On subset sums of a fixed set

by

Yong-Gao Chen (Nanjing)

1. Introduction. Let A be a strictly increasing sequence of positive integers. Let $P(A) = \{\sum \varepsilon_i a_i : a_i \in A, \varepsilon_i = 0 \text{ or } 1\}$ be the set of all the subset sums of A. A is said to be subcomplete if P(A) contains an infinite arithmetic progression. P. Erdős conjectured that if $a_{n+1}/a_n \to 1$, then A is subcomplete. But J. W. S. Cassels [1] proved that for every $\varepsilon > 0$ there exists a sequence A for which $a_{n+1} - a_n = o(a_n^{1/2+\varepsilon})$ and A is not subcomplete. Let $A(n) = A \cap [1, n]$. The cardinality of a finite set S is denoted by |S|. In 1962 Erdős [2] proved that if $|A(n)| > cn^{(\sqrt{5}-1)/2}$ (c > 0), then A is subcomplete. In 1966 J. Folkman [3] improved this to $|A(n)| > n^{1/2+\varepsilon}$ ($\varepsilon > 0$), and recently, N. Hegyvári [5] showed $|A(n)| > 300\sqrt{n \log n}$ for $n > n_0$. A similar result was also proved by Łuczak and Schoen [6] independently. In this note we improve Hegyvári's result:

THEOREM 1. There exists an absolute constant C > 1 such that if $A = \{a_1 < a_2 < \ldots\}$ is an infinite sequence of positive integers with $|A(n)| > C\sqrt{n}$ for $n > C^2$, then A is subcomplete.

COROLLARY. There exists an absolute constant c > 0 such that if $A = \{a_1 < a_2 < \ldots\}$ is an infinite sequence of positive integers with $a_n < cn^2$ for $n > c^{-1}$, then A is subcomplete.

This is best possible (cf. [5]). The Corollary gives a partial answer to a question in [3].

2. Preliminaries

LEMMA 1. Let $B = \{b_1 < b_2 < \ldots\}$ be an infinite sequence of positive integers, and let n'_0, d be positive integers with $n'_0 > 4$. Assume that $b_i \ge$

²⁰⁰⁰ Mathematics Subject Classification: 11B75, 11A67.

Supported by the National Natural Science Foundation of China, Grant No. 10171046 and the "333 Project" Foundation of Jiangsu Province of China.

i + 4d for all i and $|B(n)| \ge 2\sqrt{dn}$ for $n \ge n'_0$. Then there exists an infinite sequence $\{v_1 < v_2 < \ldots\}$ in P(B) for which $d \mid v_n$ and $v_{n+1} - v_n < dn'_0$.

Proof. By the Erdős–Ginzburg–Ziv theorem (cf. [7]), for each $i \geq 1$, there exists d integers b_{i_1}, \ldots, b_{i_d} in $\{b_{2(i-1)d+1}, \ldots, b_{2id}\}$ such that $u_i = b_{i_1} + \ldots + b_{i_d}$ is divisible by d. Then $u_1 < u_2 < \ldots$ Let $U = \{u_1, u_2, \ldots\}$ and $P(U) = \{v_1 < v_2 < \ldots\}$. Then $d | v_n$ for all n. Now we show that $v_{n+1} - v_n < dn'_0$.

Since $|B(n)| \ge 2\sqrt{dn}$ for $n \ge n'_0$, it follows that if $b_n \ge n'_0$, then $b_n \le n^2/(4d)$. Hence $b_{2d} < n'_0$. Let n_1 be the largest integer with $b_{2n_1d} < n'_0$. Then $n_1 \ge 1$. For $n \ge 1$, let j_1 be the least integer such that $\sum_{1\le i\le j_1} u_i > v_n$; j_2 be the least integer such that $\sum_{1\le i\le j_2} u_i > v_n - u_{j_1}$; and so on. Thus we have defined $j_1 > \ldots > j_t = 1$ such that

$$\sum_{1 \le i \le j_k} u_i > v_n - u_{j_1} - \ldots - u_{j_{k-1}}, \quad k = 2, 3, \ldots, t.$$

Define $u_{j_0} = 0$. Since $u_{j_0} < v_n < u_{j_0} + u_{j_1} + \ldots + u_{j_t}$, there exists an integer l with $0 \le l < t$ such that

(1)
$$u_{j_0} + u_{j_1} + \ldots + u_{j_l} \le v_n < u_{j_0} + u_{j_1} + \ldots + u_{j_{l+1}}.$$

Suppose that $j_{l+1} > n_1$. Then $b_{2j_{l+1}d} \ge n'_0$ and

$$v_n - u_{j_0} - \dots - u_{j_l} < u_{j_{l+1}} \le db_{2j_{l+1}d} \le d \frac{(2j_{l+1}d)^2}{4d}$$
$$\le d \sum_{1 \le i \le j_{l+1}-1} (2(i-1)d + 4d + 1)$$
$$\le d \sum_{1 \le i \le j_{l+1}-1} b_{2(i-1)d+1} \le \sum_{1 \le i \le j_{l+1}-1} u_i,$$

contrary to the definition of j_{l+1} . Hence $j_{l+1} \leq n_1$. Thus, by (1) and $j_{l+1} \leq n_1$,

 $v_{n+1} - v_n \le u_{j_{l+1}} \le db_{2j_{l+1}d} < dn'_0.$

This completes the proof of Lemma 1.

LEMMA 2. Let $0 < a_1 < \ldots < a_k \leq n$ be an increasing sequence of integers. Assume that n > 2500 and $k > 200\sqrt{n \log n}$. Then there exist integers d, y, z such that $1 \leq d \leq 50\sqrt{n \log n}, z - y > \frac{3}{7}n \log n$ and

$$\{td: y \le t \le z\} \subset P(\{a_1, \dots, a_k\}).$$

Proof. By Theorem 4 in [8] (see also [4]) there exist integers d, y, z with

$$1 \le d \le 10^4 n k^{-1}, \quad z \ge 7^{-1} \cdot 10^{-4} k^2, \quad y \le 7 \cdot 10^4 z n k^{-2}$$

and

$$\{td: y \le t \le z\} \subset P(\{a_1, \dots, a_k\}).$$

For these d, y, z we have

$$1 \le d \le 50\sqrt{\frac{n}{\log n}}, \quad z-y \ge 7^{-1} \cdot 10^{-4}k^2(1-7\cdot 10^4nk^{-2}) \ge \frac{3}{7}n\log n.$$

This completes the proof of Lemma 2.

LEMMA 3. Let $A(D_i, H_i) = \{a_i + tD_i : 0 \le t \le H_i\}$ (i = 0, 1, ..., l) be arithmetic progressions of integers. Assume that

$$H_i \ge D_0 + D_{i+1}, \quad i = 0, 1, \dots$$

Then there exists an arithmetic progression $A(d_l, h_l) = \{a + td_l : 0 \le t \le h_l\} \subset A(D_0, H_0) + \ldots + A(D_l, H_l)$ with $d_l = (D_0, \ldots, D_l)$ and $h_l \ge H_l - D_0$.

This follows from the proof of Lemma 4 in [5].

3. Proof of Theorem 1. In this section we prove the following theorem which implies Theorem 1.

THEOREM 2. Let $A = \{a_1, a_2, \ldots\}$ be an infinite sequence of positive integers, n_0 be an integer with $n_0 \ge e^{60}$ and $w = 50\sqrt{n_0/\log n_0}$. Assume that $|A(n)| \ge 202\sqrt{12wn}$ for $n_0 \le n \le e^{12wn_0}$ and $|A(n)| \ge 808\sqrt{wn}$ for $n > e^{12wn_0}$. Then A is subcomplete.

Proof. Let $n_i = n_{i-1}^2$ (i = 1, 2, ...). Let l be the integer with $n_{l-1} < e^{6w} \le n_l$. Then $n_l = n_{l-1}^2 < e^{12w}$. Let $n_{-1} = 0$. Hence

$$|A(n_i) \setminus A(n_{i-1})| \ge 202\sqrt{n_i \log n_i} - n_{i-1} \ge 202\sqrt{n_i \log n_i} - \sqrt{n_i}$$

> 200\sqrt{n_i \log n_i} + 1, \quad i = 0, 1, \ldots, l.

Take $B_i = A(n_i) \setminus A(n_{i-1})$ for i = 0, 1, ..., l-1 and $B_l \subset A(n_l) \setminus A(n_{l-1})$ with $|B_l| = [200\sqrt{n_l \log n_l}] + 1$. By Lemma 2, for each *i*, there exists an arithmetic progression

$$A_i = \{a_i + D_i k : 0 \le k \le H_i\} \subset P(B_i)$$

with $D_i \leq 50\sqrt{n_i/\log n_i}$ and $H_i \geq \frac{3}{7}n_i\log n_i$. Since

$$H_i \ge \frac{3}{7} n_i \log n_i > 50 \sqrt{\frac{n_{i+1}}{\log n_{i+1}}} + w \ge D_{i+1} + D_0,$$

by Lemma 3 there exists an arithmetic progression

$$A(d,h) = \{a + dk : 0 \le k \le h\} \subset A_0 + \ldots + A_l$$

with $d \mid D_0$ and $h \ge H_l - D_0$.

For
$$n_l \leq n \leq e^{i2w}$$
 we have
 $|A(n) \setminus (B_l \cup A(n_{l-1}))| \geq 202\sqrt{n\log n} - 200\sqrt{n_l\log n_l} - 1 - n_{l-1}$
 $\geq 2\sqrt{n\log n_l} - 1 - \sqrt{n_l} \geq 2\sqrt{6}\sqrt{wn} - 1 - \sqrt{n_l}$
 $\geq 2\sqrt{wn} \geq 2\sqrt{D_0n} \geq 2\sqrt{dn}.$

For $n > e^{12w}$ we have

$$|A(n) \setminus (B_l \cup A(n_{l-1}))| \ge 808\sqrt{wn} - 200\sqrt{n_l \log n_l} - 1 - \sqrt{n_l} \\\ge 808\sqrt{wn} - 200\sqrt{12}\sqrt{wn} - 1 - \sqrt{n_l} \ge 2\sqrt{wn}.$$

Let $A \setminus (B_l \cup A(n_{l-1})) = \{b_1 < b_2 < ...\}$. Then

$$b_1 \ge n_{l-1} = \sqrt{n_l} \ge e^{3w} \ge 4w + 1 \ge 4D + 1 \ge 4d + 1.$$

Hence $b_i \ge b_1 + i - 1 \ge i + 4d$. By Lemma 1 there exists an infinite sequence

$$\{v_1 < v_2 < \ldots\} \subseteq P(A \setminus (B_l \cup A(n_{l-1})))$$

with $d | v_i$ and $v_{i+1} - v_i < n_l d$. Since $D_0(n_l + 1) < 2wn_l < \frac{3}{7}n_l \log n_l$, we have

$$n_l d \le n_l D_0 < \frac{3}{7} n_l \log n_l - D_0 \le H_l - D_0 \le h.$$

Hence

$$A(d,h) + \{v_1, v_2, \ldots\} = \{a + v_1 + dk : k = 0, 1, \ldots\}$$

$$\subseteq P(B_l \cup A(n_{l-1})) + P(A \setminus (B_l \cup A(n_{l-1})))$$

$$\subseteq P(A).$$

This completes the proof of Theorem 2.

Proof of the Corollary. Let C be as in Theorem 1 and $c = \frac{1}{4}C^{-2}$. If $ci^2 \leq n$, then $a_i \leq n$. Hence $|A(n)| \geq [\sqrt{n/c}] \geq [2C\sqrt{n}] > C\sqrt{n}$. Then the Corollary follows from Theorem 1.

4. Remark. I believe (but have no proof) that for every K > 0 there exists an n_0 and a sequence A which is not subcomplete such that $|A(n)| \ge K\sqrt{n}$ for $n \ge n_0$.

References

- J. W. S. Cassels, On the representation of integers as sums of distinct summands taken from a fixed set, Acta Sci. Math. (Szeged) 21 (1960), 111–124.
- [2] P. Erdős, On the representation of large integers as sums of distinct summands taken from a fixed set, Acta Arith. 7 (1962), 345–354.
- J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643–655.
- G. Freiman, New analytical results in subset-sum problem, Discrete Math. 114 (1993), 205–218.
- N. Hegyvári, On the representation of integers as sums of distinct terms from a fixed set, Acta Arith. 92 (2000), 99–104.
- [6] T. Łuczak and T. Schoen, On the maximal density of sum-free sets, ibid. 95 (2000), 225–229.

- [7] M. B. Nathanson, Additive Number Theory, Grad. Texts in Math. 165, Springer, New York, 1996.
- [8] A. Sárközy, Finite addition theorems II, J. Number Theory 48 (1994), 197–218.

Department of Mathematics Nanjing Normal University Nanjing 210097, China E-mail: ygchen@njnu.edu.cn

> Received on 28.12.2000 and in revised form on 4.3.2002 (3941)