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On subset sums of a fixed set
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1. Introduction. Let A be a strictly increasing sequence of positive
integers. Let P (A) = {∑ εiai : ai ∈ A, εi = 0 or 1} be the set of all the
subset sums of A. A is said to be subcomplete if P (A) contains an infinite
arithmetic progression. P. Erdős conjectured that if an+1/an → 1, then A is
subcomplete. But J. W. S. Cassels [1] proved that for every ε > 0 there exists
a sequence A for which an+1−an = o(a1/2+ε

n ) and A is not subcomplete. Let
A(n) = A∩ [1, n]. The cardinality of a finite set S is denoted by |S|. In 1962
Erdős [2] proved that if |A(n)| > cn(

√
5−1)/2 (c > 0), then A is subcomplete.

In 1966 J. Folkman [3] improved this to |A(n)| > n1/2+ε (ε > 0), and
recently, N. Hegyvári [5] showed |A(n)| > 300

√
n log n for n > n0. A similar

result was also proved by Łuczak and Schoen [6] independently. In this note
we improve Hegyvári’s result:

Theorem 1. There exists an absolute constant C > 1 such that if A =
{a1 < a2 < . . .} is an infinite sequence of positive integers with |A(n)| >
C
√
n for n > C2, then A is subcomplete.

Corollary. There exists an absolute constant c > 0 such that if A =
{a1 < a2 < . . .} is an infinite sequence of positive integers with an < cn2

for n > c−1, then A is subcomplete.

This is best possible (cf. [5]). The Corollary gives a partial answer to a
question in [3].

2. Preliminaries

Lemma 1. Let B = {b1 < b2 < . . .} be an infinite sequence of positive
integers, and let n′0, d be positive integers with n′0 > 4. Assume that bi ≥
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i+ 4d for all i and |B(n)| ≥ 2
√
dn for n ≥ n′0. Then there exists an infinite

sequence {v1 < v2 < . . .} in P (B) for which d | vn and vn+1 − vn < dn′0.

Proof. By the Erdős–Ginzburg–Ziv theorem (cf. [7]), for each i ≥ 1,
there exists d integers bi1 , . . . , bid in {b2(i−1)d+1, . . . , b2id} such that ui =
bi1 + . . . + bid is divisible by d. Then u1 < u2 < . . . Let U = {u1, u2, . . .}
and P (U) = {v1 < v2 < . . .}. Then d | vn for all n. Now we show that
vn+1 − vn < dn′0.

Since |B(n)| ≥ 2
√
dn for n ≥ n′0, it follows that if bn ≥ n′0, then bn ≤

n2/(4d). Hence b2d < n′0. Let n1 be the largest integer with b2n1d < n′0. Then
n1 ≥ 1. For n ≥ 1, let j1 be the least integer such that

∑
1≤i≤j1 ui > vn;

j2 be the least integer such that
∑

1≤i≤j2 ui > vn − uj1 ; and so on. Thus
we have defined j1 > . . . > jt = 1 such that

∑

1≤i≤jk
ui > vn − uj1 − . . .− ujk−1 , k = 2, 3, . . . , t.

Define uj0 = 0. Since uj0 < vn < uj0 +uj1 + . . .+ujt , there exists an integer
l with 0 ≤ l < t such that

(1) uj0 + uj1 + . . .+ ujl ≤ vn < uj0 + uj1 + . . .+ ujl+1 .

Suppose that jl+1 > n1. Then b2jl+1d ≥ n′0 and

vn − uj0 − . . .− ujl < ujl+1 ≤ db2jl+1d ≤ d
(2jl+1d)2

4d
≤ d

∑

1≤i≤jl+1−1

(2(i− 1)d+ 4d+ 1)

≤ d
∑

1≤i≤jl+1−1

b2(i−1)d+1 ≤
∑

1≤i≤jl+1−1

ui,

contrary to the definition of jl+1. Hence jl+1 ≤ n1. Thus, by (1) and jl+1

≤ n1,
vn+1 − vn ≤ ujl+1 ≤ db2jl+1d < dn′0.

This completes the proof of Lemma 1.

Lemma 2. Let 0 < a1 < . . . < ak ≤ n be an increasing sequence of
integers. Assume that n > 2500 and k > 200

√
n logn. Then there exist

integers d, y, z such that 1 ≤ d ≤ 50
√
n/logn, z − y > 3

7n logn and

{td : y ≤ t ≤ z} ⊂ P ({a1, . . . , ak}).
Proof. By Theorem 4 in [8] (see also [4]) there exist integers d, y, z with

1 ≤ d ≤ 104nk−1, z ≥ 7−1 · 10−4k2, y ≤ 7 · 104znk−2

and
{td : y ≤ t ≤ z} ⊂ P ({a1, . . . , ak}).
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For these d, y, z we have

1 ≤ d ≤ 50
√

n

logn
, z − y ≥ 7−1 · 10−4k2(1− 7 · 104nk−2) ≥ 3

7
n log n.

This completes the proof of Lemma 2.

Lemma 3. Let A(Di,Hi) = {ai + tDi : 0 ≤ t ≤ Hi} (i = 0, 1, . . . , l) be
arithmetic progressions of integers. Assume that

Hi ≥ D0 +Di+1, i = 0, 1, . . .

Then there exists an arithmetic progression A(dl, hl) = {a + tdl : 0 ≤ t ≤
hl} ⊂ A(D0,H0)+ . . .+A(Dl,Hl) with dl = (D0, . . . ,Dl) and hl ≥ Hl−D0.

This follows from the proof of Lemma 4 in [5].

3. Proof of Theorem 1. In this section we prove the following theorem
which implies Theorem 1.

Theorem 2. Let A = {a1, a2, . . .} be an infinite sequence of positive
integers, n0 be an integer with n0 ≥ e60 and w = 50

√
n0/logn0. Assume

that |A(n)| ≥ 202
√

12wn for n0 ≤ n ≤ e12wn0 and |A(n)| ≥ 808
√
wn for

n > e12wn0 . Then A is subcomplete.

Proof. Let ni = n2
i−1 (i = 1, 2, . . .). Let l be the integer with nl−1 <

e6w ≤ nl. Then nl = n2
l−1 < e12w. Let n−1 = 0. Hence

|A(ni) \A(ni−1)| ≥ 202
√
ni logni − ni−1 ≥ 202

√
ni logni −

√
ni

> 200
√
ni logni + 1, i = 0, 1, . . . , l.

Take Bi = A(ni) \ A(ni−1) for i = 0, 1, . . . , l − 1 and Bl ⊂ A(nl) \ A(nl−1)
with |Bl| = [200

√
nl lognl] + 1. By Lemma 2, for each i, there exists an

arithmetic progression

Ai = {ai +Dik : 0 ≤ k ≤ Hi} ⊂ P (Bi)

with Di ≤ 50
√
ni/logni and Hi ≥ 3

7ni logni. Since

Hi ≥
3
7
ni logni > 50

√
ni+1

log ni+1
+ w ≥ Di+1 +D0,

by Lemma 3 there exists an arithmetic progression

A(d, h) = {a+ dk : 0 ≤ k ≤ h} ⊂ A0 + . . .+ Al

with d |D0 and h ≥ Hl −D0.
For nl ≤ n ≤ e12w we have

|A(n) \ (Bl ∪ A(nl−1))| ≥ 202
√
n logn− 200

√
nl log nl − 1− nl−1

≥ 2
√
n lognl − 1−√nl ≥ 2

√
6
√
wn− 1−√nl

≥ 2
√
wn ≥ 2

√
D0n ≥ 2

√
dn.



210 Y. G. Chen

For n > e12w we have

|A(n) \ (Bl ∪A(nl−1))| ≥ 808
√
wn− 200

√
nl lognl − 1−√nl

≥ 808
√
wn− 200

√
12
√
wn− 1−√nl ≥ 2

√
wn.

Let A \ (Bl ∪A(nl−1)) = {b1 < b2 < . . .}. Then

b1 ≥ nl−1 =
√
nl ≥ e3w ≥ 4w + 1 ≥ 4D + 1 ≥ 4d+ 1.

Hence bi ≥ b1 + i−1 ≥ i+ 4d. By Lemma 1 there exists an infinite sequence

{v1 < v2 < . . .} ⊆ P (A \ (Bl ∪ A(nl−1)))

with d | vi and vi+1 − vi < nld. Since D0(nl + 1) < 2wnl < 3
7nl lognl, we

have

nld ≤ nlD0 <
3
7
nl lognl −D0 ≤ Hl −D0 ≤ h.

Hence

A(d, h) + {v1, v2, . . .} = {a+ v1 + dk : k = 0, 1, . . .}
⊆ P (Bl ∪A(nl−1)) + P (A \ (Bl ∪A(nl−1)))

⊆ P (A).

This completes the proof of Theorem 2.

Proof of the Corollary. Let C be as in Theorem 1 and c = 1
4C
−2. If

ci2 ≤ n, then ai ≤ n. Hence |A(n)| ≥ [
√
n/c] ≥ [2C

√
n] > C

√
n. Then the

Corollary follows from Theorem 1.

4. Remark. I believe (but have no proof) that for every K > 0 there
exists an n0 and a sequence A which is not subcomplete such that |A(n)| ≥
K
√
n for n ≥ n0.
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