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1. Introduction. A positive integer n is said to be a Niven number (or
a Harshad number) if it is divisible by the sum of its decimal digits.

In 1984, Kennedy and Cooper [7] established that the set of Niven num-
bers is of zero density. In 1985, the same authors [1] showed that, given any
t > 0, we have N(z) > log’ x provided z is sufficiently large, where N (z)
stands for the number of Niven numbers not exceeding x, and in 1988, they
[2] obtained an asymptotic formula for the number of Niven numbers < z
whose sum of digits equals k. In 1991, Vardi [9] proved that, for any given

e >0,
N(z) < S —
(log x)1/2—a

and that there exists a positive constant « such that

x
N(z)>a——75
() (log x)ll/?
for infinitely many integers x, namely for all sufficiently large = of the form
x = 1019%+7+2 L and n being positive integers satisfying 10" = 45k + 10.
Recently, De Koninck and Doyon [3] established that, given any fixed
e >0,

xloglogx
2175 < N(z) < 1087987
log x
and conjectured, using a heuristic argument, that, as x — oo,
T 14
1 N(z) = 1) — ith = —log10.
(1) (z) = (n+o(1)) ogs Vith m=gzlog

More generally, given an integer ¢ > 2, we shall say that a positive integer
is a g- Niven number if it is divisible by the sum of its digits in base q.
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In this paper, we prove that (1) holds and moreover that, given any base
q > 2, a similar result holds for Ny(z), the number of ¢-Niven numbers not
exceeding x. Hence, our main goal will be to prove the following result.

THEOREM 1. As x — 00,

(2) Nyw) = (g +0(1)) 15—

2logq <~
with nq— og Z ,q—1).
Theorem 1 will follow from our results on the local distribution of a(n),
the sum of the digits of n, when n runs over an arithmetic progression with
growing modulus k. Similar techniques for the study of the sum of digits
function residue classes have been used by other authors, namely Delange
[4] and Gel’fond [6].

2. Notations and preliminary observations. Let N, Ny, R and C
stand for the set of positive integers, non-negative integers, real numbers
and complex numbers, respectively.

Throughout this paper, let ¢ > 2 be a fixed integer. The q-ary expansion
of a non-negative integer n is defined as the unique sequence €yp(n), €1(n), . ..
for which

(e.9]

(3) n=> ¢n)¢, €n)e{0,1,...,q—1}
§=0
Let a(n) = ay(n) be the sum of the digits of n in base ¢, that is,
a(n) =¢e(n) +e(n) + ...
Given x € R, N € N and z,w € C, we set
(4) S(z|z,w) = Z My and  Sn(z,w) = S(¢V |z, w).

0<n<zx
It is clear that
N-1og-l
(5) Sn(z,w) = <Z 27wl >
1=0 j=0
Let also
(6) Ul(x|zk,l):= Z 20 and  Un(z, k1) :=U(q"]z, k, 1).
0<n<zx
n=l (mod k)

Observe that, using the standard notation e(y) := e*™¥, we have
1k—1
(7) U(z|z, k1) = Z e(—ls/k)S(z|z,e(s/k)).



Counting function for the Niven numbers 267

Furthermore, if we set

(8) A(z|k,l,t) :==#{n <z :n =1 (modk) and a(n) = t},
then

1
(9) A(z|k,1,t) = {U(zle(€), k, D)e(—t€) d€.

0

A function g : Ng — C is said to be g-multiplicative if g(0) = 1 and
gn) =[Jole(n)d) (n=1,2,..).
3=0

Now for a g-multiplicative function g, set M(z)=My()=> <, <, 9(n).
Given a positive integer x, write
(10) 2 =big™ +bog™? + ..+ byg™,
where Ny > ... > N, b € {1,...,qg—1}. Set
Lo = &,
x1 = bog™? 4 ..+ bsg™,
zy = b3g™ + ..+ bsg™,

Ns
Ts—1 = bsq )
zs, =0

and
b—1

&= 9(cg") (G=1,...,9).

=0
Using these notations, it is easy to observe that
(11) M(z) = &M (q"™) + g(brg™) M (1),
and by iteration,
(12) M(z) = &GM(¢™) + g(b1g™") &M (¢™?) + g(b1g™")g(bag™?)E3M (™)
+o A g(big™) . g(bs-1g™ 1) Esg(bsg™).

Note that S(z|z,w) is such a function.

3. Preliminary lemmas. For y € R, let ||y|| be the distance of y to
the closest integer. Let £ € [0, 1) be fixed.

LEMMA 1. Let R € N. Given two coprime positive integers s < k with
(k,q) =1 and k{1q — 1, assume that
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<i foru=h,h+1,...,h+R.

S u
(13) e+ 2e < &

Then q% < k/4.
Proof. From (13), it follows that
St - e L
(¢+50) (i) <5
(u=h,h+1,...,h+R—1).

Since ktq—1, the left hand side of (14) is non-zero and therefore it is > 1/k.
Now from (14), we have

(14) H%q“(q— 1)” <

(15)

2qu+l<q_1>H :qH%q“@—l)‘ (u:h,h—i—l,...,h—i—R—Z),

and therefore

—

(16)

S R1th(, 1 i
L d (g )‘ ?
Hence combining this with our observation that the left hand side of (14)
must be > 1/k, we conclude that
1 H s
- <
P

¢"(q - 1)” < 4—1q.

|

that is ¢ < k/4, as claimed.
LEMMA 2. Let A(z|k,l,t) be as in (8) and S(z|z,w) as in (4). Then

1
_ <
Alalk,1,1) kA(xu,o,t)‘ < | o max[S(alz.e(s/k)).

Proof. This follows immediately from (9) and (7).

Now for 1 < s < k, set
. hﬁ
JE+a 4

LEMMA 3. There exists a constant ¢ = c(q) such that
1 S n _

- . 2 . < Csh

‘q E 6(5])6<kq ]>‘ <q

Proof. This follows immediately from the definition of sy,.

Sp = Imnax
0<j<q-1

4. Local distribution of a(n) as n runs through a congruence
class [ (modk)

4.1. We first consider the case (k,q(q¢—1)) = 1.
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THEOREM 2. Assume that (k,q(q — 1)) = 1. Then, for each integer
le€]0,k—1] and t € N, we have

log =

< ge Plog2k

(17) Alalk, 1, 1) — %A(az|1,0,t)

where ¢c1 = c¢1(c,q) is a suitable positive constant independent of k, | and t.

Proof. Let x be written as in (10). Then, from (12), we have

[S(zlz, e(s/k)) < a ) IS, (= e(s/k))].

j=1
To estimate each expression |Sy; (2, e(s/k))|, we use Lemmas 1-3.
For k =2,3,4, we set R =0, while for each k > 5, we set

P [108;(74@/4)}
log q
From Lemma 1, we know that
1

max S, > —.
h<u<h+R 8¢

Therefore
[N — [&]
‘S}Q(Z,G(S/k))’f;q J.q BalRHl
which completes the proof of Theorem 2.

REMARK. It is interesting to observe that the following assertion is also
true:

If (k,q(g—1)) =1, then

S el % 3 ot

n<x n<x
n=l (mod k)

log x
—C
S xTe 1 log 2k |

max
|z[=1

4.2. We now consider the case (k,q) > 1. Actually we shall reduce this
case to the one of Section 4.1. Indeed, let k = k1ko, where k is the largest
divisor of k coprime to ¢ and k2 = k/ki. Further let h be the smallest
positive integer such that ks |¢”". Then the congruence class [ (mod k) can
be written as the union of some congruence classes mod k1¢”, namely

q" k2
(18) {n:n=1(modk)} = U {n:n=19 (modky ")}
j=1

First define lgj ) and lgj ) implicitly by
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and then write a positive integer n =) (mod k1¢") as
n= lgj) +¢"m = lgj) + théj) (mod k1¢"),

which is equivalent to

(19) m= lgj) (mod ky).

Using this setup, we obtain the following result.

LEMMA 4. We have

ke
(20) Z Lon) — Z Lol”) Z Lo(m)
n<x j=1 m<m/qh

= (mod k :
n=l (modk) m=1§" (mod k1)

and
q" ke
(21) Alz|k,1,t) = Z A<

4.3. We now consider the case k = kikga, where (k,q) =1, (k1,q—1) =1
and all the prime factors of ko are divisors of ¢ — 1.

oy 10 ¢ — a(z@))

LEMMA 5. We have
1 k2 —c log «
(22) U(x|z, k1) = z g e(—I7/ko)S(z|z, e(T/k2)) + O(ze” “los2F)
=1

and

(23) Ulalz k1) = o Ulolz, ko, 1) + O™ 65 ),

Ky

Proof. 1t is clear that (23) follows from (22) and (7). Therefore we only
need to prove (22). Recall the representation of U(z|z, k,[) given by (7). For
each 1 < s < k, write s/k = s*/k*, where (s*,k*) = 1. If k* has a prime
factor which does not divide ks, then arguing as in the proof of Theorem 2,
we obtain .

1S (2|2, e(s/k))| < we ™ on2k,
Therefore, it remains only to consider those s which are multiples of k1, in
which case we simply write s = T7k;, where 7 = 0,1,..., ko — 1, and the
proof is complete.

COROLLARY. If k = kiko with (k,q) = 1, (k1,q — 1) = 1 and all the
prime factors of ko are divisors of ¢ — 1, then

1 oy Jogm
(24) Alalk,1,1) = - Alalka, 1) + O(ze 3
1

4.4. Assume now that the prime divisors of k divide ¢ — 1. For each pos-
itive integer m, let k(m) = (m,q — 1) and set K = k/k(k). Then, repeating
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the argument used above and again using Lemmas 1-3, we can conclude
that

log z

1 — —_—
A(l’“{}’l’t) = ?A(l‘“f(kf)’l,t) +O($e cllong)‘

4.5. Assume finally that k|q — 1. Since in this case, we have ¢”
(mod k) for each v € Ny, it follows that n = (mod k) implies that «(n)
(mod k). Consequently,

(25) Az|k, 1 t):{#{n<aj:a(n):t} if t =1 (modk),
e 0

otherwise.

l

We now have the proper setup to build the proof of Theorem 1.

5. The proof of Theorem 1. Given z, define N, as the unique integer
satisfying ¢V* < & < ¢V=+1 so that N, — Hggﬂ
Further define

B(z|t) := #{n < x : a(n) =t with t|n},
a(z|t) == A(z|1,0,t) = #{n <z : a(n) = t}.
Using Theorem 6, Chapter VII, of V. V. Petrov [8] on local distribution of

sums of identically distributed random variables, and by an easy computa-
tion we obtain the following.

LEMMA 6. Let

-1
- 14 2_1
m—qT and o* == ]2—m2—q12
q
Then
x t —mN, z(log N, )3/?
26 t) = O —————
@) alel) = (S ) + o A

uniformly in t, where p(y) = (1/\/277)6_3/2/2 is the density function of the
Gaussian law.

REMARK. For a similar result in a more general setup, see Drmota and
Gajdosik [5].

Now, x being fixed, we define the interval I as follows:

-1 N, -1 N,
1= q—Nz—Q—x,q—Nx+2—‘r .
2 log” N, 2 log” Ny
A simple probabilistic argument shows that

x
(27) #n<z:ah) ¢} < Togzloglog s’
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Therefore, it is clear that

t .
(28) ;B (=) +O<logxloglogaz:>

Let us factorise each ¢t € I as t = t1tots, where (t1,q(¢ — 1)) = 1, the prime
factors of to divide ¢, and the prime factors of t3 divide ¢ — 1.

Fixing ¢ € I, let h be the smallest positive integer such that o | ¢". Note
that

29 ¢" < N%  for a suitable positive constant c3 = c3(q).
xr

To see this, first observe that to must have a divisor to the h-th power,
and therefore N, > t > 2" which means that h < log N,/log2. Hence
q" < glogN=/log2 N&3, which proves (29).

Using (21), we obtain

h/tQ
(30) A(z|t,0,t) j{: 14<

where

(31) 10 = (tit)tag = 1 + 4" (0 <1 < g).

umJ;%t—au¥U>,

Using (24), we have

(32) A(qih

tuts, 15t - a<15”>>
— s a( St - o)) v o G ).

Since £(t3) divides t and 1(), a(lgj)) = l%j) (mod (k3)), 10) = l%j) —i—théj)
and ¢" =1 (mod k(t3)), it follows that

t= a(l@) = léj) (mod k(t3)).

Therefore the main term on the right hand side of (32) is, because of (25),

L rlts) a( v a(lgj)))
c1 logx

t— a(lgj))> + O(xe 2 Tog2t),

t—
qh

t o ts

Consequently, using (30), we obtain

q"/t2
(33)  A(alt,0,4) = ) 3 a<ﬁh

t1t3 o \4
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Using Lemma 6, and after observing that
lgj) <" < N&,

(34) a1y = 0(10g 1) = O(log N,),
[p(£1) — (&2)] < |61 — &2l

we find that, for each t € I,
g — o @ (logNy)*?
(35) a<qh t—a(ly )) —a<qh t> +O<qh N, .

Therefore, using (33),

h 3/2
q"k(t3) x x  (logNg)
A = = S St~ S L2
(36) (x|t,0,t) n a(qh t) +O<t N,
Furthermore, by Lemma 6, we have
(37) qha<q£h t> - a(m\t)'

<[t ()

+ o(Ni(log Nm)3/2>.

T

But the expression |...| on the right hand side of (37) is no larger than the
error term, which implies that
(38) qha(;—h t) - a(x|t)‘ < Nix (log N, )3/2.
Hence, using (36) and (38), we obtain
t
(39) At 0,8) = P8 oy + 0 2 (log N,)H2).
t tN,
From (28) and (39), we then have, since N, = [log z/logq],
K(13) x 3/2
40) N, = t O ———— (log N,
10 M) = 3 et +0( o s N
2 x
== t t (0]
Nalq — 1) 2 "(talelt) + (rTtoror)
2logq 1 x
= C— t t O .
logz ¢—1 ZH( 3)alzlt) + <(logx)(loglogx)1/2>

tel
Since a(z|t) = (1 4 o(1))a(x|t + 1) uniformly for ¢t € I, k(t3) = k(t), and
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k(t) is periodic mod g — 1, it follows that

q—2
(@) 3 wltaalal) = — (1+0o(1) Yo () 3 alal —J)
tel tel j=0
q—2
:(l-l-o(l))z 11 k(r+j)+ E(z),
rel 7=0

where E(z) < Y a(z|s), where this last sum runs over those s such that
|s — I;] < q—1, the I;’s being the endpoints of I, that is, I = [I1, I2]. Since
max a(z|t) < z/v/Iogx and since the number of s’s counted in 3 a(z|s) is
bounded by a multiple of ¢, it follows that

(42) E(z) <

T
Viogz'

Moreover, observe that, because of (27),

43 =
(43) Z (zlr) =2 +0 logmloglog:c)
rel
Finally, observe that
1 q—2 1 q—1
(44) — ) wlr+i)=—=) r(j)
qg—1+4 q—14
J=0 J=1

is a constant.
Therefore, it follows from (40)—(44) that

2 1 =
Ng(z) = (1 +o(1)) gz (g 12 > (),
=1

which implies (2). The proof of Theorem 1 is thus complete.

6. Final remark. A similar result can be established if one replaces
a(n) by a g-additive function f(n) taking integer values and satisfying
f(bg?) = f(b) for all positive integers j.
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