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Additive relations with conjugate algebraic numbers
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Artūras Dubickas (Vilnius)

1. Introduction. Let K be a field of characteristic zero, unless stated
otherwise. As usual, K denotes the algebraic closure of K and K∗=K \{0}.
There are two types of problems about additive relations in conjugates.
A typical problem of the first type is to decide whether, for given k1, . . . , kn
∈ K, the linear form k1α1 + . . .+ knαn vanishes with some non-zero α1, . . .
. . . , αn ∈ K conjugate over K. This problem was studied earlier by C. J.
Smyth [10], J. D. Dixon [2], K. Girstmair [6], [7], M. Drmota and M. Skałba
[3] (see also [1] and [4]).

A problem of the second type can be stated as follows. Given a positive
integer n and k1, . . . , kn ∈ K∗, which β ∈ K can be written as

β = k1α1 + . . .+ knαn

with α1, . . . , αn ∈ K conjugate over K? We write A(K; k1, . . . , kn) for the
set of such numbers β. Here, there is no restriction on α = α1 whose degree
over K is not necessarily equal to n. (For instance, α may be zero.) We also
do not assume that the conjugates of α over K, α1, . . . , αn, are all distinct.
Our purpose is to study the set A(K; k1, . . . , kn). The structure of this set
is non-trivial if n ≥ 2 and k1 + . . . + kn = 0. It is worth pointing out that
under these conditions the set A(K; k1, . . . , kn) is neither a linear space over
K nor even an additive semigroup (see Corollary 2).

Given β ∈ K, let throughout L be the Galois closure of K(β) over K,
and let G be the Galois group of L/K. In [5] the author and C. J. Smyth
described the set A(K; 1,−1): an algebraic number β can be written as a
difference α1−α2 of algebraic numbers α1, α2 conjugate over K if and only
if there is a σ ∈ G such that

∑v−1
j=0 σ

j(β) = 0. (Here, v is the order of the
cyclic group 〈σ〉 generated by σ.) Although the result is only stated for K
being a number field, the proof remains the same for an arbitrary field of
characteristic zero. We begin by observing that A(K; 1,−1) is contained in
every other set A(K; k1, . . . , kn).
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Proposition. If n is a positive integer and k1, . . . , kn ∈ K∗, then
A(K; 1,−1) ⊂ A(K; k1, . . . , kn).

Proof. Note that A(K; kk1, . . . , kkn) = A(K; k1, . . . , kn) for every k ∈
K∗. Also, if

∑n
j=1 kj 6= 0, then A(K; k1, . . . , kn) = K. Indeed, this follows

immediately by setting α1 = . . . = αn = β/(
∑n
j=1 kj). For

∑n
j=1 kj = 0, by

taking α2 = . . . = αn, the Proposition follows easily.

2. Main results. For β ∈ K, let L(β) be the linear space
∑d
j=1 Kβj

with β1, . . . , βd being all d distinct conjugates of β over K. In other words,
L(β) is the usual K[G]-module K[G]β =

∑
σ∈GKσ(β). Here, K[G] is the

group ring whose elements are
∑
σ∈G eσσ, eσ ∈ K (see Section 1 of [7]). Our

first theorem reduces the search for possible α.

Theorem 1. Given k1, . . . , kn ∈ K, assume that β can be represented
by the linear form k1α1 + . . . + knαn with α1, . . . , αn ∈ K conjugate to α
over K. Then α can be chosen in L(β).

Set TH =
∑
σ∈H σ for a subsetH of a Galois group G of some finite Galois

extension of K. If G is a subgroup of G, then TG(β) = (|G|/d)(β1 + . . .+βd),
so TG(β) = 0 if and only if the trace of β (over K) is equal to 0.

It is easily seen that the trace of every β ∈ A(K; k1, . . . , kn), where
k1 + . . .+ kn = 0, is 0. Indeed, setting F for the Galois closure of L(α) over
K, G = Gal(F/K) and using β = k1α1 + . . .+ knαn, we deduce that

TG(β) =
n∑

j=1

kjTG(αj) = TG(α)
n∑

j=1

kj = 0,

so the trace of β over K is 0.
Generally speaking, the property of β to lie in A(K; k1, . . . , kn) depends

on k1, . . . , kn, on G, and on linear relations with conjugates of β. Since the
trace of β is zero, every linear relation can be expressed as ν1β1+. . .+νdβd =
0, where ν1, . . . , νd ∈ K, and, without loss of generality, ν1 + . . .+ νd = −1.
More precisely, β ∈ A(K; k1, . . . , kn) if and only if there exist σ2, . . . , σn ∈ G
and a linear relation normalized as above such that the linear system

(1) M(x1, x2, . . . , xd)t = (ν1 + 1, ν2, . . . , νd)t

has a solution. Here, t stands for the transpose, M = ‖mij‖i,j=1,...,d is the
d×d matrix with mij =

∑
kr, the sum being taken over every r, 1 ≤ r ≤ n,

such that σr(βi) = βj , where σ1 is the identity. If there are no such r,
then mij = 0. (Using Theorem 1 and writing α = x1β1 + . . .+ xdβd, where
x1, . . . , xd is the solution of (1), we have

∑n
j=1 kjσ

−1
j (α) = (1+ν1)β+ν2β2+

. . .+ νdβd = β.)
As in [5], it turns out that the condition on the trace of β to be zero,

although necessary, is not sufficient for β to belong to A(K; k1, . . . , kn).
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The next statement is a useful criterion which allows one to construct such
numbers.

Theorem 2. Suppose that β ∈ A(K; k1, . . . , kn) with k1, . . . , kn ∈ K∗

satisfying k1 + . . . + kn = 0. Then there is a subgroup H of G which is
generated by at most n− 1 elements such that TH(β) = 0.

Of course, if H = G, then TH(β) = 0. However, for H 6= G, TH(β) 6= 0
provided that the linear relation n1β1 + . . . + ndβd = 0 with non-negative
integers ni such that n1 + . . .+ nd ≤ |G| is satisfied only if n1 = . . . = nd.
In particular, this is the case if λ(β) = 0 for λ ∈ K[G] implies that λ = kTG
with k ∈ K.

Assume that E ⊂ K is a finite Galois extension of K with Galois group
G. By the normal basis theorem, there is a w ∈ E such that E = K[G]w.
Set β = w − TG(w)/|G|. Then G = G, TG(β) = 0, and TH(β) 6= 0 for every
subset H of G, H 6= G.

Corollary 1. Let k1, . . . , kn ∈ K∗ be such that k1 + . . .+ kn = 0. As-
sume that K has a Galois extension of degree D over K whose Galois group
is not generated by n− 1 of its elements. Then there is an algebraic number
of degree D over K with zero trace which is outside the set A(K; k1, . . . , kn).

In particular, if E ⊂ K is an abelian extension of K with Galois group
isomorphic to (Z/2Z)n, where Z denotes the set of integers, then K \
A(K; k1, . . . , kn) contains an algebraic number of degree D = 2n over K
with zero trace, because every subgroup of (Z/2Z)n generated by n − 1 el-
ements is of order at most 2n−1 < 2n. Of course, not every field K has
such an extension E. (For instance, for the field of real numbers R, we have
[E : R] ≤ [R : R] = 2.)

If K is a number field, i.e. a finite extension of the field of rational num-
bers Q, then such an extension exists for every n. Let p1, p2, . . . , pn be prime
numbers such that

√
p1 6∈K,

√
p2 6∈K(

√
p1), . . . ,

√
pn 6∈K(

√
p1, . . . ,

√
pn−1).

Setting E = K(
√
p1, . . . ,

√
pn) and

(2) w = (1 +
√
p1) . . . (1 +

√
pn),

we have E = K[Gal(E/K)]w, where Gal(E/K) is isomorphic to (Z/2Z)n

(see Lemma 1 below). Clearly, β = w − 1 is the sum of 2n − 1 square
roots. Note that every number

√
v, where v ∈ Z is not a perfect square,

belongs to A(K; 1,−1). By the Proposition, it also belongs to every set
A(K; k1, . . . , kn) with k1, . . . , kn ∈ K∗ satisfying k1 + . . . + kn = 0. The
number β = w − 1, where w is defined by (2), is the sum of square roots,
but β 6∈ A(K; k1, . . . , kn), by Corollary 1.

Corollary 2. If k1, . . . , kn ∈ K∗, where K is a number field , and
k1 + . . .+ kn = 0, then A(K; k1, . . . , kn) is not an additive semigroup.
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If β 6∈ A(K; k1, . . . , kn), then kβ 6∈ A(K; k1, . . . , kn) for every k ∈ K∗, so
that K\A(K; k1, . . . , kn) contains an infinite set of numbers with zero trace.
On the other hand, every β of trace 0 is represented by every sufficiently
long linear form in conjugates of α.

Before we give a precise version of this statement, note that every field of
characteristic 0 contains a subfield isomorphic to Q. In Theorem 3, R stands
for a possible image of the usual R under this isomorphism. We say that
β ∈ K of degree d over K is symmetric over K if there exist σ2, . . . , σd ∈ G
such that the matrix ‖σi(βj)‖i,j=1,...,d is a Latin square, that is, each of its
rows and each of its columns is a permutation of β1, . . . , βd. Here, σ1 is the
identity. (Non-symmetric numbers exist! The smallest possible degree for
them to occur is 6. We will give the proof of this in a subsequent paper on
multiplicative relations.) Since every A(K; k1, . . . , kn) contains all numbers
of prime degree over K with zero trace, the next theorem is enounced for
d ≥ 4 only.

Theorem 3. Let β be an algebraic number of degree d ≥ 4 over K
and of trace 0 over K. If k1, . . . , kn ∈ K∗ ∩ R, where n ≥ 2d − 5, then
β ∈ A(K; k1, . . . , kn). Moreover , if β is symmetric over K, then the above
is true for n ≥ 2[d/2]− 1.

Throughout, [. . .] denotes the integral part. Note that 2[d/2]− 1 equals
d− 1 and d− 2 for even and odd d, respectively. In particular, let Ad be the
set of algebraic numbers (over Q) of degree at most d. If n ≥ 2d − 5, and
k1, . . . , kn ∈ Q∗, then Ad ⊂ A(Q; k1, . . . , kn).

For d = 4, we deduce that every β of degree ≤ 4 over Q can be rep-
resented by every linear form k1α1 + k2α2 + k3α3 of length 3 with fixed
k1, k2, k3 ∈ Q∗ and some algebraic numbers α1, α2, α3 conjugate over Q.
Thus, for d = 4 the inequality n ≥ 3 of Theorem 3 is sharp. It cannot be
replaced by n ≥ 2, which is shown by the example of β =

√
2 +
√

3 +
√

6 6∈
A(Q; 1,−1) (see [5]).

The final section of this paper contains some results on the dimension of
L(β)—so it deals with a question that may appear to be somewhat apart
from the foregoing results.

3. Auxiliary results

Lemma 1. Given a number field K, let p1, . . . , pn be prime numbers such
that [K(

√
p1, . . . ,

√
pn) : K] = 2n. Then

E = K(
√
p1, . . . ,

√
pn) = K[Gal(E/K)]w,

where Gal(E/K) is isomorphic to (Z/2Z)n and where w is given by (2).

Proof. Clearly, w is of degree 2n over K. It suffices to show that the
conjugates of w, (1 ± √p1) . . . (1 ± √pn), are linearly independent over K.
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Assume, for contradiction, that they are linearly dependent over K. Then
the numbers (1±√p1) . . . (1±√pn−1) are linearly dependent over K(

√
pn)

and so on. At the end of the argument we find that the numbers 1 +
√
p1

and 1−√p1 are linearly dependent over K(
√
p2, . . . ,

√
pn). This however is

not the case, because (1 +
√
p1)/(1−√p1) 6∈ K(

√
p2, . . . ,

√
pn).

Lemma 2. Let d ≥ 4. Suppose that M is a d×d matrix with real negative
entries on the main diagonal and non-negative entries outside the main
diagonal such that the sums of its elements in every row and in every column
are all equal to zero. If either the first row contains at least d − 2 positive
entries, or M is a Latin square and , say , the first row contains at least [d/2]
positive entries, then the rank of the matrix is d− 1.

Proof. Let M = ‖mij‖i,j=1,...,d. Suppose we have a linear relation

(3) u1r1 + . . .+ udrd = 0

between its rows with real u1, . . . , ud, where ui 6= 0 for at least one i. Assume
uj = u has the largest modulus among ui, i = 1, . . . , d. Set J = {j}. Given
j, there are some i 6= j such that mij > 0, because mjj < 0. Now, by
considering the jth entry of the vector on the left-hand side of (3), we see
that every such ui is equal to u. We increase J by adding all such indices i.
We continue in this fashion with every j in the new J as before increasing
J step by step. Assume that at the end of the argument we obtain a set
of indices which, by abuse of notation, we denote by J again. Then uj = u
for every j ∈ J , but uj 6= u for j 6∈ J . The task is now to show that
J = {1, . . . , d}.

By the definition of J , the |J | × d matrix formed by the rows whose
indices belong to J has d−|J | zero columns. The row sums in the remaining
|J | × |J | matrix M ′ are all zero. Thus so must be the column sums of M ′.
After interchanging some of the rows of M and, if necessary, some of the
columns (which does not change the rank of M), we can write M in the
form (

M ′′ 0
0 M ′

)
.

Here, M ′′ is a (d− |J |)× (d− |J |) matrix.
Assume that |J | < d. Then |J | and d − |J | are both greater than or

equal to 2. In the first case of the lemma, there is a row of M with at most
d−1− (d−2) = 1 zero element, a contradiction. In the second case, M ′ and
M ′′ are both Latin squares with at least 1+ [d/2] non-zero elements. Hence,
|J | and d−|J | are both greater than or equal to 1+[d/2]. By adding them,
we deduce that d ≥ 2 + 2[d/2], which is impossible.
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4. Proofs

Proof of Theorem 1. Suppose β ∈ K can be expressed as k1α1 + . . . +
knαn. Let F be the Galois closure of L(α) over K with Galois group G. Then
F is a semisimple K[G]-module containing L(β) (see [8, Theorem 2.11, p. 23
and Proposition 2.2, p. 17]). Accordingly, F = L(β) ⊕ U for some K[G]-
module U , where ⊕ stands for direct sum. Write α = α′+ γ with α′ ∈ L(β)
and γ ∈ U . Let σj ∈ G be such that αj = σj(α). Then αj = σj(α′) + σj(γ)
and

β = k1α1 + . . .+ knαn =
n∑

j=1

kjσj(α′) +
n∑

j=1

kjσj(γ).

Note that the left-hand side and the first sum on the right-hand side are
both in L(β), whereas the second sum is in U . This implies that the latter
sum is zero, hence β =

∑n
j=1 kjσj(α

′) with α′ ∈ L(β), as claimed.

Proof of Theorem 2. Since β = k1α1 + . . . + knαn, it follows that β ∈
L(α). By Theorem 1, α can be chosen in L(β), hence the Galois closure
of K(α) over K is L. Write β = k1α +

∑n
j=2 kjσj(α), where αj = σj(α),

j = 2, . . . , n, with σj ∈ G. Put H = 〈σ2, . . . , σn〉. Then TH(αj) = TH(α) for
every j = 2, . . . , n. It follows that TH(β) = (k1 + . . .+ kn)TH(α) = 0.

Proof of Theorem 3. It suffices to prove the assertion for the case
∑n
j=1 kj

= 0. We start with the first statement. As n ≥ 2d−5, at least d−2 elements
of the set {k1, . . . , kn} are either positive or negative; we may assume that
k2, . . . , kd−1 are all positive. On replacing the remaining ones, namely k1

and kd, . . . , kn, by their sum k1 +kd+ . . .+kn we shall write k1 for it again.
The task is now to show that

β = k1α1 + . . .+ kd−1αd−1 + kdαd,

where kd = 0, has a solution in conjugates of α ∈ L(β) over K.
For this, assume that σ1 is the identity and σ2, . . . , σd ∈ G are some

automorphisms which map β to β2, . . . , βd, respectively. Setting in (1) ν1 =
. . . = νd = −1/d, we need to show that the linear system

M(x1, x2, . . . , xd)t = (1− 1/d,−1/d, . . . ,−1/d)t

has a solution. Recall that the elements of M are given by the formulae
mij =

∑
kr, the sum being taken over all r, 1 ≤ r ≤ n, such that σr(βi) =

βj . Then M is the matrix as in the first case of Lemma 2, hence its rank is
d− 1. The sum of the rows of the d× (d+ 1) matrix M ∗ obtained from M
by adding to it the column (1 − 1/d,−1/d, . . . ,−1/d)t is zero. We deduce
that d− 1 = rankM ≤ rankM∗ ≤ d− 1, thus rankM = rankM∗ = d− 1.
By the Kronecker–Capelli theorem, we conclude that the linear system has
a solution.
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If β is symmetric and n ≥ 2[d/2]−1, then at least [d/2] elements of the set
{k1, . . . , kn} are either positive or negative. Assuming that k2, . . . , k[d/2]+1
are positive and arguing as above with the automorphisms σ2, . . . , σd ∈ G
such that the matrix ‖σi(βj)‖i,j=1,...,d (with σ1 being the identity) is a Latin
square, we will obtain M as in the second case of Lemma 2 (because the
numbers σ1(β), . . . , σd(β) are all distinct). The proof can now be concluded
as above.

Example. Let K = Q, β =
√

2 +
√

3 +
√

6, d = 4, n = 3, k1 = k2 = 1,
k3 = −2. Then α may be chosen to be (−2

√
2 +
√

3 + 2
√

6)/4.

By Theorem 3, the equation

β =
√

2 +
√

3 +
√

6 = α1 + α2 − 2α3

has a solution in algebraic numbers α1, α2, α3 conjugate over Q. We will
show how to find one such solutions.

Since G is the 4-group, we choose three remaining automorphisms σ2 =
(12)(34), σ3 = (13)(24) and σ4 = (14)(23), where say β1 =

√
2 +
√

3 +
√

6,
β2 = −

√
2 +
√

3 −
√

6, β3 =
√

2 −
√

3 −
√

6 and β4 = −
√

2 −
√

3 +
√

6.
Now, setting ν1 = . . . = ν4 = −1/4 in (1), we obtain the system of linear
equations

x1 + x2 − 2x3 = 3/4,

x1 + x2 − 2x4 = −1/4,

−2x1 + x3 + x4 = −1/4,

−2x2 + x3 + x4 = −1/4.

One of its solutions is x1 = x2 = 0, x3 = −3/8, x4 = 1/8. This immediately
gives

α = α1 = (−3β3 + β4)/8 = (−2
√

2 +
√

3 + 2
√

6)/4.

Also,
α2 = (2

√
2 +
√

3− 2
√

6)/4,

α3 = (−2
√

2−
√

3− 2
√

6)/4.

One can easily check that
√

2 +
√

3 +
√

6 = α1 + α2 − 2α3.

5. Dimension of the linear space spanned by conjugates. Let β be
an algebraic number of degree d over K. Although the next topic is beyond
the main theme of this paper, we ask how small the dimension of the linear
space L(β) over K can be, or, equivalently, how many linearly independent
relations with conjugates of β can occur. If, for example, β is of trace zero
over K, then dimK L(β) = d− 1 reflects the fact that TG(β) = 0 is the only
linear relation between the conjugates of β, so that ν1 = . . . = νd = −1/d is
the only choice in (1).
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We will first show that if β is an algebraic number of degree d ≥ 3
over K which is a real extension of Q, then dimK L(β) ≥ 2. Indeed, if
dimK L(β) = 1, then G is isomorphic to a multiplicative subgroup of K∗.
Since G is finite, we deduce that |G| ≤ 2 giving d ≤ 2. (The above proof
is entirely due to the referee. Our initial proof based on an argument of
C. J. Smyth [9] and was somewhat longer.)

Theorem 4. For every number field K, there is an infinite sequence of
integers d such that for every such d there is an algebraic number β of degree
d with dimK L(β) = log2 d.

Proof. As above, choose r prime numbers p1, . . . , pr such that [K(
√
p1, . . .

. . . ,
√
pr) : K] = 2r. Set

β =
√
p1 + . . .+

√
pr.

Clearly, the degree of β over K equals d = 2r and its trace is zero. Also,
dimK L(β) = r = log2 d, which is the desired conclusion.

If r = dimQ L(β), then the largest possible value for the degree d of β
over Q turns out to be 2rr! except for some r in the range 2 ≤ r ≤ 10. (This
was shown in a joint work of N. Berry, the author, N. Elkies, B. Poonen and
C. J. Smyth (in preparation).)

In all previous cases [1]–[7], [10] not only additive, but also the respec-
tive multiplicative results were obtained. It would be of interest to find out
whether a multiplicative analogue of Theorem 1 is true. (Its weaker form
and other multiplicative results will appear elsewhere.) More precisely, let
k0, k1, . . . , kn be non-zero integers. Assume that the k0th power of β can be
represented as βk0 = αk1

1 . . . αknn with α1, . . . , αn conjugate to α over Q. Is
it true that α can be chosen so that some of its natural powers is equal to
vβv1

1 . . . βvdd with v, v1, . . . , vd ∈ Z? (If so, it would be sufficient to prove this
for the case k1 + . . .+ kn = 0, n ≥ 3, for otherwise it is either trivial or, if
n = 2, follows from the construction in [5, Section 5].)
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