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1. Introduction. Let {z} (resp. [z], ||z||) denote the fractional part
(resp. the integer part, the distance to the nearest integer) of a real number z.
It has been proved that the function g(k) occurring in Waring’s problem is
given by the formula

g(k) =2" +((3/2)] -2
if the following inequality holds:
(1.1) {(3/2)"} <1-(3/4)".

Moreover Mahler [7] showed that (1.1) is valid for k large enough. However
his proof is ineffective and does not provide a bound from which (1.1) is sat-
isfied. In 1990, Kubina and Wunderlich [6] checked (1.1) for k£ < 471600000.

In 1981, Beukers [2] proved that, for k£ > 5000,
(1.2) 1(3/2)"]] > 27%9% = (0.53588...)".
This result was asymptotically improved by Dubickas [4] who showed that
(1.3) 1(3/2)%|| > (0.5769)*

for k large enough. However he did not compute the range of validity of (1.3).
We refine Dubickas’s computations to prove the following theorem.

THEOREM 1. For k large enough, we have
(1.4) 1(3/2)%|] > (0.5770173776...)F.

We also improve on Beukers’s result (1.2) by showing the following in-
equality.
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THEOREM 2. For k > 5, we have
(1.5) 1(3/2)F| > 2708 = (0.57434...).

Our proof proceeds as those of Beukers and Dubickas. We describe di-
agonal Padé approximants of the function H(a,b;t), the polynomial part of
(1 —t)a+b¢=b. A precise study of the asymptotic and arithmetic behavior of
these approximants leads to (1.4) and to (1.5) for k& > 64440000. The range
[5,64440000] is checked by using Delmer and Deshouillers’s technique [3].

All the computations were performed using the system PARI.

2. Padé approximations. Let a,b be fixed nonnegative integers. Beuk-
ers [2] introduced the function

H(a,bjt) =t7" ((1 — )t — § (a“ : b) (_t)r>

r=0

and determined diagonal Padé approximants for this function. More pre-
cisely, he showed that, for any nonnegative integer n,

(2.1) Po(t) = Qu(t)H(a, i) = (—1)" 2 B, (1),

where P, is a polynomial of degree at most n with integer coefficients, and
where

22) Q=3 (M) (T e

r=0

1
(a+b+n)! I b
(2.3) = Sfl "1 -2)"(1 — x4 tx)" dx,
(a—n—1)! b—i—n'n'o
1
(a+b+n)! n N -
@4) Eult) = oy b+n|n|§‘” — )" (1 — tx)* " da
0

Moreover he proved that these approximants are distinct by establishing the
following relation:

(2.5)  Pu(t)Qn+1(t) — Pag1(t)Qn(t)

_ (—1yn a+b+n\/2n+b+2 pon+1
2n+b+1 n+b+1

We now restrict our attention to the case (a,b) = (2m, m), where m
is a fixed positive integer. The key point of Beukers’s proof was to exhibit
nontrivial divisors of the content of the polynomials P,, and @Q,,. Dubickas got
his improvement by refining this part of the proof. Let us show an equivalent
form of Dubickas’s lemma. Let P denote the set of all prime numbers.
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LEMMA 1. Define

E,(m) = {ZEP, 12 > max(n+m,2m —n—1):

n+m n 2m—n—1 n n >l
l l l
Then, for any element 1 from E,(m), we have {P,(t), Qn(t)} C IZ][t].
Proof. Let | be in P, with [? > max(n+m,2m —n—1). We first consider

the content of @, (t). Let r be an integer from {0,...,n}. By (2.2), we want
to show that [ divides (2"+mfr) (27”7””71). Put

n+m T

_fn+m _f2m—-n—1 _Jn o — l
m = l 3 2 = l ) n3 = l 3 — I )

and let w; denote the l-adic valuation of (Q"J:T:r) (Qm”:f”"*l). The size of
[ gives the following expressions for wy:

- -

. [2m—nl+r—1} - [Qm—ln—l] - H
= [m +ns — 0] = [m] = [ns = 6] + [m2 + 6] — [n2] — [0]

= [m +n3 — 0] = [n3 — 0] + [n2 + 0],

which lead to the estimate

w>m4ns—01+m+0]>[m+mn+n—1.

When [ belongs to E,,(m), we know that 71 +12 473 is greater than or equal
to 2, which implies that w; is positive. Therefore [ divides the content of @Q),,.
Since the supports of P, (t) and t*"*1E, (t) are disjoint, this also shows that
[ divides the content of P,,, by (2.1). =

The form given to this lemma was inspired by Hata’s work on irrational-
ity measures [5]. It makes it easier to compute the asymptotic behavior of
the product of the elements of E,, (m), as shown in the next section.

3. Asymptotic behavior. Consider n = [a(m — 3/2)] + 1 + n with
(m, a,n) belonging to the set (N\ {0,1}) x ]0,2[ x {0,1}. Put II,,(a) =
HlEEn(m) L.

Let § € {0,1,2,3,4,5} and M be an integer. By (2.5), we may choose 7
such that

(3.1) P, (-%) - %Qn <—%> £0.
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Indeed, if not, the couple (1, M/2°%) would be a solution of a homogeneous
system of rank 2, which is impossible. Moreover the polynomial IT,, (a) ™! x
(2P, — MQ,,) has integer coefficients and its degree is at most n. We thus
deduce from (3.1) the estimate

1 M 1 —6—3n

Let us now study what happens when m goes to infinity. Define

(3.2)

07

Fi(a) = xféﬁﬁ} 2271 —2) T — 3%
x 2—a
Fya) = wrg[%’)i] (1 — )1+ 3 ,

Ala) = (a+3)log(a+3) — (2 —a)log(2 — a)
—(1+a)log(l+ a) — aloga.

PrROPOSITION 1. We have the upper bounds

1 (3m + n)! 2F (o)™ 32
(3-3) ’Qn<_§>' = 2m —n—1)l(m+n)ln! 5 ’

1 (3m + n)! 541F ()™ —5/2
& [B ()| < G S e
(3.5)  log ((2m — 7531n1;g71!+ n)!n!) < A(a)m + O(1).

Moreover we can get a better estimate for a = 15/16:

3m +n)! 15 1 1
(3.6) log ((Qm—é—l)!(n)l—i—n)!n!) §A<1—6>m—log(2ﬂ)— D +E'

Proof. Use (2.3) and the inequalities

(3.7) n > a(m—3/2),

(3.8) n+m>(1+a)(m—3/2)+3/2,
(3.9) 2m —n—12> (2 —a)(m — 3/2),

to get

1 (3m + n)! :

‘Q" <_§> ‘ < B n Dl Tyt 1@ § (1 —2)*/* dz,

which shows (3.3). Similarly, application of (2.4) together with the inequality
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2m—n—1< (2 —a)(m —3/2) + 2 yields

(D) e

x Fy(o)™#2{ (1 — 2)*? (1 + 2/8)* da,

and (3.4) follows.
We shall now need the following Stirling formula (cf. [8, p. 37]):

1T =

logF(s):(5—1/2)10g5—5+10g\/27r+§ CESSE

0
This way we get
(3m +n)!
1 =A+1-—log(2 1
Og<(2m—n—1)!(m+n)!n! + og(2m) + 1,

where A =¢p(Bm+n+1)—¢p2m—n) —p(n+m+1) — p(n+1), ¢(s) =
(s —1/2)logs and

_ Tz} —{=)? 1 N 1
I_§ 2 <(3m+n+1+x)2 (2m —n+x)?
1 1
ThtmAlta)? (n+1+a:)2)dx§0'

‘We now use the formula
1 3 1
2 m+n-+1
4 (2 1 ) Im+n+1 n +1 | 3m+n+1
MEnT Y )8 T — LY Rl R |
to complete the proof of (3.5).

Assume that o < 1. This implies that —1/2 <1—(3/2)a <n+1—am <
3 — (3/2)a. By applying Taylor’s formula to the function ¢, we get

A< (B +a)m)+ (n+1—am)¢'((3+a)m)

(n+1—am)?
2

—o((2=a)m) + (n+ 1 - am)¢'((2 - a)m) — ¢'((2 = a)m)
— (L +a)m) — (n+1—am)¢'((1+ a)m)

¢"((3 + a)m)

— ¢(am) — (n+1—am)d'(am)
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) . a(l+ ) !
_A(a)m+§log(m> _H_m
a(l+a)
+ (n+1—am)log <m)
n+1—am 1 1 ! 1
B 2m <3+a+2—0‘_1+a_a)

(n+1—am)? 1 1
T <<3+a>m i 2<3+a>2m2>

< Ala)ym —1— g(l —a)log ((2 ;((;)5_3(;; a)> + & —2(31/2)a

X( L+20  2-(3/2)0, 1/4 2 - (3/2)a >

a(l + o) 3+a | (3+a)2 (2—-a)(3-(3/2)a)

< Alaym — 1~ 21— a)log <<2‘“><3+a>> 505

a(l+ «a) 512m’
For a = 15/16, we get (3.6). m
We still have to determine the asymptotic behavior of IT,,(«). Put

E,={z>0:{1+a)z}+{(2—-a)z}+ {ax}>2} and I(a):S

x2’

Note that, when o = u/v is a rational, the function z — {(1 + o)z} +
{(2 = @)z} + {ax} is v-periodic and the set E, may be written as

Eo= |J (laibi[+N)
1<i<ja
with 0 < a1 < b1 < a2 < ... < b;, < v. Moreover the functions x
{1+ a)z}, x — {(2 — @)z} and = — {ax} are constant on any of the
intervals [a;, b;| (otherwise there will be a jump by 1 and there would exist
a point xg such that {(1+ a)zo} + {(2 — &)zo} + {axo} < 2). This in turn
implies that the fractional part is a nondecreasing function on any of the
intervals [(1+a)(a; +vq), (1+a)(b; +vq)[, [(2—a)(a; +vq), (2—a)(b; +vq)[
and [a(a; + vq), a(b; +vq)|.

PROPOSITION 2. When m goes to infinity, we have

(3.10) log T () > I(a)m + 0( m )

logm
Moreover, for m > 10740000, the following inequality holds:
(3.11) log IT,,,(15/16) > 0.3945m + 9.
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Proof. There exist absolute constants C1,Cs > 0 such that
—C1 <max(n —am,—n—1+am) < Cs.
Put C3 = Comax(1l/a,1/(2 — a)), Cy = Cymax(1/a,1/(2 — ). Assume
m > C3 + C4 and introduce

i (2 2 1) 25 ) o

Let us prove that, for 0 < ¢ < go(m) and 1 < i < j,, any prime number

from the interval | Tigg , Zii‘;] belongs to Ey,(m). The definition of go(m)

m+Cs m—Cy
bitvg — aitvg

> V3m > \/max(n—{—m,Qm—n— 1).

implies the inequality and shows that
m+ C3
b; +vq

Thus any prime number from the interval ]

m+C3 ’H'L7C4
bi+vq’ ait+vq
tion [? > max(n+m, 2m—n—1). Moreover we have the following inequalities:

] satisfies the condi-

m;—n > (1+a)lm—C'1 > (14 a)(a; + vg) + C4(1+loz)—C1
> (1+ a)(a; +vq),
m;—n < (1+04)lm+C'2 < (1+a)(bi +vg) — C’g(l—i-la)—Cz
< (1+a)(b; + vg),
2m—ln—1 > (2—04)lm—C'1 2(2—a)(ai—|—vq)+c4(2_la)_cl
> (2 - a)(ai +vg),
2m—ln—1 < (2_04)177”04-02 < (2= a)(b; + vq) — 03(2_;‘)_02
< (2—a)(b;i +vg),
?2 O‘mf_cl > a(a; +vq) + C4al_ “ afa; +vq),
%S WTJFCQ < a(b; + vg) + C?’al_ “ < a(b; +vq),

which lead to
{m+n}+ {Qm—n—l} +{Q}
l l l
> {1+ a)(ai +vq)} +{(2 - a)(a; +vq)} +{alai +vq)} > 2.
Therefore we get the inclusion

m+Cs m—Cy
5 .
En(m)— U U <:| bi+vq7ai+UQ:|m,P>

0<g<qo(m) 1<i<ja
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This implies the estimate

(312) logMm(a) > > > (8@115;)—9(?1@05))

0<g<go(m) 1<i<jqo

where O(x) = Zpep,pgz logp. We now use Schoenfeld’s estimate for the
function O(z) [9, Theorem 8*]: |O(z) — x| < 8.072z/log? x for z > 1, to get

(%) (i
a; +vq bi + vgq
>m—C4_m+C'3_m—C4 8.072 _m+C3 8.072
T ait+vg  bi+wvg  a;+vg (logy/3m)2  bi+wvq (log/3m)?
for ¢ < go(m). We deduce from (3.12) the lower bound
(3.13)  logIl,, ()
> m(1+ O(1/m)) | i—f+o< LD 1)

2
Ean[0,(1+v)qo(m)] log™m | _ ) 4

= I(a)m + O(v/m) + O(m/logm)
and the first part of the proposition is proved.

For o = 15/16, we have C3 = 19/30 and Cy = 17/10. The a;’s and b;’s
are given below:

i (ag,b;) i (ai, b;) i (as,b;)

1 (32/63,16/31) 2 (16/21,16/17) 3 (64/63,32/31)

4 (32/21,48/31) 5 (16/9,32/17) 6 (128/63,64/31)
7 (160/63,80/31) 8 (176/63,48/17) 9 (64/21,96/31)

10 (32/9,112/31) 11 (256/63,128/31) 12 (32/7,144/31)

13 (320/63,160/31) 14 (352/63,96/17) 15 (128/21,192/31)
16 (400/63,32/5) 17 (64/9,224/31) 18 (464/63,112/15)
19 (512/63,256/31) 20 (176/21,144/17) 21 (64/7,288/31)

22 (592/63,160/17) 23 (640/63,320/31) 24 (704/63,192/17)
25 (736/63,176/15) 26 (256/21,208/17) 27 (800/63,64/5)

28 (96/7,208/15) 20 (928/63,224/15) 30 (992/63,16)

To prove the second part of the proposition, we shall need the bound

(3.14) loglm(a)> > Y (8(%>_@<%>>'

0<¢<10 1<i<30

For m > 5-10'%, we use the following estimates from [9]:

—0.0077629 % < O(z) — x < 0.000081z for = > 1.04-107.
ogxr

We find log IT,,, () > 0.40127m — 32 > 0.3945m + 9.
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For 5- 1019 > m > 5107, we use the additional estimates from [9]:
0.998697z < O(z) < z for 1155901 < x < 10*. We find log IT,,(a) >
0.39572m — 27 > 0.3945m + 9.

For 5-107 > m > 1.074 - 107, we use other estimates from [1]:

Ox) -z [ < —-0.344 if 0 <z < 108,
N > —1.833 if 19801 < z < 108,
together with Theorem 6* and Corollary 2 of [9], which give pairs (¢, d) such
that ©(x) > x—xz/(clog x) for x > d. We find log I1,,,(«) > 0.39454m —26 >
0.3945m +9. =

4. Proof of Theorems 1 and 2. We shall use the notations from the
previous section.

PROPOSITION 3. For any positive number € and for any integer k >
ko(e) (ko(e) effective), we have

(4.1) 1(3/2)%| > elCr(@=e)k _ o(Ca(a)=e)k
where
Ci(e) = (=3alog2 + I(a) — A(a) — log F1(a))/6,
Cy(a) = (—6alog2 + log Fo () — log F1(«)) /6.
Proof. Take k = 6m — § with § € {0,1,2,3,4,5} and choose the integer
M for which the distance from (3/2)* to Z is attained. Then we have
1(3/2)"1l = (3/2)7°((3/2)°™ — (3/2)° Mo)
= (2/3)°(=1)™(H (2m,m; —1/8) — M27°)
for some integer M, by the definition of H(a,b;t). By (2.1) we know that
H(2m,m;—1/8) — M27°
_ Pn(_1/8) B MQiéQn(_l/g) + (_1)m+n2—3(2n+1) Eﬂ(_1/8) .
Qn(_l/S) Qn(_1/8)
We use (3.2) to get the inequality
273nﬂm(a) o 2573(2n+1) |En(—1/8)|
3Qn(=1/8)] ’
The estimates (3.3)—(3.5) and (3.7) then complete the proof of (4.1). m
In order to get the best lower bound for ||(3/2)%||, we have to find for
which value of « the first exponent in (4.1) is maximal, under the condition
Ci(a) > Ca(a). It appears that the difference between Cy and Cs is negative
for low values of values of «;; moreover, once this difference becomes positive,
the value of C (o) decreases. Therefore we are looking for good upper bounds

for the solution o of Ci(a) = Ca(). The computations show that g is
smaller than 1, and more precisely that ag belongs to the range [0.9,0.95].

(4.2) 13/2)"]l =
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Computing (C; — C3)(1 — 1/p) for p = 10,...,20 gives the better estimate
ag € [13/14,14/15]. We can get more precise estimates for ag by determining
the continued fraction expansion of ag. We find this way

198478
212871

=100,1,13,1,3,1,3,6,3,1,2,1,7]

224141
240395

<ap<0,1,13,1,3,1,3,6,3,1,2,1,8] =
Since PARI gives

(Cy — C5)(224141/240395) = 1.0057378 - 101

and eC1(224141/240395) — () 57701737767006. .., the proof of Theorem 1 is
complete. Note that Dubickas’s result was obtained by choosing a =
1/1.0723 = 0.93257483..., which was pretty close to our better choice
a = 224141/240395 = 0.93238628 ... To prove Theorem 2, we shall give
an explicit version of Proposition 3 for a = 15/16.

PARI gives the numerical values

F1(15/16) = 0.0964204654 . . .,
(Fy/Fy)(15/16) = 1.7628240038.. . .,
A(15/16) = 4.1111565348 . ..

From (3.3), (3.4) and (3.6) we deduce
N
(=5)

> exp(—1.7721197321m + 0.6711),
1

‘En (——> ‘ < exp(2.3390368029m — 0.1084).

8
Since (15/16)m —45/32 < n < (15/16)m + 19/32, from (4.2) and (3.8) we
get
1(3/2)%|| > exp(—3.327097m + 8.43 — 1.16)
— exp(—3.332035m + 4.34 — 0.40)
> 27988 (exp(0.17) — exp(—0.005m)) > 2708

for m > 10740000. Therefore (1.5) is proved for k& > 64440000. For
k < 64440000, we shall use the following lemma, inspired by Delmer and
Deshouillers [3].

LEMMA 2. For a positive integer n, let [(n) denote the mazimal number
of identical consecutive digits in the binary expansion of n. Then, if 1(3F) <
0.8p — 2, we have

log3 ) +1(3P) + 2

—0. log 2
1(3/2)F = 27%%  for
1252 408

<k<p
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Proof. Follow exactly the proof of [3, Proposition 1]. m

Define now the finite sequence (ko,...,k,) by the initial value ko =
64440000 and the recursion relation
083 k4 1(3%) + 2

log 2
log 3
log 2 +0.8

if 1(3%) < 0.8k — 2.

kiv1 =

This sequence is decreasing and terminates when the condition I(3%) <
0.8k; —2 is not satisfied. PARI gives r = 41 and k, = 11. Since formula (1.5)
is true for k =5,...,11 and k € {k, + 1,...,ko} by Lemma 2, the proof of
Theorem 2 is complete.

References

[1] K. I. Appel and J. B. Rosser, Tables for estimating functions of primes, Comm. Res.
Div. Tech. Rep. 4 (1961).

[2] F. Beukers, Fractional parts of powers of rationals, Math. Proc. Cambridge Philos.
Soc. 90 (1981), 13-20.

[3] F. Delmer and J.-M. Deshouillers, The computation of g(k) in Waring’s problem,
Math. Comp. 54 (1990), 885-893.

[4 A. K. Dubickas, A lower bound for the quantity ||(3/2)*||, Russian Math. Surveys 45
(1990), 163-164.

[5] M. Hata, Legendre type polynomials and irrationality measures, J. Reine Angew.
Math. 407 (1990), 99-125.

[6] J. Kubina and M. Wunderlich, Eztending Waring’s conjecture up to 471600000,
Math. Comp. 55 (1990), 815-820.

[7] K. Mahler, On the fractional parts of powers of real numbers, Mathematika 4 (1957),
122-124.

[8] H. Rademacher, Topics in Analytic Number Theory, Springer, 1973.

[9] L. Schoenfeld, Sharper bounds for the Chebyshev functions 0(x) and ¥ (x) II, Math.
Comp. 30 (1976), 337-360.

A2X

CNRS UMR 5465

Université Bordeaux 1

351 cours de la Libération

F-33405 Talence Cedex, France

E-mail: Laurent.Habsieger@math.u-bordeaux.fr

Received on 18.1.2002
and in revised form on 15.4.2002 (4189)



