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Effective polynomial upper bounds to perigees and
numbers of (3z + d)-cycles of a given oddlength

by
EDWARD G. BELAGA (Strasbourg)
1. Introduction. Let d be a positive odd integer not divisible by 3, and

let T,; be the function defined on the set of positive integers, as follows: for
all m € N,

[ (Bm+d)/2 ifmisodd,
(1.1) Ta(m) = {m/2, otherwise.
Repeated iterations of the function Ty generate (3x+d)- (or Ty-) trajectories
(1.2) Ta(m) = {m, Ty(m), T3(m),...}

for all d € D = {1,5,7,11,13,...} and m € N. By definition, a trajectory
Ta(m) is a cycle of length |, C = C(m,d) = 74(m), length(C) = [, if T{(m) =
m and, for any j € [1,1—1], Tg(m) # m (note that [ > 1, since the mapping
Ty has no fixed points). The minimal member of a Ty-cycle C is odd, and
is called its perigee, ng = prg(C). Thus, the number k of odd members of a
Ty-cycle, called here its oddlength, is a positive integer, k > 1. The length
and oddlength of a cycle are related by the inequality [ > [klog, 3| [Belaga,
Mignotte 1998] (see Theorem 3.2(1) below). Note also that no member of
a Ty-trajectory (1.2), excluding possibly the first one, is divisible by 3, and
thus, all odd members of a T;-cycle belong to D.

It has been conjectured that the dynamical system Dy = {N T d} has
no divergent Ty-trajectories (1.2), and that the number ¢(d) of cyclic Ty-
trajectories is finite [Lagarias 1990], [Belaga, Mignotte 1998]. In the partic-
ular case d = 1, the well-known 3z +1 conjecture [Lagarias 1985], [Wirsching
1998] is even more specific: any trajectory 71(m) enters ultimately the (only)
3z +1cycle {1 -2 —1}.
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The present paper is concerned with the cyclic part of the above 3z +d
conjecture, and more generally, with quantitative (and when available, nu-
merical) characteristics of the cyclic structure of systems D,. Let C(d) and
Cr(d) be the sets of all T;-cycles and, respectively, of all such cycles with &
odd members, or, in our terminology, of oddlength k£ > 1.

Technically, our main result is the following general upper bound on the
perigee of a Ty-cycle of length [ and oddlength k: for all d € D and C € C(d),
{ length(C) = I

(1.3)

= ng = prg(C) < _d
oddlength(C) = k 0= PSR = g Ty

The inequality (1.3) has four important implications.
The first one is an upper bound on the ratio of the length of a T4-cycle
to its oddlength, which, together with the well-known lower bound (2.5),
Theorem 2.1(1), confines this ratio to the interval:
length(C)

1.4 1 C)=————+_ <1 d .
( ) Og23 < Qd( ) Oddlength(C) = ng( + 3)

The upper bound is sharp, and so is, in all probability, the lower bound;
but the considerations leading to the corresponding conclusions are quite
different in nature.

Consider first the case of the upper bound. For any r > 2, the T _3-cycle
CY,_; of length r + 1, starting at (the odd number) 1, has no other odd
members:

CY s ={1,2771 2772 2}
oddlength(C9, ;) =1; length(CY._3) = = log,((2" — 3) + 3).
As to the lower bound, the calculations carried out in [Belaga, Mignotte
2000] (e.g., there exists a Th33-cycle starting at 919, of length 13 and odd-

length 8, 1.584 < log, 3 < 1.585 < 1.625 = 13/8) show the high plausibility
of the following conjecture:

CONJECTURE 1.1. For any € > 0, there exist a triplet of positive inte-
gers, d € D, (k,1) € N2, log, 3 < I/k < log, 3 +¢, and a Ty-cycle of length |
and oddlength k.

Cf. also the inequalities (1.12) below.

Second, the inequality (1.3) implies the following general and uniform
upper bound on the perigees of T4-cycles of oddlength k > 1:

d
olklog, 3]/k — 3
The bound (1.5) has an effective polynomial numerical equivalent (see the

estimate (1.9) below). It is also sharp in the following natural sense (The-
orem 3.2, (3.11)(1)): the average value of an odd member of a Ty-cycle of

(1.5) no = prg(C) < Uy, =
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the oddlength k& > 1 is bigger than Uy j. Thus, for example, the T5-cycle
C ={23 — 37 — 58 — 29 — 46} has 3 odd members, nyg = prg(C) = 23 <
Us 3 ~ 28.6038 < 29 < 37.

Third, since no two Ty-cycles have a common member, any such cycle is
fully determined by its perigee. Thus, the upper bound (1.5) not only implies
that the set Ci(d) of Ty-cycles of oddlength k > 1 is finite, but supplies us
with an effective general upper bound on the number ¢ (d) = #Ci(d) of
Ty-cycles of oddlength k:

1 d 1 d
3 2fklog;31/k —3 — 9 o([klogy 3] —klogy 3)/k _ |
(the factor 1/3 is due to the aforementioned inclusion ny € D).

Any numerical evaluation of the expression Ug  depends on our knowl-

edge of effective lower bounds for diophantine approximations of linear com-
binations of logarithms log2 and log 3 (cf. the left inequality in (1.4)),

1
(16) () < 3Uqs =

1 .
(1.7) er = [klogy 3] — klogy 3 = Tog2 l>£%é22 3(llog2 — klog3).
According to [Baker, Wiistholz 1993], for some effectively calculable con-
stant C7 > 0, we have:

(1.8) Vi, 1€eZ, k<1, |llog2—klog3|>k .

One easily deduces from (1.8) the existence of an effectively calculable con-
stant Co > 0 such that for all d € D and k& > 2,

(1.9) Uy < dk©2.

The original bound [Baker, Wiistholz 1993] on the constant C; (and
thus, of the closely related C3) has been enormous. Using less general but
more appropriate techniques (linear combination of only two logarithms) of
[Laurent et al. 1995, Corollary 2|, one can easily reduce the value Cs to a
two-digit number, Cy < 32.

Fourth, as is clear from the right side expressions of the upper bounds
(1.3), (1.5), (1.6), the values of pairs (k, ) corresponding to potentially “rich”
or “numerous” families of d-cycles do not actually depend on d (which enters
all three expressions as a linear factor) but only on how close to zero the
value |llog2 — klog 3| is.

Thus, any result concerning (non-)existence of d-cycles, for a specific
value of d, of oddlength k£ and length [ would probably imply, or at least
strongly hint at, the (non-)existence of d’-cycles, for all d’ € D, as well.

Historical remarks. The present author is not aware of any previous
effective (and in any sense sharp) upper bound on the minimal odd member
of a Ty-cycle. The following general exponential upper bound on the number
¢ (d) of Ty-cycles of oddlength k£ > 1 was actually (implicitly) proved in
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[Belaga, Mignotte 1998] and refined in [Belaga, Mignotte 2000]: for all d € D
and k € N,

k
3 28k
The bound (1.10) was derived from an identical upper bound on the mazimal
odd member of a cycle, the corresponding numerical upper bound being
based on the aforementioned estimate of [Baker, Wiistholz 1993]: for all
deDand k €N,

(1.11) s (d) <dkc<g>k.

Comments and future prospects. (1) The upper bound (1.4) on the ratio
04(C) implies in the 3z 4+ 1 case that the length of a cycle with k& odd
members does not exceed 2k. Note that the only 3z + 1 cycle known at
present, {1 — 2 — 1}, has one odd member, is of length two, and has ratio
two. A slightly more elaborate argument (to be published elsewhere) shows
that the length and oddlength of any other 3z + 1 cycle (in case it exists)
should satisfy the inequalities:

(1.12) 1.584 < logy3 < 01(C) <4 —logy 5 < 1.679.

(2) The bounds (1.5) and, especially, (1.6) can be apparently improved.
In fact, the experimental discovery of 843 T14303-cycles of oddlength 17, with
perigees varying from 385057 to 1391321 < Uj4303,17 = 2099280, suggests
that the bound (1.5) is apparently sharp up to a one-digit constant.

As to the bound (1.6), our calculations have unearthed 944 different
T14303-cycles of oddlengths, respectively, k=17 (843 cycles), 34 (76), 51 (20),
68 (3), 85 (1), 1092 (1), implying the inequality

1
843 < (17(14303) < g U14303717 = 699760.

This estimate, far from being sharp, is at least realistic: for some d, k, the
dynamical system Dy has “many” cycles of oddlength k.

(3) At present, the bounds (1.3), (1.5), (1.6) look useless, or at least
insufficient, for a possible proof of the cyclic part of the 3x + d conjecture,
i.e., of the finiteness of the number ¢(d) of Ty-cycles.

However, this obstacle could possibly be circumvented by a refinement
of the above scheme, to fit the purpose of yielding directly an absolute (i.e.,
not depending on k) upper bound on the number ¢(d).

Acknowledgements. The anonymous referee expressed his reserva-
tions about the sufficiency of the argument leading to the above upper bound
(1.9) (in the first version of the present paper, with a different effective con-
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stant C9). His insight was completely justified, and the above derivation of
(1.9) with Cy < 32 from Corollary 2 of the paper [Laurent et al. 1995] is due
to the author’s discussions with Maurice Mignotte, one of the co-authors of
the above paper.

2. Exponential diophantine formulae for 3x + d cycles. Let, as
above, C = C(m,d) = 74(m) be a Ty-cycle of length [, length(C) = [. We
remind the reader that, according to (1.1), the minimal member, or perigee
of a Ty-cycle, ng = prg(C), is odd, and that the total number k > 1 of odd
members of a cycle is called its oddlength. Moreover, if n is an odd member
of a cycle, then n € D (see (1.2)), since no number divisible by 3 can belong
to a cycle.

Note that if m’ # m is a member of a Ty-cycle C = 74(m), or in other
words, if C meets m’, one should view C’'=C(m/,d) as just another name
for the same cycle C = C(m,d). Since a Ty-cycle is fully characterized by
its minimal member, the following notation can be adopted as the canonical
one:

(2.1) C = C(ng,d) = C[no,d] = 1a(ng), mno = prg(C).

In this case, we also say that C starts at nyg.

For any positive integer m € N, let odd(m) be the number obtained by
factoring out m by the highest possible power of 2, say 27, and let vo(m) = j.
Thus odd(m) is odd and m = odd(m) - 2"2(™), Define

(2.2) S:DxD—=D, (nd) — Syn)=o0dd(3n+d).

The function S, speeds up the action of T}, skipping even members of T;-
trajectories. In particular, m = 1 becomes the fixed point of the function
S1 =o0dd(3n+1), S1(1) = 1, corresponding to the (according to the 3z + 1
conjecture, only) T-cycle C(1,1) = {1 — 2 — 1}.

We associate with any Ty-cycle C = Clng, d] its odd frame, F = Odd(C),
the list of odd members of the cycle, in the order of their appearance in
Ta(ng), as the Ty-iterations of ng proceed. By definition, the frame is an
Sq-cycle starting at ng, and its length is called the oddlength of C:

I = length(C) = min{i € N | m; = Ti(no) = no};
(2.3) k = oddlength(C) = min{j € N | n; = S%(ng) = no};

F = Odd(C) = (ng,n1,...,np_1) € D*.
The even members of the Ty-cycle C = Clng, d] can be recovered from its
frame with the help of the cycle Collatz signature P = 6(C), the vector

of exponents of 2 factoring out from the values of the function T, at odd
members of C, as follows:
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F =0dd(C) = <n0,n1, . 7nk,1>;
VJ S [0 k — 1], Pj+1 = I/Q(Td<nj)> +1= 1/2(3nj + d),
)

l= length(C =|Pl=p1+...+pr;
. Mpy+...4p; = N5 ,
Vi€ [1’k o 1]’ {pj >1 = Vi€ [ij — 1], Mpy4..4pj—i = QZTL]‘.
Moreover, the Collatz signature P = 6(C) of a cycle C = C[nyg, d], where
ng,d € D, completely characterizes it:
THEOREM 2.1 [Belaga, Mignotte 1998]. (1) The Collatz signature P =
0(C) satisfies the inequality:
(2.5) l=|P|=pi+...+pr > [klog,3].
(2) Define the exponential diophantine function A = aj, : N¥ — N, as
follows: for P = (py,...,p) € N*,
(2.6) A=ar(P)
_J1 if k= 1;
- { 3kl popi.gk=2 4 4 opitedPeez . 34 9PitetPe-l otherwise.
Let o = oy, be the circular (counterclockwise) permutation on k-tuples: for
P = <p17"‘7pk'> € Nk7
(2.7) o(P) =0k (P) = (p2,...,Pk,p1)-
If now P = 0(C) is the Collatz signature of a cycle C = C[nyg,d], ng,d € D,
of length 1, oddlength k > 1, and with the frame F = (ng,n1,...,ng_1), then

(1) B=b(P)=DBy; =2"-3¥>0 (cf. (2.5));

L) 1@ m=di  A=a(P) (cF. (26);

3) Vje[l,k—1], nj:d%m (ct. (2.7)).

3. Upper bound on the number of 3x + d cycles of a given
oddlength. According to the formulae (2.8)(2),(3), the odd members of
a Ty-cycle of oddlength k satisfy the inequality

max ag(P)

ai(P) PeNF, |P|=I

31) n; <Wyr=d sup — =

31 ’ pent  2P1=3F Tiskiog,s 2t - 3F
IP|>k log, 3

for all j € [1,k — 1]. Simple calculations show that (cf. (1.10) above)

3\* 2%
(3.2) War < d(§> 5o 1 o= [klogy 3] — klog, 3.
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We will be able to improve these bounds thanks, first, to a more careful
analysis of the formulae (2.8), and then, to a remarkable inequality (3.5)
proved below (Theorem 3.1). Namely, instead of evaluating from above all
members of a Ty-cycle of oddlength k, we evaluate here its minimal member
no = prg(C). Since the different Tj-cycles have different perigees ng € D,
an upper bound ng <V}, would imply the bound ¢ (d) < § -V, to the
number of Ty-cycles of the oddlength k.

More formally, if P = 6(C) (2.4) is the Collatz signature of the cycle
C = Cjng,d], ng,d € D, of length I = |P| and oddlength k& > 1, then,
according to (2.8),

minje[o,k—l} {ak(Uj(P))}
21 _ 3k :

(3.3) no < min{ng,ny,...,ng_1} =d

For any k-tuple P of positive integers define its average P to be the arith-
metical mean of all its counterclockwise permutations. This k-tuple of pos-
itive (generally speaking, rational) numbers depends only on the dimension
k and length | = |P| of P:

_ 1 : l l
(3.4) P= > UJ(P):{E,...,E}.
j€[0,k—1]

Extending the definition of the function ay (see (2.6)) to k-tuples of positive
reals, we will prove below (Theorem 3.2) the inequality

N ' , = 203k
@) &P = i {an(@ (P} < anlP) = gy

for P € N*. The inequalities (3.3) and (3.5) imply the general upper bound
(1.5), depending only on d and k, for the minimal member ng = prg(C) of
any Ty-cycle of oddlength k:

d
(36) Vn,dED, C:C[n,d] = TLSUdJC: m,
and, finally, the upper bound (1.6).

DEFINITION 3.1. (1) Let A be the set of pairs of positive integers (k, )
satisfying the inequality implied by (2.5),

(3.7) A= {(k,1) € N> | \(k,1) = — [klog, 3] > 0}.

Extend the definition of the function A = aj (see (2.6)) to k-tuples of
positive reals from the (k — 1)-dimensional tetrahedron Ty, (k) € A,

(3.8) Tri={XecR"|[X|=21+... 42, =1AVj€[LK], z; > 1},
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with k vertices Vq,...,Vy,
Vi={l-k+11,...,1},
(3.9) Vo={1,l—k+1,...,1},
Vie={L1,...,l—k+1}.
(2) The permutation o (see (2.7)) induces on T}, ; the rotation o, with the

center O of the tetrahedron being the only fixed point: for X = (z1,22,. ..,
Tg-1,7k) € Thy,

G(X) = (r9,T3,..., Tk, T1);
— l l
X = .. =0
Zl < b 7k> )
(3.10) #(0) = o,
2l — 3k
k—jol/k _
23 ]2 2l/k -3

THEOREM 3.2. For any k-tuple X from T}, ;, we have

_ 1 — , ol 3k
1) @X) =4 Zak(oJ(X)) > ax(0) = WE 3

~ . j 2! — 3"
(2) a(X) = jefé{}crll]{ak(U (X))} = a(0) = 55—

(3.11)

with equalities holding only in the case X = O.

4. Proof of Theorem 3.2. Note that, according to (2.6), if £ = 1, then
[l >2and for X € Ty,

< _ 2t -3
Thus, it can be henceforth assumed that k& > 2.

(1) The inequality (3.11)(1) is implied by the standard inequality +(a +

b+...)>Va-b-..., as follows: for all k > 2, (k,l) € A, and X € Ty,
1 k—1 3k i o' (x1+...+x;)
LY aeests 5 S e
0<j<k—1 1<j<k—1 0<r<k—1
>ghly 3 gtl gk Desesk ook be)
1<j<k-1
2l o 3k
=a,(0) = (cf. (3.10)).

2t/k — 3
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(2) If X = O € T}, then (3.11)(2) becomes a trivial identity. Otherwise,
O #X €Ty (k>2, (ki) € A), and among the k k-tuples 07(X), 0 <
j <k —1, there exist at least two different ones:

Vi€ 0,k—1], o/(X)#X = 0;

(4.2) , .
JjeLk—1, X#d(X).

Now the proof proceeds ad absurdum: the assumption ax(0? (X)) > ar(O)
for all j € [0,k — 1] would imply that a;(X) > ax(O) as well—a contradic-
tion, since X = O (see (3.10), (4.2)).

The equation ay(X) = ar(O) induces a break up of the (k —1)-dimensio-
nal tetrahedron T, ; (see (3.8)) into three disjoint subsets: the closed (k—2)-
dimensional submanifold T? = T% , defined by this equation, and two (k—1)-
dimensional submanifolds TT = T;l and T~ = Ty, open in Ty, defined
by the inequalities ax(X) > a;(O) and ai(X) < ax(O), respectively:

)
T =T}, = {X € Ti; | ar(X) = ax(0) = (2' = 3)/(2/* - 3)};
(43) TT =T}, ={X € Ti | ar(X) > ar(0)};
T =T, ={X € Ty | ar(X) < ar(0)}.
Below we prove the following properties of these three submanifolds:

(A) T is a smooth (in fact, analytical) submanifold.

(B) The submanifolds T?, T*, T~ are connected and simply connected.

(C) The closed set TOF = TOU T is strictly convex: the convex closure
P(S) of a finite set S of k-tuples from TYF is contained in T, excluding,
if necessary, the tuples from S belonging to TC.

The last property immediately implies the validity of the above argument
ad absurdum.

To prove (A)—(C), one needs to look at the first and second partial deriva-
tives of the function ay(X): for all k > 2, (k,l) € A and X = (x1,...,x%)
€ Ty,

8ak 8ak 8ak
X)=<¢—,... — (X
ak( ) {8331 ’ ’ 83:;6,1 ’ 8a:k )
=In2-{2"%ap_1(z2,...,Tk),..., 2" TT=1q, (2),0};

(4.4)

8ak(X) _ ( 82ak ) (X)
al‘i 833‘,8.%'] i,j€[1,k) ’

1 0?ay, T
(In2)2 <8$ia$]‘ ) (X)=2 ak—r(Tri1,- -, Th),

r = max(,]).
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Properties (A), (B) of the submanifolds T°, T+, T~ follow immediately
from the character of the first derivative ax(X). To prove (C), consider the
second differential of the function aj, the quadratic form

82ak
4.5)  d*ap(X) = —— (X)dz;dx;
( ) CLk( ) 83318[17]( ) €z ':C]
1,7€[1,k]
= (ln 2)2 Z 2Z1+"'+mrak_r(:cr+1, e ,xk)< Z d$1d1‘J>
rell,k] i,5€([1,r]
= (In2)? Z 1ty (xpyq,. .., xp)(dey 4 ..+ dz)? > 0.
re(l,k]
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