or i = 1 we consider the set A = Ai(B, N)
introduced in Section 1.

• If i = 0, define the polynomial P (already considered in [8]) by

P (z) =
∑

0≤n≤J
εnz

n(3.1)

where J is the largest integer such that p(A, J) is odd (such a J does exist,
since p(A, 0) = 1), and εn is defined by

p(A, n) ≡ εn (mod 2), εn ∈ {0, 1}.(3.2)

It follows from (1.3) and (1.4) that

F ≡ P (mod 2).(3.3)

• If i = 1, we define J as the smallest integer ≤ N + 1 such that p(A, n)
is odd for all n ≥ J and p(A, J −1) is even. As observed in [8], such a J ≥ 2
always exists, except in the case B = {1} which leads to

A1({1}, N) = {1} for all N ≥ 1.(3.4)

The polynomial P is now defined by (3.1), with

(3.5) εn =
{

0 if p(A, n)− p(A, n− 1) is even
1 if p(A, n)− p(A, n− 1) is odd

(for n = 0, 1, . . . , J)

with the convention (1.2). Note that the degree of P is J ≤ N +1. We have,
from (1.3) and (1.4),

F (z) ≡
J−2∑

n=0

p(A, n)zn +
zJ

1− z ≡
P (z)
1− z (mod 2).(3.6)

Proposition 4. Except the case (3.4), the set A = Ai(B, N) defined by
(1.5) and (1.4) is infinite.

Proof. If A = Ai(B, N) were finite, the product
∏
a∈A(1 − za) would

be a polynomial, say Q(z), of degree s =
∑

a∈A a ≥
∑

a∈B a and leading
coefficient ±1 and, from (1.3), we should have

FQ = 1.(3.7)
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• If i = 0, it would follow from (3.7), (3.3) and (2.15) that

1 ≡ QP (mod 2),

which is impossible, since the leading term of QP has a positive degree, and
its coefficient is ±1.
• If i = 1, (3.7), (3.6) and (2.15) would yield

1− z ≡ Q(z)P (z) (mod 2),

which is also impossible if s ≥ 2, i.e. B 6= {1}.
Theorem 1. For any set A = Ai(B, N) (defined by (1.5) and (1.4))

and for any non-negative integer k, the sequence (σ(A, 2kn))n≥1 (where σ
is defined by (1.8)) satisfies a linear recurrence congruence modulo 2k+1,
and therefore is periodic modulo 2k+1. Moreover , if qk denotes the smallest
period , that is, the smallest positive integer qk such that

σ(A, 2k(n+ qk)) ≡ σ(A, 2kn) (mod 2k+1)(3.8)

for all n ≥ 1, then, for all k ≥ 0,

qk divides qk+1.(3.9)

Proof. We start from the relation (1.9):

z
F ′(z)
F (z)

=
∞∑

n=1

σ(A, n)zn(3.10)

where F (z) = FA(z) is defined by (1.3). By Proposition 2,
∞∑

n=1

σ(A, 2kn)zn = z
F ′k(z)
Fk(z)

(3.11)

where Fk is the k-iterate of F under the transformation G (cf. (2.8)), and
F ′k = (d/dz)(Fk(z)).
• Suppose that i = 0. The congruence (3.3) holds with the polynomial

P defined by (3.1) and (3.2), and Proposition 3 implies that

Fk ≡ Pk (mod 2k+1)(3.12)

for all k ≥ 0, with Pk = G(k)(P ). It follows from (1.2), (2.1), (3.1) and (3.2)
that

Fk(0) = Pk(0) = 1(3.13)

and thus, from (2.15)–(2.17), (3.12) implies

z
F ′k(z)
Fk(z)

≡ z P
′
k(z)
Pk(z)

(mod 2k+1).(3.14)

Therefore, by (3.11) and (3.14),
∞∑

n=1

σ(A, 2kn)zn ≡ z P
′
k(z)
Pk(z)

(mod 2k+1).(3.15)
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But, for k fixed, if Pk(z) = a0 + a1z + . . .+ aJz
J , then (3.15) implies that,

for n ≥ J + 1,

(3.16) a0σ(A, 2kn)

≡ −a1σ(A, 2k(n− 1))− . . .− aJσ(A, 2k(n− J)) (mod 2k+1).

It follows from (3.13) that a0 = 1, so that (3.16) is a linear recurrence
congruence, and, from a classical result based on the pigeonhole principle
(cf. [2], for instance, for a detailed proof), it follows that σ(A, 2kn) mod 2k+1

is periodic in n.
To show (3.9), observe first that a divisor of 2k+1n is either a divisor of

2kn or a multiple of 2k+1, and thus, from (1.8),

σ(A, 2k+1n) ≡ σ(A, 2kn) (mod 2k+1).(3.17)

But, from (3.8), qk+1 is a period of σ(A, 2k+1n) mod 2k+2, and thus, is also a
period of σ(A, 2k+1n) mod 2k+1 which is, by (3.17), equal to σ(A, 2kn) mod
2k+1 whose smallest period is qk, and (3.9) is proved.

• Suppose now that i = 1. The congruence (3.6) will replace (3.3); (3.11),
(3.14) and (3.15) will become

(3.18)
∞∑

n=1

σ(A, 2kn)zn = z
F ′k(z)
Fk(z)

≡ z
(
P ′k(z)
Pk(z)

+
1

1− z

)
(mod 2k+1),

and since the right hand side of (3.18) is a rational fraction, we conclude in
the same way as in the case i = 0.

Lemma 1. Let Q(z) ∈ F2[z] be a polynomial of degree d with Q(0) 6= 0.
The order β of Q is the least positive integer such that Q(z) divides 1 + zβ

in F2[z]. Then

(i) the positive integers n such that Q(z) divides 1 + zn in F2[z] are the
multiples of β;

(ii) the order of an irreducible polynomial of degree d divides 2d− 1 and
thus is odd ;

(iii) the order of a product of pairwise relatively prime polynomials is the
lcm of the orders of the factors.

Proof. These are classical results in the theory of finite fields (cf. [5,
Chap. 3, 3.6, 3.4 and 3.9].

Lemma 2. Let m ≥ 1 be an integer and Q1, . . . , Qm ∈ F2[z] be co-
prime polynomials of positive degrees. Assume that there exists non-zero
polynomials A1, . . . , Am satisfying (Aj , Qj) = 1 and deg(Aj) < deg(Qj) for
1 ≤ j ≤ m and

A1(z)
Q1(z)

+ . . .+
Am(z)
Qm(z)

=
A(z)

1 + zT
in F2[z]
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where T ≥ 1 is an integer and A(z) ∈ F2[z]. Then the order βj of Qj (cf.
Lemma 1) satisfies

βj divides T, 1 ≤ j ≤ m.

Proof. Write Q = Q1 . . . Qm, Q̃j = Q/Qj, B =
∑m

j=1AjQ̃j so that

A1

Q1
+ . . .+

Am
Qm

=
B

Q

and
B(z)(1 + zT ) = A(z)Q(z) = A(z)Q1(z) . . .Qm(z).

From our hypotheses, each Qj is coprime to B; therefore, Qj(z) divides
1 + zT and from Lemma 1(i), βj divides T .

Theorem 2. Let P be the polynomial defined by (3.1) and (3.2) if i = 0
and by (3.1) and (3.5) if i = 1. Let the factorization of P into irreducible
factors over F2[z] be

P = Qα1
1 . . . Qαss .(3.19)

Denote by di the degree of Qi, by βi the order of Qi(z) (cf. Lemma 1), and
for all k ≥ 0, set

Jk = {j : 1 ≤ j ≤ s, αj ≡ 2k (mod 2k+1)},(3.20)

Ik = J0 ∪ . . . ∪ Jk = {j : 1 ≤ j ≤ s, αj 6≡ 0 (mod 2k+1)},(3.21)

Tk = lcmj∈Ik βj(3.22)

(with Tk = 1 if Ik = ∅). Then, for all k ≥ 0, we have qk = Tk, and qk is odd.
Note that if 2k0 is the highest power of 2 dividing any exponent αj in

(3.19), then for k > k0, we have Jk = ∅, Ik = Ik0 ,

qk = q := lcm(β1, . . . , βs)

and moreover , from (3.9), q is a common period for all the sequences
(σ(A, 2kn) mod 2k+1)n≥1, k ≥ 0.

Remark. Theorem 2 explains the examples given in [2] with q0 6= q1.

Proof of Theorem 2. In the whole proof, k is a fixed non-negative integer.
• Assume i = 0. To prove Theorem 2, we first consider polynomials P

and Qj as polynomials of Z[z] with coefficients 0 or 1, so that (3.19) implies

P ≡ Qα1
1 . . . Qαss (mod 2).(3.23)

Then, it follows from (3.23), Proposition 3 and (2.6) that

Pk ≡ (Q1)α1
k . . . (Qs)

αs
k (mod 2k+1),(3.24)

where Pk = G(k)(P ) and (Qj)
αj
k = (G(k)(Qj))αj . By taking the logarithmic
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derivative of (3.24), we get (as in (3.14)) from (3.21)

F ′k
Fk
≡ P ′k
Pk
≡
∑

j∈Ik
αj

(Qj)′k
(Qj)k

(mod 2k+1).(3.25)

If we set

V =
∏

j∈Ik
Qj ,(3.26)

then Vk = G(k)(V ) =
∏
j∈Ik(Qj)k is a common denominator for the right

hand side of (3.25), and, if S is the corresponding numerator, we have
degS < deg Vk and (3.25) reads

P ′k
Pk
≡ S

Vk
(mod 2k+1).(3.27)

Further, from Lemma 1(iii) and (3.22), the order in F2[z] of V (z), defined
by (3.26), is equal to Tk. So, there exists a polynomial R ∈ Z[z] such that

V (z)R(z) ≡ 1− zTk (mod 2).(3.28)

Now we consider V as a polynomial of Z[z]. By (2.6) and (2.4), Proposition 3
implies

Vk(z)Rk(z) ≡ 1− zTk (mod 2k+1)(3.29)

where Vk = G(k)(V ) and Rk = G(k)(R). Then it follows from (3.15), (3.27)
and (3.29) that

∞∑

n=1

σ(A, 2kn)zn ≡ z S(z)Rk(z)
1− zTk (mod 2k+1).(3.30)

Since degS < deg Vk, the degree of SRk is smaller than Tk, and (3.30) shows
that σ(A, 2kn) mod 2k+1 is purely periodic with period Tk; therefore

qk divides Tk.(3.31)

Let us show now qk = Tk by induction. The definition of qk implies from
(3.8) and (3.11) that for all k ≥ 0,

z
F ′k(z)
Fk(z)

≡ z Wk(z)
1− zqk (mod 2k+1)(3.32)

where Wk(z) =
∑qk

n=1 σ(A, 2kn)zn−1.
For k = 0, from (3.25), (2.8), (3.20) and (3.21), we have

F ′

F
≡ P ′

P
≡
∑

j∈I0
αj

Q′j
Qj
≡
∑

j∈J0

Q′j
Qj

(mod 2).(3.33)

If I0 = J0 = ∅, the above sum is empty and from (3.10), σ(A, n) ≡ 0
(mod 2) for all n ≥ 1. Therefore, q0 = T0 = 1. If I0 = J0 6= ∅, from (3.32)



194 F. Ben säıd and J.-L. Nicolas

(with k = 0) and (3.33) we deduce
∑

j∈J0

Q′j(z)

Qj(z)
≡ W0(z)

1− zq0 (mod 2).

For each j ∈ J0, it follows from Lemma 2 that βj | q0; thus, from (3.22),
T0 | q0, which, by (3.31), yields q0 = T0.

Assume now that k ≥ 1 and

ql = Tl for 0 ≤ l ≤ k − 1.(3.34)

From (3.25) and (3.21) we have

(3.35)
F ′k(z)
Fk(z)

≡ P ′k(z)
Pk(z)

≡
∑

j∈Ik−1

αj
(Q′j)k(z)

(Qj)k(z)
+
∑

j∈Jk
αj

(Q′j)k(z)

(Qj)k(z)
(mod 2k+1).

From our induction hypothesis (3.34) and from (3.22), for all j ∈ Ik−1, we
have βj | qk−1 = Tk−1; thus, from Lemma 1(i), Qj(z) | 1 − zqk−1 in F2[z].
Therefore, there exists a polynomial Yj(z) ∈ Z[z] such that 1 − zqk−1 ≡
Yj(z)Qj(z) (mod 2). From (2.6), (2.4) and Proposition 3, we have 1−zqk−1 ≡
(Yj)k(z)(Qj)k(z) (mod 2k+1) so that we can write

∑

j∈Ik−1

αj
(Q′j)k(z)

(Qj)k(z)
≡ B(z)

1− zqk−1
(mod 2k+1)(3.36)

where B(z) ∈ Z[z].
If Jk = ∅, it follows from (3.35), (3.36) and (3.11) that qk−1 is a period

of σ(A, 2kn) mod 2k+1 so that qk−1 | qk which, by (3.9), implies qk = qk−1.
Since Ik = Ik−1, from (3.21) and (3.34) we have Tk = Tk−1 = qk−1 = qk.

If Jk 6= ∅, (3.35) can be rewritten, by (3.36), (3.32) and (3.9), as
∑

j∈Jk
αj

(Q′j)k(z)

(Qj)k(z)
≡ F ′k(z)
Fk(z)

−
∑

j∈Ik−1

αj
(Q′j)k(z)

(Qj)k(z)
(3.37)

≡ Wk(z)
1− zqk −

B(z)
1− zqk−1

≡ B1(z)
1− zqk (mod 2k+1)

where B1(z) ∈ Z[z] is a polynomial of degree less than qk. In (3.37), from
(3.20), the αj ’s are multiples of 2k, so are also the coefficients of B1, and
(3.37) implies

∑

j∈Jk

αj
2k
·

(Q′j)k(z)

(Qj)k(z)
≡ B1(z)/2k

1− zqk (mod 2).

From (3.20), αj/2k is odd, and from (2.18), (2.17) and (2.15), we get
∑

j∈Jk

Q′j(z)

Qj(z)
≡ B1(z)/2k

1− zqk (mod 2).
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By Lemma 2, this implies that, for j ∈ Jk, we have βj | qk so that Tk | qk,
which, together with (3.31), yields qk = Tk.

The oddness of qk = Tk results from Lemma 1(ii) and (3.22), and the
proof of Theorem 2 is complete when i = 0.

• Assume i = 1. From (3.18), (3.25) becomes

(3.38)
F ′k(z)
Fk(z)

≡ P ′k(z)
Pk(z)

+
1

1− z ≡
1

1− z +
∑

j∈Ik
αj

(Qj)′k
(Qj)k

(mod 2k+1).

The polynomial 1 − zTk , where Tk is defined by (3.22), is still a common
denominator for the right hand side of (3.38), and (3.31) can be proved in
the same way as in the case i = 0. The proof of qk = Tk follows by replacing
(3.25) by (3.38).

4. Relations between A1(B, N) and A0(B′, N ′). In this section, we
want to show that the sets A1(B, N) do not differ very much of the sets
A0(B, N). More precisely, by adding or subtracting powers of 2 to A1(B, N),
one can get a set A0(B′, N + 1) for a suitable set B′ ⊂ {1, . . . , N + 1}.

Theorem 3. Let A = A1(B, N) be defined by (1.5) and (1.4) with B
any set different from {1}, and N any integer satisfying N ≥ maxB.

(i) Denote by 2h, h ≥ 0, the smallest element (if it exists) of A which
is a power of 2. Then

A′ = A ∪ {1, 2, . . . , 2h−1} \ {2h} = A0(B′, N + 1)(4.1)

with
B′ = A′ ∩ {1, 2, . . . , N + 1}.(4.2)

(ii) If A ∩ {1, 2, . . . , 2h, . . .} = ∅, then

A′ = A ∪ {1, 2, . . . , 2h, . . .} = A0(B′, N + 1)(4.3)

with B′ still defined by (4.2).

Proof. (i) From (1.3), we have
∞∑

n=0

p(A′, n)zn =
∏

a∈A′

1
1− za =

1− z2h

(1− z) . . . (1− z2h−1)

∏

a∈A

1
1− za

≡ 1− z2h

(1 + z) . . . (1 + z2h−1)

∏

a∈A

1
1− za (mod 2)

≡ (1− z)
∏

a∈A

1
1− za ≡ (1− z)

∞∑

n=0

p(A, n)zn (mod 2).

Hence
p(A′, n) ≡ p(A, n)− p(A, n− 1) (mod 2),



196 F. Ben säıd and J.-L. Nicolas

so that, from (1.4), p(A′, n) is even for n ≥ N + 2; therefore, (4.1) follows
from (1.6).

(ii) The argument is similar, by observing that

(1 + z)(1 + z2) . . . (1 + z2h) . . . =
1

1− z .
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