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1. Introduction and corrected form of D. Klusch’s formula. En-
try 8, Chapter 15 of Ramanujan’s celebrated second notebook [2] contains a
“truly remarkable” ([3, p. 124]) formula which is “one of the most interesting
and incredible formulas in the notebooks” ([2, pp. 50–51]):

Entry 8. For τ > 0,
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where

ζ(s) =
∞∑

n=1

1
ns
, s = σ + it, σ > 1,(1.1)

denotes the Riemann zeta-function. We shall denote the complex variable
s = σ + it throughout in what follows.

A character analogue of (A) was obtained by S. Egami [7] relating the
value of L(1/2, χ), where χ is a primitive Dirichlet character mod q, to

q∑

r=1

χ(r)
∞∑

n=1

e−(r/q)n2τ

1− e−n2τ
.

Recently, M. Katsurada [14] has generalized all the preceding results to
the framework of r-multiple Hurwitz zeta-function ζr(s, α) (where α is a
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positive real parameter) defined by

ζr(s, α) =
∞∑

m1,...,mr=0

1
(m1 + . . .+mr + α)s

, σ > r,(1.2)

or equivalently by

ζr(s, α) =
∞∑

n=0

(r)n
n!

(n+ α)−s, σ > r,(1.3)

where (r)n denotes the Pochhammer symbol or the rising factorial (cf. [6,
p. 6])

(x)n =
Γ (x+ n)
Γ (x)

= x(x+ 1) . . . (x+ n− 1),(1.4)

where Γ (s) denotes the gamma function.
The multiple Hurwitz zeta-function ζr(s, α) is a special case of the Barnes

multiple Hurwitz zeta-function ζr(s, α, (ω1, . . . , ωr)) with the base ω1 =
. . . = ωr = 1 (cf. [1]). This special case, however, was introduced first by
Hj. Mellin [17] who already stated the important representation of ζr(s, α)
in terms of the ordinary Hurwitz zeta-function ζ1(s, α) = ζ(s, α),

ζr(s, α) =
r−1∑

l=0

cr,l(α)ζ(s− l, α),(1.5)

where cr,l(α) are Mellin–Barnes coefficients defined by (3.17) below and

ζ(s, α) =
∞∑

n=0

(n+ α)−s, σ > 1, ζ(s, 1) = ζ(s).(1.6)

We note the slight inconsistency in the notation of the multiple Hurwitz
zeta-function. In Mellin [17] our ζr(s, α) is denoted by ζr−1(s, α). Mellin did
not give the coefficients explicitly. They were given in closed form by Choi
[4], Vardi [19] and by the present authors [10].

Many authors including Choi, Quine, Srivastava, Vardi and Wilton have
been concerned with the evaluation of power series with special values of
ζ(s, α) at positive integers ≥ 2,

∞∑

m=0

1
m+ λ

ζ(m,α)zm,

but have been successful only for small values of λ, λ = 0, 1, 2. Only our
former paper [10] gives a complete answer to this problem.

Katsurada [14] applies his method of Mellin–Barnes integrals to gener-
alize (A) to ζr(1/2, α). However, his result (Theorem 1) is explicit only for
r = 1 (because he did not evaluate the rth derivative of the quantity explic-
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itly, which does not seem straightforward). In Section 5 we shall avoid this
differentiation process by a new trick and give the explicit evaluation.

In Section 3, however, we shall make full use of the representation (1.5) to
transfer our results in Section 2 (Theorem 2.1) on the closed form evaluation
of the Hurwitz zeta-function at all negative rational points b/a with b odd
and a even, to that of the values of the multiple Hurwitz zeta-function at all
positive rational points in (0, 1), so that our result (Theorem 3.1) gives not
only an explicit formula for ζr(1/2, α) but also a full result for ζr(b/(2N), α)
with b an odd integer.

We accomplish the evaluation of the Hurwitz zeta-function at negative
rational arguments in a manner similar to that in [12], and so we may say
our present investigation is in the same vein as before. (For possible choices
of other gamma factors, cf. Koshlyakov [16].)

Our evaluations in Theorem 3.1, however, take a detour of moving to
negative rational points and going back to positive rational points by de-
composition (3.18) (in place of the customary functional equation), so that
our result at first glance does not seem to imply Katsurada’s result as it
stands, since his result involves undetermined derivatives while in ours we
determine the derivatives. In Section 4 we shall take a more direct approach
to evaluating the multiple Hurwitz zeta-function at positive rational argu-
ments.

In the following, interchanges of limit processes are justified by absolute
convergence, and we shall not mention this at each occurrence.

In the remainder of this section, we shall present a corrected version of
D. Klusch’s result [15, formula (B)] and point out that the corrected formula
is not very different from Euler’s partial fraction expansion of the hyperbolic
cotangent function (cf. [12]). The error occurs in the integrand defined by
[15, (2.7)], which should be ψ(s) = Γ (s)ζ(s)ζ(−2s), and so in [15, (2.10)],
the integral 1

2πi

�
(c′) ψ(s) ds cannot be expanded in Lambert series (cf. [12]

for more detailed exposition).

Proposition 1.1 (corrected version of D. Klusch’s formula [15]). For
τ > 0 we have

(1.7)
∞∑

n=1

(
cosh τ

2n2

sinh τ
2n2

− 2n2

τ

)
=

1
2

√
τ

π

∞∑

n=1

n−3/2 sinh
√

πτ
n − sin

√
πτ
n

cosh
√

πτ
n − cos

√
πτ
n

.

Proof. First we introduce a general principle due to Liouville (cf. [16]).

Principle. Suppose we have two absolutely convergent Dirichlet series

φ1(s) =
∞∑

n=1

an
λsn

(<s > σ1) and φ2(s) =
∞∑

n=1

bn
µsn

(<s > σ2),

where σj , j = 1, 2, is the abscissa of absolute convergence of φj . Then their
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product φ has the Dirichlet series expansion

φ(s) = φ1(s)φ2(s) =
∞∑

n=1

cn
νsn
, cn =

∑

λlµm=νn

albm,

in the same half-plane. Then an integral of the form (κ > sup(σ1, σ2))

I(x) =
1

2πi

�

(κ)

∆(s)φ(s)x−s ds,

where (κ) denotes the vertical line σ = κ, −∞ < t <∞ (s = σ+ it), can be
expanded in the form

I(x) =
∞∑

n=1

cn ·
1

2πi

�

(κ)

∆(s)(xνn)−s ds,

so that we are led to the consideration of the integral
1

2πi

�

(κ)

∆(s)X−s ds,

which we designated as E(X) in [11].

We apply this to the case of

ζ(s)ζ(2s− 2) =
∞∑

n=1

cn
ns
, cn =

∑

dδ2=n

δ2,

and evaluate the integral

Ic(τ) =
π

τ
· 1

2πi

�

(c)

(2π
τ

)−s

sin π
2 s

ζ(s)ζ(2s− 2) ds(1.8)

=
π

τ

∞∑

n=1

cn ·
1

2πi

�

(c)

1
sin π

2 s
(nX)−s ds,

where c > 3/2 and X = 2π/τ .
Applying the known formula

1
2πi

�

(c)

1
sin πz

2

dz

αz
=

2
π
· 1

1 + α2(1.9)

(0 < c < 2, α > 0) (cf. [16, (3.3), p. 116]) to the integral in (1.8), we deduce
that

Ic(τ) =
2
τ

∞∑

n=1

∑

dδ2=n

δ2

1 +
(
dδ2 2π

τ

)2 ,(1.10)

whence (by writing m and n for d and δ respectively)
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Ic(τ) =
2
τ

∞∑

n=1

(
τ

2πn

)2 ∞∑

m=1

1

m2 +
(

τ
2πn2

)2(1.11)

=
2
τ

∞∑

m=1

(
τ

2πm

)2 ∞∑

n=1

n2

(
τ

2πm

)2 + n4
.

Now, if we apply the well-known partial fraction formula of Euler

1
e2πx − 1

= −1
2

+
1

2πx
+
x

π

∞∑

n=1

1
x2 + n2 ,(1.12)

in the form
∞∑

n=1

1
n2 + x2 =

π

x

(
1
2

cothπx− 1
2πx

)
(1.13)

to the first equality in (1.11), we get the left side of (1.7).
On the other hand, if we apply another identity

∞∑

n=1

n2

a2 + n4 =
π

2
√

2a
· sinh(π

√
2a)− sin(π

√
2a)

cosh(π
√

2a)− cos(π
√

2a)
(1.14)

([15, (1.3)], cf. also [2]) to the second identity in (1.11), we obtain the right
side of (1.7).

Remark 1. As is apparent from the above proof, formula (1.7) is just a
computation of the double sum (1.10) as two different repeated simple sums
by the use of Euler’s partial fraction formula (1.12) and the identity (1.14)
as the case may be. For a more instructive exposition, cf. [12].

2. Values of Hurwitz zeta-function at negative rational b/a with
b odd, a even. In this section, we shall use an argument similar to that
used in proving Theorem 3 in [12] to prove the following result, which may
be regarded as a quasi-modular relation.

Theorem 2.1. Let h ≥ 0, l ≥ 0 and N ≥ 1 be fixed integers with h < N ,
and let α be a positive parameter. Let

aj = cos
(
π

2N

(
1
2
− j
))

, bj = sin
(
π

2N

(
1
2
− j
))

,

Bj(n, h, l) = −2παn− π(2h+ 1)
2N

(
1
2
− j
)
− π(l − 1)

2
,

A(y) = π(2πy)1/(2N),

(2.1)

and

(2.2) fj(n, h, l, x)

=
cos(2A(n/x)bj +Bj(n, h, l))− e−2A(n/x)aj cos(Bj(n, h, l))

cosh(2A(n/x)aj)− cos(2A(n/x)bj)
.
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Then for x > 0 we have
∞∑

n=1

1
n2Nl−2h ·

exp(−αn2Nx)
1− exp(−n2Nx)

= P (x) + S(x, α),(2.3)

where

P (x) = ζ(2N(l + 1)− 2h)x−1(2.4)

+
l∑

j=0

(−1)j

j!
ζ(−j, α)ζ(2N(l − j)− 2h)xj

+
1

2N
Γ

(
−l +

2h+ 1
2N

)
ζ

(
−l +

2h+ 1
2N

,α

)
xl−

2h+1
2N ,

and

(2.5) S(x, α) =
(−1)h

2N

(
2π
x

)−l+ 2h+1
2N

N−1∑′′

j=−(N−1)

∞∑

n=1

fj(n, h, l, x)n−1−l+ 2h+1
2N

where
∑′′

j means summation over j = −(N−1),−(N−3), . . . , N−3, N−1.

Proof. Consider the integral, with c > 1,

I(x) = Ic(x) =
1

2πi

�

(c)

Γ (s)ζ(s, α)ζ(2N(s+ l)− 2h)x−s ds.(2.6)

Applying the Principle of Section 1 with λn = n + α and µn = n2N to
ζ(s, α)ζ(2N(s+ l)− 2h), we see that

I(x) =
∞∑

n=1

1
n2Nl−2h

∞∑

m=0

1
2πi

�

(c)

Γ (s)((m+ α)n2N)−s ds(2.7)

=
∞∑

n=1

1
n2Nl−2h e

−αn2Nx
∞∑

m=0

e−mn
2Nx

on using the well-known formula for the Mellin inversion
1

2πi

�

(c)

Γ (s)X−s ds = e−X .

Summing the geometric series in (2.7), we get the left-hand side of (2.3).
We now move the line of integration (c) to (−c′), where c′ > l. The

integrand has simple poles at

s = 1, s = −m for m = 0, 1, . . . , l − 1 (s = −l also occurs for h = 0)

and

s = −l +
2h+ 1

2N
.
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The sum of the residues at these poles is given as P (x) in (2.4). Note that
although j = l in the second sum does not appear for h > 0, we may add
that term with j = l in this case as it is zero.

Hence

I(x) = P (x) + J(x),(2.8)

where

(2.9) J(x) = I−c′(x) =
1

2πi

�

(−c′)
Γ (s)ζ(s, α)ζ(2N(s+ l)− 2h)x−s ds.

We are going to evaluate J(x) in the form of the series on the right-hand
side of (2.3). To this end we eventually make the change of variables

1− (2N(s+ l)− 2h) = s1,

but we shall make it in two stages so as to recall the functional equation of
the Hurwitz zeta-function.

Thus, putting s = 1− s1, we recall the functional equation (cf. e.g. [20]
or [9])

ζ(1− s, α) =
Γ (s)
(2π)s

{e−πis/2ψ(s, α) + eπis/2ψ(s,−α)},(2.10)

where

ψ(s, λ) =
∞∑

n=1

e2πiλn

ns
(2.11)

denotes the Lerch zeta-function or the polylogarithm of complex exponential
argument (as such, this is written `s(λ)). Hence

(2.12) Γ (1−s)ζ(1−s, α) =
π

(2π)s sinπs
{e−πis/2ψ(s, α)+eπis/2ψ(s,−α)}.

On the other hand, using the functional equation in unsymmetric form
ζ(s) = 2(2π)s−1 sin(πs/2)Γ (1− s)ζ(1− s),

we deduce that
(2.13) ζ(2N(1− s+ l)− 2h)

= 2(2π)2N(1−s+l)−2h−1(−1)N(1+l)−h+1 sin(πNs)
× Γ (1− 2N(1− s+ l) + 2h)ζ(1− 2N(1− s+ l) + 2h).

Hence the integrand of

J(x) =
1

2πi

�

(1+c′)

Γ (1− s)ζ(1− s, α)ζ(2N(1− s+ l)− 2h)x−(1−s) ds

becomes
(2.14) (2π)2N(1−s+l)−2h−s(−1)N(1+l)−h+1CN (πs)

× {e−πis/2ψ(s, α) + eπis/2ψ(s,−α)}Γ (1− 2N(1 + l) + 2h+ 2Ns)

× ζ(1− 2N(1 + l) + 2h+ 2Ns)x−1+s,
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where

CN (z) =
sinNz
sin z

=
eiNz − e−iNz
eiz − e−iz =

N−1∑′′

j=−(N−1)

eijz.(2.15)

Now making the change of variables
1− 2N(1 + l) + 2h+ 2Ns = s1

we obtain

(2.16) J(x) = (−1)h+l
(

2π
x

)−l+ 2h+1
2N 1

2πi

�

(c1)

(
x

(2π)1+2N

) s1
2N

× CN
(
π(s1 − 2h− 1)

2N

){
e
πi(2h+1)

4N −πi(l+1)
2 e−

πi
4N s1ψ

(
s1 − 2h− 1

2N
+ 1 + l, α

)

+ e−
πi(2h+1)

4N +πi(l+1)
2 e

πi
4N s1ψ

(
s1 − 2h− 1

2N
+ 1 + l,−α

)}
Γ (s1)ζ(s1)

ds1

2N
after simplification using

CN (z + πl) = (−1)(N−1)lCN (z).
We note that c1 = 1 − 2Nl + 2h + 2Nc′ > 1 and hence that both

zeta-functions can be expanded into Dirichlet series. We have therefore

(2.17) e−
πi
4N s1ψ

(
s1 − 2h− 1

2N
+ 1 + l, α

)
ζ(s1)

=
∞∑

m,n=1

e2πiαnn−1−l+ 2h+1
2N (mn

1
2N e

πi
4N )−s1 = G1(s1),

say. Similarly

(2.18) e
πi
4N s1ψ

(
s1 − 2h− 1

2N
+ 1 + l,−α

)
ζ(s1)

=
∞∑

m,n=1

e−2πiαnn−1−l+ 2h+1
2N (mn

1
2N e−

πi
4N )−s1

= G2(s1) = G1(s̄1),
say.

Hence, substituting (2.17) and (2.18) in (2.16) and writing s for s1 and κ
for c1, we derive that

J(x) = J1(x) + J2(x),(2.19)

where

J1(x) =
(−1)h+l

2N

(
2π
x

)−l+ 2h+1
2N

e
πi(2h+1)

4N −πi(l+1)
2(2.20)

× 1
2πi

�

(κ)

(
x

(2π)1+2N

) s
2N

CN

(
π(s− 2h− 1)

2N

)
Γ (s)G1(s) ds
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and

(2.21) J2(x) =
(−1)h+l

2N

(
2π
x

)−l+ 2h+1
2N

e−
πi(2h+1)

4N +πi(l+1)
2

× 1
2πi

�

(κ)

(
x

(2π)1+2N

) s
2N

CN

(
π(s− 2h− 1)

2N

)
Γ (s)G2(s) ds.

Changing the order of summation and integration, we obtain

J1(x) =
(−1)h+l

2N

(
2π
x

)−l+ 2h+1
2N

e
πi(2h+1)

4N −πi(l+1)
2(2.20)′

×
∞∑

m,n=1

e2πiαnn−1−l+ 2h+1
2N E(Xm,n),

where

E(Xm,n) =
1

2πi

�

(κ)

X−sm,nCN

(
π(s− 2h− 1)

2N

)
Γ (s) ds(2.22)

and

Xm,n = 2πm
(

2πn
x

) 1
2N

e
πi
4N ,(2.23)

and similarly

J2(x) =
(−1)h+l

2N

(
2π
x

)−l+ 2h+1
2N

e−
πi(2h+1)

4N +πi(l+1)
2(2.21)′

×
∞∑

m,n=1

e−2πiαnn−1−l+ 2h+1
2N E(Xm,n).

Thus we are led to evaluate the integral E(Xm,n). Recalling the definition
(2.15) of CN (z), we see that

(2.24) X−sm,nCN

(
π(s− 2h− 1)

2N

)
=

N−1∑′′

j=−(N−1)

e−
πi(2h+1)

2N j(Xm,ne
− πi

2N j)−s

and that
|argXm,ne

− πi
2N j | < π/2.

Hence, by the fundamental Mellin inversion formula used above,

(2.25) E(Xm,n) =
N−1∑′′

j=−(N−1)

e−
πi(2h+1)

2N je−Xm,ne
− πi

2N j

=
N−1∑′′

j=−(N−1)

e−
πi(2h+1)

2N j

(
exp

(
−2π

(
2πn
x

) 1
2N

e
πi
2N ( 1

2−j)
))m

.
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Substituting (2.25) in (2.20)′ and summing over m, we derive that

J1(x) =
(−1)h

2N

(
2π
x

)−l+ 2h+1
2N

e
πi(2h+1)

4N +πi(l−1)
2

N−1∑′′

j=−(N−1)

e−
πi(2h+1)

2N j(2.26)

×
∞∑

n=1

e2πiαnn−1−l+ 2h+1
2N

exp
(
−2π

(2πn
x

) 1
2N ξj

)

1− exp
(
−2π

(2πn
x

) 1
2N ξj

) ,

where we write

ξj = e
πi
2N ( 1

2−j) (= aj + ibj).(2.27)

Using the notation (2.1), we further transform (2.26) into

J1(x) =
(−1)h

2N

(
2π
x

)−l+ 2h+1
2N

N−1∑′′

j=−(N−1)

(2.28)

×
∞∑

n=1

n−1−l+ 2h+1
2N

exp(−iBj(n, h, l)− A(n/x)ξj)
2 sinh(A(n/x)ξj)

.

Similar reasoning yields

J2(x) =
(−1)h

2N

(
2π
x

)−l+ 2h+1
2N

N−1∑′′

j=−(N−1)

(2.29)

×
∞∑

n=1

n−1−l+ 2h+1
2N

exp(iBj(n, h, l)− A(n/x)ξj)

2 sinh(A(n/x)ξj)
(= J1(x)).

To conclude the assertion it suffices to calculate the sum of the exponen-
tial functions contained in (2.28) and (2.29), or

<
(

exp(−iBj(n, h, l)− A(n/x)(aj + ibj)) sinh(A(n/x)(aj − ibj))
sinh(A(n/x)(aj + ibj)) sinh(A(n/x)(aj − ibj))

)
,

which is seen to coincide with fj(n, h, l, x) given in (2.2), and the proof is
complete.

Remark 2. We note that in the special case N = 1, h = 0, we have
j = 0 and f0(n, 0, 0, x) coincides with Katsurada’s f0(n/x, αn), and therefore
our Theorem reduces to Katsurada’s Corollary 1.1 of [14]. We also point
out a minor slip in Katsurada’s proof of his Theorem 1. In expressing the
quantities X±k,n on p. 169, he drops the coefficients i before bk(αn). This
derivation corresponds to those of (2.27) and (2.28).

3. Values of the multiple Hurwitz zeta-function at rational ar-
guments b/(2N) with b odd in the critical strip. In this section our
main objective is to transform our Theorem 2.1 to the case of multiple Hur-
witz zeta-functions. But before that we shall present a simple method for
evaluating the derivatives in Katsurada’s Theorem 1 of [14].
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3.1. Performance of differentiation. First we introduce some notation.
Let [x]n denote the falling factorial

[x]n = x(x− 1) . . . (x− n+ 1) = (−1)n(−x)n,(3.1)

a companion to the rising factorial or Pochhammer symbol,

(x)n =
Γ (x+ n)
Γ (x)

introduced by (1.4). Let s(n, k) (resp. S(n, k)) denote the Stirling numbers
of the first (resp. second) kind defined by

[x]n =
n∑

k=0

s(n, k)xk,(3.2)

xn =
n∑

k=0

S(n, k)[x]k(3.3)

(cf. [6, p. 213, Theorem A and p. 204]).
We now turn to the first objective. Katsurada’s method is outlined in

Remark 5(iii) of our paper [12], and the main point is to evaluate (τ > 0)

Xk =
(2π)1/2−k

2
√
τ
{e− 1

2πi(k+1/2)Yk + e
1
2πi(k+1/2)Y k}(3.4)

in closed form where

Yk =
∞∑

n=1

e2πinα

nk+1/2

∞∑

m=1

Fk((2π)3/2eπi/4mn1/2τ−1/2),(3.5)

Fk(z) =
2√
π

(
z

2

)k+1/2

Kk+1/2(z),(3.6)

and Kk+1/2(z) denotes the modified Bessel function of the first kind and
of half-integral order. Then, instead of using the closed form expression for
Kk+1/2(z) ([8]), he had recourse to the initial form (k = 0, 1, . . .)

Kk+1/2(z) = (−1)k
√

π

2z
zk+1

(
d

zdz

)k e−z
z
,(3.7)

thereby introducing uncalculated derivatives (Lemma 3).
If we differentiate in (3.7), we get the following closed form expression

for Kk+1/2(z):

Kk+1/2(z) =

√
π

2z
e−z

k∑

j=0

(k + j)!
(k − j)!

(
1
2z

)j
.(3.8)

Using (3.8) in (3.6) leads to

Fk(z) = 2−k
k∑

j=0

(2k − j)!
j!

2j−kzje−z,(3.9)
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which transforms the inner sum (over m) in (3.5) into the form

(3.10) 2−k
k∑

j=0

(2k − j)!
j!

2j−k
(

2πn
τ

)j/2
eπij/4(2π)j

∞∑

m=1

mje−2mA(n/τ)ξ0

where A(n/τ) = π(2πn/τ)1/2 and ξ0 = eπi/4 are special cases of N = 1 of
(2.1).

The inner sum can be computed (cf. [12, (71)]) in closed form as

(3.11)
j+1∑

a=1

(a− 1)!S(j + 1, a)
1

(e2A(n/τ)ξ0 − 1)a

=
j+1∑

a=1

(a− 1)!S(j + 1, a)
e−aA(n/τ)ξ0

(2 sinh(A(n/τ)ξ0))a
.

Since this closed form is obtained by taking the jth derivative of a composite
function in et (cf. [18, p. 192]), we may say that our claim that the general
case of Katsurada would follow from the differentiation of the case of the
Hurwitz zeta-function is in a sense substantiated.

Now make the successive substitutions: (3.11) into (3.10), (3.10) into
(3.5), and (3.5) into (3.4) to conclude that

Xk =
(2π)1/2−k
√
τ

2−k
k+1∑

a=1

(a− 1)!
k∑

j=a−1

(2k − j)!
j!

2j−k
(

2π
τ

)j/2
(2π)j(3.12)

× S(j + 1, a)
∞∑

n=1

1
nk+1/2−j/2 (Za,j,n + Za,j,n),

where

Z = Za,j,n =
e−

1
4πi(k+1/2)+π

4 ij+2πinα−aA(n/τ)ξ0

(2 sinh(A(n/τ)ξ0))a
.(3.13)

Hence

Za,j,n + Za,j,n = B/A,(3.14)

say, where
A = (cosh(2A(n/τ)a0)− cos(2A(n/τ)b0))a,(3.15)

with a0 = cosπ/4 = 1/
√

2 = b0 as special cases of (2.1).
On the other hand, B is the sum of

2−ae−
1
2πi(k+1/2)+π

4 ij+2πinα(e−A(n/τ)
√

2i − e−A(n/τ)
√

2)a(3.16)

and its conjugate, or twice the real part of (3.16).
Expanding (3.16) and taking its real part, we complete the differentiation

process in Katsurada’s Theorem 1 of [14].
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3.2. Transfer of the results. We restate (1.5) as a lemma.

Lemma 3.1 (Mellin–Vardi). Let

(3.17) cr,l(α) =
(−1)r−1−l

(r − 1)!

r−1∑

j=l

(
j

l

)
s(r, j + 1)αj−l for 0 ≤ l ≤ r − 1.

Then

ζr(s, α) =
r−1∑

l=0

cr,l(α)ζ(s− l, α).(3.18)

Proof. We rewrite the coefficients (r)n/n! as
1

(r − 1)!
· 1
n

(n)r

and expand (n)r as

(n)r =
r−1∑

l=0

(−1)r+l+1s(r, l + 1)nl+1

(see (3.1) and (3.2)). Then

ζr(s, α) =
1

(r − 1)!

∞∑

n=0

(n+ α)−s
r−1∑

j=0

(−1)r+j+1s(r, j + 1)nj.(3.19)

Substituting

nj = (n+ α− α)j =
j∑

l=0

(
j

l

)
(n+ α)l(−α)j−l

into (3.19) and changing the order of summation we deduce (3.18), and the
proof is complete.

We remark that J.-S. Choi [4] has made an extensive study of ζr(s, α)
using the decomposition (3.18).

We are now in a position to state the closed form expression for
ζr
(2h+1

2N , α
)
, 0 ≤ h ≤ N − 1.

Theorem 3.1. With the same notation as in Theorem 2.1, we have, for
x > 0,

Γ

(
2h+ 1

2N

)
ζr

(
2h+ 1

2N
,α

)
=

r−1∑

l=0

(−1)l
(

1− 2h+ 1
2N

)

l

cr,l(α)

×
{

(−1)h+1(2π)−l+
2h+1
2N

N−1∑′′

j=−(N−1)

∞∑

n=1

fj(n, h, l, x)n−1−l+ 2h+1
2N
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+ 2Nx−l+
2h+1
2N

( ∞∑

n=1

1
n2Nl−2h ·

exp(−αn2Nx)
1− exp(−n2Nx)

− ζ(2N(l + 1)− 2h)x−1

−
l∑

j=0

(−1)j

j!
ζ(−j, α)ζ(2N(l − j)− 2h)xj

)}
.

The proof follows on substituting the results of Theorem 2.1 in

ζr

(
2h+ 1

2N
,α

)
=

r−1∑

l=0

cr,l(α)ζ
(
−l +

2h+ 1
2N

,α

)
.

Remark 3. (i) Katsurada [14] also proves a similar result for the Hur-
witz–Lerch zeta-function

φ(s, λ, α) =
∞∑

n=0

e2πinλ

(n+ α)s

corresponding to our Theorem 2.1. We may extend our results to this case.
The χ-analogue of the above results must be more interesting, and we

shall establish a χ-analogue of Theorem 3.1 in our forthcoming paper [13]
(cf. Katsurada’s Corollary 2.2).

(ii) It should be pointed out that Katsurada’s Theorem 3 of [14] giv-
ing the residue of the multiple Hurwitz zeta-function was already given by
Barnes [1] and Choi [5].

4. Values of the r-multiple Hurwitz zeta-function at positive
rational arguments b/a with b odd and a even (revisited). As we
stated in Introduction, our formula for ζr(b/(2N), α) in Theorem 3.1 take
a detour of moving to negative rational points and going back to positive
rational points by (1.5). In this section, we shall give a more direct approach
to evaluating the multiple Hurwitz zeta-function at positive rational argu-
ments, therewith revealing why Katsurada’s method was successful only for
1/2 (see Remark 4(i)). Our result does not involve derivatives.

The lines of argument will remain the same as in former papers [12] and
[13] in that we are in pursuit of a relation similar to the modular relation: we
incorporate the simple gamma factor Γ (s), which is not the proper gamma
factor appearing in the functional equation for the (product of) zeta-function
under consideration.

Our formulation will be similar to that of Katsurada, but we will follow
closely the proof of Theorem 2.1 in Section 2. In particular, we shall indicate
those formulas which correspond to former ones in Section 2 by attaching
an asterisk to formula numbers.

To formulate our result, we shall need to introduce new notation. First
we define the new coefficients Ql,k(a, b) by
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(4.0)1 Ql,k(a, b) = k!
k∑

j=l

(−1)k−jajS(j, l){ck+1,j(b)− ck,j(b)},

where S(n, k) and cr,l(α) are Stirling numbers and Mellin–Vardi coefficients
defined by (3.3) and (3.17) respectively.

We also introduce Nörlund’s generalized Bernoulli polynomials B(r)
k (α),

as in [14], by

(4.0)2

(
z

ez − 1

)r
eαz =

∞∑

k=0

B
(r)
k (α)
k!

zk, |z| < 2π.

The Mellin–Vardi coefficients and the Nörlund generalized Bernoulli
polynomials are linked by

B
(r)
r−1−k(α) = k!(r − 1− k)!cr,k(α) =

(
r − 1
k

)−1 r−1∑

j=k

(
j

k

)
s(r, j + 1)αj−k

as is seen by comparing

Res
s=k+1

ζr(s, α) = cr,k(α), k = 0, . . . , r − 1,

a consequence of (3.18) on the one hand, and

Res
s=k+1

ζr(s, α) =
(−1)r−k−1B

(r)
r−1−k(α)

k! (r − 1− k)!
,

on the other, which is due to E. W. Barnes [1], J.-S. Choi [4] and [14,
Theorem 3].

Theorem 4.1. Let h ≥ 0 and N ≥ 1 be fixed integers h < N , and let α
be a positive parameter. Further let

(4.1)∗

aj = cos
(
π

2N

(
1
2
− j
))

, bj = sin
(
π

2N

(
1
2
− j
))

,

B∗(n, j, l, k) = −2παn− π(2h+ 1 + l)
2N

(
1
2
− j
)

+
π(k + 1)

2
,

A(y) = π(2πy)
1

2N

and

(4.2)∗ f∗(n, a, j, l, k, x)

= 21−a<
{
e−i(B

∗(n,j,l,k))
(

e−2iA(n/x)bj − e−2A(n/x)aj

cosh(2A(n/x)aj)− cos(2A(n/x)bj)

)a}
.

Then for x > 0 we have

(4.3)∗
∞∑

n=1

n2h e−αn
2Nx

(1− e−n2Nx)r
= P (x) + Sr(x, α),
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where

P (x) =
r∑

j=0

(−1)r−jB(r)
r−j(α)

(r − j)! ζ(2Nj − 2h)x−j(4.4)∗

+
1

2N
Γ

(
2h+ 1

2N

)
ζr

(
2h+ 1

2N
,α

)
x−

2h+1
2N ,

and

Sr(x, α) =
(−1)h

2N

(
2π
x

) 2h+1
2N

r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k! (r − k − 1)! (2π)k
(4.5)∗

×
k∑

l=0

(−1)k−lQl,k

(
1

2N
,

2N − 2h− 1
2N

)
(2π)l

(
2π
x

) l
2N

×
N−1∑′′

j=−(N−1)

l+1∑

a=1

(a− 1)!S(l + 1, a)

×
∞∑

n=1

f∗(n, a, j, l, k, x)n
2h+1+l

2N −k−1

where
∑′′

j denotes summation over j = −(N−1),−(N−3), . . . , N−3, N−1.

Proof. Consider the integral, with c0 > r,

(4.6)∗ I(x) =
1

2πi

�

(c0)

Γ (s)ζr(s, α)ζ(2Ns− 2h)x−s ds,

where (c0) denotes the vertical line s = σ + it, σ = c0, −∞ < t <∞.
Applying the Principle of Section 1 to ζr(s, α)ζ(2Ns− 2h) and arguing

in a manner similar to that in [12, §3], we obtain

(4.7)∗ I(x) =
∞∑

n=1

n2h e−αn
2Nx

(1− e−n2Nx)r
,

i.e. the left-hand side of (4.3)∗.
We now shift the line of integration to (−c) with c > 0. In so doing,

we encounter the simple poles of the integrand at s = 0, s = 1, . . . , r and
s = (2h+ 1)/(2N), which are the poles of Γ , ζr and ζ, respectively (note
that other poles of Γ at negative integer arguments are cancelled by the
zeros of ζ).

Hence

(4.8)∗ I(x) = P (x) + J(x),

where

(4.9)∗ J(x) =
1

2πi

�

(−c)
Γ (s)ζr(s, α)ζ(2Ns− 2h)x−s ds
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and

P (x) = ζr(0, α)ζ(−2h) +
r∑

j=1

(−1)r−jB(r)
r−j(α)

(r − j)! ζ(2Nj − 2h)x−j

+
1

2N
Γ

(
2h+ 1

2N

)
ζr

(
2h+ 1

2N
,α

)
x−

2h+1
2N ,

which is seen to coincide with (4.4)∗ in view of the known formula

ζr(0, α) =
(−1)r

r!
B(r)
r (α)

(cf. e.g. [14]).
The remaining task is to evaluate the integral J(x) in the form as given

by (4.5)∗. As in Section 2, we make the change of variables s ↔ 1 − s and
use the functional equation for ζr(s, α) in the form by Katsurada [14]

(4.10)∗ ζr(1− s, α) =
r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!
· Γ (s+ k)

(2π)s+k

× {e−πi(s+k)/2ψ(s+ k, α) + eπi(s+k)/2ψ(s+ k,−α)},
where

(4.11)∗ ψ(s, α) =
∞∑

n=1

e2πinα

ns

denotes the Lerch zeta-function or the polylogarithm of complex exponential
argument. Hence

(4.12)∗ Γ (1− s)ζr(1− s, α) =
r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k! (r − k − 1)!
· (s)k

(2π)s+k
· π

sinπs

× {e−πi(s+k)/2ψ(s+ k, α) + eπi(s+k)/2ψ(s+ k,−α)}.
On the other hand, the functional equation for the Riemann zeta-func-

tion yields

(4.13)∗ ζ(2N(1− s)− 2h) = (−1)N−h+12(2π)2N(1−s)−2h−1 sin(πNs)
× Γ (1− 2N(1− s) + 2h)ζ(1− 2N(1− s) + 2h).

Hence the integrand of

J(x) =
1

2πi

�

(1+c)

Γ (1− s)ζr(1− s, α)ζ(2N(1− s)− 2h)xs−1 ds

becomes

(4.14)∗1

r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k! (r − k − 1)!
Gk(s)xs−1,

say, where
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(4.14)∗2 Gk(s) = (−1)N−h+1(2π)2N(1−s)−2h−s−k(s)kCN (πs)
× {e−πi(s+k)/2ψ(s+ k, α) + eπi(s+k)/2ψ(s+ k,−α)}
× Γ (1− 2N(1− s) + 2h)ζ(1− 2N(1− s) + 2h),

and where

(4.15)∗ CN (z) =
sinNz
sin z

=
N−1∑′′

j=−(N−1)

eijz.

We note that the line of integration being (1 + c), we have both 1 +
2Nc+ 2h > 1 and c+ 1 + k > 1 (0 ≤ k ≤ r − 1), so that both ζ and ψ are
expansible in Dirichlet series.

Now make the change of variables

1− 2N(1− s) + 2h = s1, s =
s1

2N
+ 1− 2h+ 1

2N
.

Then Gk(s)xs−1 becomes

(4.16) Gk

(
s1

2N
+ 1− 2h+ 1

2N

)
x
s1
2N−

2h+1
2N

= (−1)h(2π)−k
(

2π
x

) 2h+1
2N
(

x

(2π)2N+1

) s1
2N

×
(
s1

2N
+ 1− 2h+ 1

2N

)

k

CN

(
π(s1 − 2h− 1)

2N

)
Γ (s1)ζ(s1)

×
{
e−

πi(s1−2h−1)
4N −πi(k+1)

2 ψ

(
s1 − 2h− 1

2N
+ k + 1, α

)

+ e
πi(s1−2h−1)

4N +πi(k+1)
2 ψ

(
s1 − 2h− 1

2N
+ k + 1,−α

)}
.

Thus, in order to obtain a closed form of J(x), we will eventually need
the evaluation of the integral of

(4.17)
1

2πi

�

(κ)

X−sCN

(
π(s− 2h− 1)

2N

)(
s

2N
+

a

2N

)

k

Γ (s) ds.

We shall use the following lemma (proof being given at the end) to
transform the rising factorial in a tractable form.

Lemma 4.1. For any a (6= 0), b and x we have

(4.18) (ax+ b)k =
k∑

l=0

(−1)k−lQl,k(a,−b)(x)l,

where Ql,k(a, b) is given at the beginning of this section.
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Now incorporating all the preceding, we successively get

J(x) =
r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!
· 1

2πi

�

(1+c)

Gk(s)xs−1 ds(4.19)∗

= (−1)h
(

2π
x

) 2h+1
2N

r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!
(2π)−k

×
k∑

l=0

(−1)k−lQl,k

(
1

2N
,

2N − 2h− 1
2N

)

× 1
2πi

�

(c1)

(
x

(2π)2N+1

) s
2N

CN

(
π(s− 2h− 1)

2N

)
(s)lΓ (s)

× ζ(s)
{
e−

πi(s−2h−1)
4N −πi(k+1)

2 ψ

(
s− 2h− 1

2N
+ k + 1, α

)

+ e
πi(s−2h−1)

4N +πi(k+1)
2 ψ

(
s− 2h− 1

2N
+ k + 1,−α

)}
ds

2N

=
(−1)h

2N

(
2π
x

) 2h+1
2N

r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!
(2π)−k

×
k∑

l=0

(−1)k−lQl,k

(
1

2N
,

2N − 2h− 1
2N

)
{J1(x) + J2(x)}

where

J1(x) = e
πi(2h+1)

4N −πi(k+1)
2

∞∑

n,m=1

e2πinαn
2h+1
2N −k−1E(Xm,n),(4.20)∗

J2(x) = e−
πi(2h+1)

4N +πi(k+1)
2

∞∑

n,m=1

e−2πinαn
2h+1
2N −k−1E(Xm,n)(4.21)∗

and (with κ = c1 = 1 + 2Nc+ 2h)

(4.22)∗ E(Xm,n) =
1

2πi

�

(κ)

X−sm,nCN

(
π(s− 2h− 1)

2N

)
Γ (s+ l) ds

with Xm,n denoting

(4.23)∗ Xm,n = 2πm
(

2πn
x

) 1
2N

e
πi
4N .

To evaluate E(Xm,n) we use (4.15)∗ to write

(4.24)∗ X−sm,nCN

(
π(s− 2h− 1)

2N

)
=

N−1∑′′

j=−(N−1)

e−
πi(2h+1)

2N j(Xm,ne
− πi

2N j)−s
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with
|argXm,ne

− πi
2N j | < π/2.

Then the Mellin inversion formula
1

2πi

�

(κ)

Γ (s+ l)Y −s ds = Y le−Y

yields

E(Xm,n) =
(

2π
(

2πn
x

) 1
2N

e
πi
4N

)l N−1∑′′

j=−(N−1)

e−
πi(2h+1+l)

2N j(4.25)∗

×ml exp
(
− 2πm

(
2πn
x

) 1
2N

e
πi
2N (1/2−j)

)
.

Substituting (4.25)∗ in (4.20)∗ and summing over m by appealing to the
formula ∞∑

m=1

ma−1e−mξ =
a∑

l=1

(l − 1)!S(a, l)
1

(eξ − 1)l

(cf. e.g. [11, (57)]), we obtain

J1(x) = (2π)l
(

2π
x

) l
2N

N−1∑′′

j=−(N−1)

e
πi(2h+1+l)

2N (1/2−j)−πi(k+1)
2(4.26)∗

×
∞∑

n=1

e2πinαn
2h+1+l

2N −k−1

×
l+1∑

a=1

(a− 1)!
S(l + 1, a)

(
exp

(
2π
(2πn
x

) 1
2N ξj

)
− 1
)a

where we write
(4.27)∗ ξj = e

πi
2N (1/2−j) (= aj + ibj).

Using the notation (4.1)∗, we may further transform (4.26)∗ into the form

J1(x) = (2π)l
(

2π
x

) l
2N

N−1∑′′

j=−(N−1)

l+1∑

a=1

(a− 1)!S(l + 1, a)(4.28)∗

×
∞∑

n=1

n
2h+1+l

2N −k−1 exp(−iB∗(n, j, l, k)− aA(n/x)ξj)
(2 sinh(A(n/x)ξj))a

.

Similarly, we deduce that

J2(x) = (2π)l
(

2π
x

) l
2N

N−1∑′′

j=−(N−1)

l+1∑

a=1

(a− 1)!S(l + 1, a)(4.29)∗

×
∞∑

n=1

n
2h+1+l

2N −k−1 exp(iB∗(n, j, l, k)− aA(n/x)ξj)

(2 sinh(A(n/x)ξj))a
.
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We now substitute (4.28)∗ and (4.29)∗ in (4.19)∗ to obtain

J(x) =
(−1)h

2N

(
2π
x

) 2h+1
2N

r−1∑

k=0

(−1)r−k−1B
(r)
r−k−1(α)

k!(r − k − 1)!
(2π)−k(4.30)

×
k∑

l=0

(−1)k−lQl,k

(
1

2N
,

2N − 2h− 1
2N

)
(2π)l

(
2π
x

) l
2N

×
N−1∑′′

j=−(N−1)

l+1∑

a=1

(a− 1)!S(l + 1, a)
∞∑

n=1

n
2h+1+l

2N −k−1

× (Z(n, a, j, l, k) + Z(n, a, j, l, k)),

where

(4.31) Z(n, a, j, l, k) =
exp(−iB∗(n, j, l, k)− aA(n/x)ξj)

(2 sinh(A(n/x)ξj))a
.

Hence

(4.32) Z(n, a, j, l, k) + Z(n, a, j, l, k) = B/A,

say, where

(4.33) A =
(

cosh
(

2A
(
n

x

)
aj

)
− cos

(
2A
(
n

x

)
bj

))a
,

and B is the sum of

(4.34) 2−ae−iB
∗(n,j,l,k)(e−2iA(n/x)bj − e−2A(n/x)aj)a

and its conjugate, or twice the real part of (4.33), namely

(4.35) B = 21−a<{e−iB∗(n,j,l,k)(e−2iA(n/x)bj − e−2A(n/x)aj)a}.

Now, combining (4.33) and (4.35) in (4.32) gives f ∗(n, a, j, l, k, x), defined
in (4.2)∗, and the proof is complete.

Proof of Lemma 4.1. We expand [ax + b]k by (3.2) and the binomial
theorem to obtain

[ax+ b]k =
k∑

ν=0

s(k, ν)(ax+ b)ν =
k∑

ν=0

s(k, ν)
ν∑

j=0

(
ν

j

)
ajbν−jxj .

Then expand xj using (4.8) to obtain

[ax+ b]k =
k∑

ν=0

s(k, ν)
ν∑

j=0

(
ν

j

)
ajbν−j

j∑

l=0

S(j, l)[x]l.
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Changing the order of summation, we deduce that

(4.36) [ax+ b]k =
k∑

l=0

( k∑

j=l

S(j, l)aj
k∑

ν=j

(
ν

j

)
s(k, ν)bν−j

)
[x]l.

Using the identity [6, p. 214]

s(k, ν) = s(k + 1, ν + 1) + ks(k, ν + 1)

and the definition (3.17) of cr,l(b), we conclude that the coefficient of [x]l
in (4.36) coincides with Ql,k(a, b) as given at the beginning of this section,
whence the assertion follows from the identity (x)k = (−1)k[−x]k.

Remark 4. (i) Presumably it is the integral (4.17) that prevented Kat-
surada from investigating further values of the multiple Hurwitz zeta-func-
tion. Indeed the integrand is of the form (0 ≤ a ≤ 2N − 1)

Γ
(
s

2N + a
2N + k

)

Γ
(
s

2N + a
2N

) Γ (s)Y −s.

For general N , we have by the multiplication formula

Γ (s) =
(2N)s−1/2

(2π)N−1/2
Γ

(
s

2N

)
Γ

(
s

2N
+

1
2N

)
. . . Γ

(
s

2N
+

2N − 1
2N

)
,

one of which cancels the denominator, and we are left with a product of
gamma functions. For N = 1, a = 1, the duplication formula yields a nice
cancellation and what remains is

Γ

(
s+ 1

2
+ k

)
Γ

(
s

2

)
,

whence the Mellin inversion can be treated by the inverse Heaviside integral.
(ii) Putting f(x) = [ax + b]n, we claim that the formula in Lemma 4.1

is the Taylor–Newton interpolation formula [6, p. 221]

(4.37) f(x) =
n∑

k=0

∆kf(0)
k!

[x]k

where ∆k denotes the kth difference operator.
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