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On subset sums of a fixed set
by

YoNG-GAO CHEN (Nanjing)

1. Introduction. Let A be a strictly increasing sequence of positive
integers. Let P(A) = {> ¢e;a; : a; € A, e; = 0 or 1} be the set of all the
subset sums of A. A is said to be subcomplete if P(A) contains an infinite
arithmetic progression. P. Erdés conjectured that if a,y1/a, — 1, then A is
subcomplete. But J. W. S. Cassels [1] proved that for every € > 0 there exists
a sequence A for which a,+1—a, = o(arl/ 2+E) and A is not subcomplete. Let
A(n) = AN[1,n]. The cardinality of a finite set S is denoted by |S|. In 1962
Erdés [2] proved that if [A(n)| > en(V5=1/2 (¢ > 0), then A is subcomplete.
In 1966 J. Folkman [3] improved this to |A(n)| > n'/?T¢ (¢ > 0), and
recently, N. Hegyvéri [5] showed |A(n)| > 300y/nlogn for n > ng. A similar
result was also proved by Luczak and Schoen [6] independently. In this note
we improve Hegyvari’s result:

THEOREM 1. There exists an absolute constant C' > 1 such that if A =
{a1 < a2 < ...} is an infinite sequence of positive integers with |A(n)| >
C+/n forn > C?, then A is subcomplete.

COROLLARY. There exists an absolute constant ¢ > 0 such that if A =
{ay < ag < ...} is an infinite sequence of positive integers with a, < cn?
forn > c71, then A is subcomplete.

This is best possible (cf. [5]). The Corollary gives a partial answer to a
question in [3].

2. Preliminaries

LEMMA 1. Let B = {by < by < ...} be an infinite sequence of positive

integers, and let ng,d be positive integers with ny > 4. Assume that b; >
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i+ 4d for alli and |B(n)| > 2vdn for n > nj. Then there exists an infinite
sequence {v1 < vy < ...} in P(B) for which d|v, and vy41 — v, < dng.

Proof. By the Erd6s-Ginzburg—Ziv theorem (cf. [7]), for each ¢ > 1,
there exists d integers b;,,...,b;, in {bai—1)a+1,---,b2a} such that u; =
bi, + ...+ b;, is divisible by d. Then u; < uz < ... Let U = {u1,uq,...}
and P(U) = {v1 < v2 < ...}. Then d|v, for all n. Now we show that
Unt1 — Up < dnj).

Since |B(n)| > 2v/dn for n > n), it follows that if b, > nj, then b, <
n?/(4d). Hence bay < nf,. Let ny be the largest integer with ba,,, 4 < nj. Then
n1 > 1. For n > 1, let j; be the least integer such that Zlgigjl U; > Up;
J2 be the least integer such that 2195]'2 u; > vy — uj,; and so on. Thus
we have defined j; > ... > j; = 1 such that

E Uy > Up — Ujy — oo = Ujp_ys k=2,3,...,t.
1<i<jk

Define uj, = 0. Since uj, < v, < uj, +uj, +...+u;,, there exists an integer
[ with 0 <[ < t such that

(1) Ujo +ujy + o uy, < vy <ugy Fug Uy,
Suppose that j;41 > ni. Then by, 4 > ng and
(2j111d)*
U =gy = e = gy < iy < gy < AT
<d Y (2ti-1d+4d+1)
1<i<gi+1—1
<d Z ba(i—1)a+1 < Z U,
1<i<ji41—1 1<i<jiy1—1

contrary to the definition of j; ;. Hence jj1+1 < ny. Thus, by (1) and j;41
S ni,
Vg1 — Up S g, < dbaj, < dna.

This completes the proof of Lemma 1.

LEMMA 2. Let 0 < a1 < ... < ar < n be an increasing sequence of
integers. Assume that n > 2500 and k > 200v/nlogn. Then there exist
integers d,y, z such that 1 < d < 504/n/logn, z —y > %nlogn and

{td:y <t <z}cC P({ai,...,ar}).
Proof. By Theorem 4 in [8] (see also [4]) there exist integers d, y, z with
1<d<10*nk™, 2z>7"1.107%%2% ¢y <7-10%znk™?

and
{td:y <t <z} C P({a,...,ar}).
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For these d, y, z we have

3
1<d<50,/——, z—y>7"1 107421 -7 10*k~2) > 2 nlogn.
logn 7
This completes the proof of Lemma 2.

arithmetic progressions of integers. Assume that

HiZDO+Di+17 220717

Then there exists an arithmetic progression A(d;,h;) = {a+td; : 0 <t <
hl} C A(Do, H()) +.. .+A(Dl, Hl) with d; = (Dg, ey Dl) and h; > H;— Dy.

This follows from the proof of Lemma 4 in [5].

3. Proof of Theorem 1. In this section we prove the following theorem
which implies Theorem 1.

THEOREM 2. Let A = {ay,az,...} be an infinite sequence of positive
integers, ng be an integer with ng > €% and w = 504/no/logng. Assume
that |A(n)| > 202v/12wn for ng < n < e'?2¥™ gnd |A(n)| > 808\/wn for

n > el?wm0 Then A is subcomplete.
Proof. Let n; = n?_; (i = 1,2,...). Let | be the integer with n;_; <
e < n;. Then n; = n?_l < e? Let n_; = 0. Hence
A(m) \ Alns1)| > 202y/nTogn; —ni_y > 202y/nslogn; — v/
> 200y/nilogn; +1, i=0,1,...,1L

Take B; = A(n;) \ A(n;—1) for i =0,1,...,0 —1 and B; C A(n) \ A(ni—1)
with |B;| = [200y/n;logn;] + 1. By Lemma 2, for each i, there exists an
arithmetic progression

with D; < 504/n;/logn; and H; > %nl logn;. Since

3 i
H; > —n;logn; > 50 &+wZDi+1+D07
7 lognit1

by Lemma 3 there exists an arithmetic progression
A(d,h)={a+dk:0<Ek<h}CAs+...+ 4

with d | Do and h > H; — Dy.
For n; < n < e'?" we have

|A(n) \ (BiUA(ni—1))| > 2024/nlogn — 200+/n;logn; —1 —n;_y
> 2 nlognl—l—\/n—lZQ\/(_)’\/wn—l—\/n_l
> 2¢/wn > 24/ Don > 2V dn.
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For n > e'?* we have

|[A(n) \ (B; U A(ni—1))| > 808y/wn — 200/n;logn; — 1 — /n;

> 808v/wn — 200V12 uwn — 1 — /n; > 2y/wn.
Let A\ (B;UA(n;-1)) ={b1 <by <...}. Then
bi>n 1=y > >4w+1>4D+1>4d+ 1.
Hence b; > b1 +7—1 > i+ 4d. By Lemma 1 there exists an infinite sequence
{v1 <wve <...} CP(A\ (BiUA(n;-1)))
with d|v; and v;41 — v; < md. Since Do(n; + 1) < 2wn; < %nl logn;, we
have
nd <nyDp < %nl logn; — Do < H — Dy < h.

Hence
A(d, h) +{v1,ve,...} ={a+vi+dk:k=0,1,...}
CP(BiUA(n—1))+ P(A\ (BiUA(n;—1)))
C P(A).
This completes the proof of Theorem 2.

Proof of the Corollary. Let C be as in Theorem 1 and ¢ = iC’_Z. If

ci? < n, then a; < n. Hence |A(n)| > [\/n/c] > [2Cy/n] > C\/n. Then the
Corollary follows from Theorem 1.

4. Remark. I believe (but have no proof) that for every K > 0 there
exists an ny and a sequence A which is not subcomplete such that |A(n)| >

K+/n for n > nyg.
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