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Generalized Dedekind sums, correlation of L-series,
and the Galois module of cot(π/N) cot(mπ/N)

by

Kurt Girstmair (Innsbruck)

Introduction. Let N ≥ 3 be a natural number and m an integer such
that (m,N) = 1. The classical Dedekind sum S(m,N) can be defined by

S(m,N) =
1

4N

N−1∑

j=1

cot(jπ/N) cot(jmπ/N),(1)

cf. [10, p. 18]. There are many results about the distribution of Dedekind
sums, cf. [2]. For example, if |m/N | is small, the point (x, y) = (m/N,
S(m,N)) lies very close to the hyperbola xy = 1/12. This fact can be
enounced as

S(m,N) =
1

12m
N +mθ(2)

if m is fixed and N tends to infinity, with |θ| ≤ 1/5, say (cf. [9]). Formula (2)
is a rather immediate consequence of the reciprocity law for Dedekind sums.
In this paper we consider a “character analogue” of S(m,N) in the spirit
of [1] (and other papers of the same author): Let χ be a Dirichlet character
mod N . We put

S(m,χ) =
1

4N

N−1∑

j=1

χ(j) cot(jπ/N) cot(jmπ/N).(3)

Obviously, S(m,χ) vanishes if χ is an odd character, so we may assume that
χ is even. Some simple properties of S(m,N) have immediate analogues
in the case of S(m,χ). For example, if m∗ is a multiplicative inverse of
m mod N , then

S(m∗, N) = S(m,N) and S(m∗, χ) = χ(m)S(m,χ).

We do not know whether a reciprocity law holds for our sums S(m,χ).
However, there is a close analogue of (2), namely,
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Theorem 1. Let m ∈ Z be fixed and N tend to infinity , (N,m) = 1.
Then

S(m,χ) =
L(2, χ)
2π2m

N +
( |m|
π2 +

1
4

)
θ logN(4)

with |θ| ≤ 1.

The main term of (4) involves the value of the L-series

L(s, χ) =
∞∑

k=1

χ(k)
ks

at s = 2. This means that the main term of (2) arises from that of (4) in the
most natural way: One has to replace L(2, χ) by ζ(2) = π2/6. However, our
study of S(m,χ) (and, in particular, our search for an analogue of (2)) was
not so much motivated by the extension of classical results about Dedekind
sums to character analogues—rather we had in mind two applications of
Theorem 1. We are going to describe them now.

Let XN denote the set of Dirichlet characters mod N . By X+
N and X−N

we denote the subsets of even and odd characters in XN , respectively. The
values L(1, ψ) of the L-series L(s, ψ) belonging to characters ψ ∈ X−N form
the entries of the vector

X = (L(1, ψ))ψ∈X−N .

This vector can be considered as a statistical quantity whose distribution
deserves some interest. Its most obvious statistical parameter, namely, the
mean value

2
ϕ(N)

∑

ψ∈X−N

L(1, ψ) =
π

N
cot(π/N),(5)

is well known (here ϕ(N) is the Euler function; formula (5) is an easy con-
sequence of (17) and (18) below). Computing the variance of X is basically
equivalent to the computation of the quadratic mean value

2
ϕ(N)

∑

ψ∈X−N

|L(1, ψ)|2 =
π2

6

∏

p|N
(1− 1/p2)− π2ϕ(N)

2N2 ,(6)

a problem solved in [6], [7]. The asymptotic behaviour of both mean values
for N →∞ is almost obvious, cf. (23), (24). For higher power mean values of
X and related concepts the reader may consult [12], [13] and other articles
of the same author.

Another natural question in this connection is the statistical behaviour
of X under character translations. Two kinds of translation are considered
here: First, we fix an even character χ ∈ X+

N and replace ψ ∈ X−N by χψ
(the complex conjugate character χ has been chosen instead of χ for esthetic
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reasons only, cf. Theorem 2). This gives rise to the vector

X ′ = (L(1, χψ))ψ∈X−N .

Since χψ also runs through X−N , the vector X ′ is just a permutation of X.
Second, we apply a translation to the arguments of ψ, i.e., we multiply each
argument k ∈ Z by a fixed integer m, (m,N) = 1. This leads to the functions
ψ(m)ψ and the twisted L-series

ψ(m)L(1, ψ) =
∞∑

k=1

ψ(mk)
k

,

which are the entries of the vector

X ′′ = (ψ(m)L(1, ψ))ψ∈X−N .

Let K(m,χ) = K(X ′′,X ′) denote the statistical correlation coefficient (for
its definition cf. Section 2) of the vectors X ′′, X ′. One of our main results
concerns the asymptotic behaviour of K(m,χ), namely,

Theorem 2. Let m ∈ Z, m 6= ±1, be fixed , N varying but prime to m.
Let χ0 denote the trivial character in XN . For χ 6= χ0 and N tending to
infinity , the correlation coefficient K(m,χ) satisfies

K(m,χ) =
χ(m)L(2, χ)

m
√
L(2, χ0)2 − L(2, χ0)

+O

(
logN
N

)
.(7)

For the (slightly different) cases m = ±1 or χ = χ0 cf. Theorem 4. It
is not hard to see that the absolute value of the main term of Theorem 2
is ≥ 1/(2m) (cf. the third remark on Theorem 4), whereas the remainder
term tends to 0 for large N , of course. The theorem shows that the size
of the correlation coefficient is essentially determined by m and L(2, χ). It
also suggests that large values of m automatically entail a small degree of
interdependence of X ′′ and X ′. But this is not always true, since the value of
the square root in (7) also depends on m and may be small when m is large.
In order to obtain an example of this kind one may take a prime number
m ≥ 100, say, whereas N is the product of all primes p < m2, p 6= m.

The key ingredient of Theorem 2 is the asymptotic behaviour of

Λ(m,χ) =
∑

ψ∈X−N

ψ(m)L(1, ψ)L(1, χψ).(8)

We shall see, however, that Λ(m,χ) equals S(m,χ) up to a simple factor,
so Theorem 1 is exactly the result needed for our purpose.

The second application of Theorem 1 concerns certain Galois modules
in the Nth cyclotomic field QN . Let G = Gal(QN/Q) be the Galois group
of QN over Q. For a number a ∈ QN the Galois module of a is the Q-vector
space spanned by the conjugates %(a), % ∈ G, of a. Its Q-dimension is called
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the Galois rank of a and denoted by rk(a). In previous papers cases like
a = i cot(π/N) or a = cot(π/N)2 have been studied, cf. [4], [8], [11]. Here
we consider

a = cot(π/N) cot(mπ/N),

for a natural number m prime to N . This number a lies in Q+
N , the maximal

real subfield of QN . There are good reasons to expect rk(a) = ϕ(N)/2, which
is the same as saying that the Galois module of a is Q+

N itself (or that the
conjugates of a form a normal basis of Q+

N ). This is true for m = 1, N arbi-
trary (which is just the aforementioned case a = cot(π/N)2) and for m = 2
and N ≥ 6. Nevertheless, rk(a) < ϕ(N)/2 is possible, cf. Section 4, Corol-
lary 1. It turns out that the generalized Dedekind sums S(m,χ) determine
the Galois module of a = cot(π/N) cot(mπ/N) completely; in particular,

rk(a) = |{χ ∈ X+
N : S(m,χ) 6= 0}|,

by (29), (31). Our results show that S(m,χ), χ ∈ X+
N , cannot vanish if N

is large relative to m; so rk(a) = ϕ(N)/2 then. The following theorem is a
more precise version of this assertion.

Theorem 3. Let m ≥ 13 be a natural number with (m,N) = 1. If

N ≥ 12m2 logm,

then the Galois module of cot(π/N) cot(mπ/N) equals Q+
N .

Section 1 is devoted to the proof of Theorem 1. The proof presented here
is not ours but due to the referee—we only worked out the explicit values
of the respective constants. This proof has a double advantage: It is much
less complicated and gives a considerably better remainder term than our
original proof. The quality of the remainder term determines the bound of
Theorem 3, so it is important in the present context. We say some words
about our original proof at the end of Section 1. Section 2 concerns the
asymptotics of the correlation coefficient K(m,χ) and a similar statistical
concept K̃(m,χ). In Section 3 we provide the tools needed for the treat-
ment of the Galois module of a = cot(π/N) cot(mπ/N) and prove the above
Theorem 3. We also exhibit the respective bounds for the numbers m ≤ 12,
which are not covered by this theorem. The final section is devoted to (ex-
ceptional) cases where rk(a) < ϕ(N)/2 (cf. Propositions 1–3). In addition,
it contains lower bounds for this rank in some cases where N has a special
shape but m is arbitrary (cf. Proposition 5 and Corollary 2).

Acknowledgements. The author gratefully acknowledges the impor-
tant contribution of the anonymous referee to the present paper (as men-
tioned above) and a number of other helpful comments of his. Further, he
would like to thank his Viennese colleagues C. Baxa and W. G. Nowak for
their support in connection with the first version of this article.
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1. Proof of Theorem 1. Because of S(−m,χ) = −S(m,χ) we shall
assume m ≥ 1, (m,N) = 1, for the time being. Furthermore, we need some-
thing more precise than the usual O-notation. Therefore, L(f(x)) denotes
a function g(x) such that |g(x)| ≤ |f(x)| for all arguments under consid-
eration. Our summation indices j, k are natural numbers unless they are
specified otherwise.

We start with some auxiliary results. The function 1/x− cotx is strictly
increasing in the interval ]0, π/2]. Hence,

0 ≤ 1/x− cotx ≤ 2/π, cotx = 1/x+L(2/π) for all x ∈ ]0, π/2].(9)

Further, we note that
∑

j≤N/2

1
j
≤ logN for all N ≥ 10,(10)

which is a simple consequence of the fact that the function

f(N) = logN −
∑

j≤N/2

1
j

satisfies f(N + 2)− f(N) ≥ log((N + 2)/N)− 2/(N + 1) > 0 for all N ≥ 9.
Next,

∑

j≤N/2
|cot(jmπ/N)| ≤ N

π
logN for all N ≥ 10.(11)

In fact, the left side of (11) is independent of m; because of (9) we obtain

0 ≤
∑

j≤N/2
cot(jπ/N) ≤

∑

j≤N/2

N

jπ
,

so (11) follows from (10). Finally,
∑

j≥x

1
j2 ≤

2
x

for all x > 0.(12)

As to the proof of Theorem 1, we assume N ≥ 10 and write

4NS(m,χ) =
N−1∑

j=1

χ(j) cot(jπ/N) cot(jmπ/N)

= 2
∑

j≤N/2
χ(j)

(
N

jπ
+ L(2/π)

)
cot(jmπ/N),

by (9). So 4NS(m,χ) consists of the parts

M =
2N
π

∑

j≤N/2

χ(j)
j

cot(jmπ/N)
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and

R =
4
π
L
( ∑

j≤N/2
χ(j) cot(jmπ/N)

)
=

4
π
L
( ∑

j≤N/2
|cot(jmπ/N)|

)
.

Now (11) shows

R =
4N
π2 L(logN).

Whereas R is a less important part of the remainder term, M will split
into the main term and the dominant part of the remainder term of (4).
Accordingly, we write M = M1 +M2 with

M1 =
2N
π

∑

j≤N/(2m)

χ(j)
j

cot(jmπ/N)

and
M2 =

2N
π

∑

N/(2m)<j≤N/2

χ(j)
j

cot(jmπ/N).

The arguments jmπ/N occurring in M1 are in the interval ]0, π/2].
Therefore, (9) gives cot(jmπ/N) = N/(jmπ) + L(2/π). Inserting this in
M1 we obtain

M1 =
2N2

mπ2

∑

j≤N/(2m)

χ(j)
j2 +

4N
π2 L

( ∑

j≤N/(2m)

1
j

)
.(13)

The first sum on the right side of (13) is
∑

j≤N/(2m)

χ(j)
j2 = L(2, χ) + L

( ∑

j≥N/(2m)

1
j2

)
= L(2, χ) + L(4m/N),

by (12). The second one is clearly

L
( ∑

j≤N/2

1
j

)
= L(logN) for all N ≥ 10,

by (10). We obtain

M1 =
2N2

mπ2 L(2, χ) + L
(

8N
π2

)
+

4N
π2 L(logN).

As concerns M2, observe that 1/j ≤ 2m/N for all indices j in the range
N/(2m) ≤ j ≤ N/2. Thus,

M2 =
2N
π
L
( ∑

N/(2m)<j≤N/2

2m
N
|cot(jmπ/N)|

)
=

4mN
π2 L(logN),

by (11). Altogether, we have

S(m,χ) =
L(2, χ)
2mπ2 N + L

(
m+ 2
π2 logN +

2
π2

)
(14)
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for N ≥ 10. This proves Theorem 1 and is precise enough for later applica-
tions.

Remarks. 1. The case of the trivial character χ = χ0 was treated sepa-
rately in the first version of this paper. Here (and only here) we obtained a
slightly better remainder term in (14), namely

L
(
m+ 2

3
log logN

)

for N ≥ 16. The proof was based on the reciprocity law for ordinary
Dedekind sums.

2. In Section 4 we shall see that S(m,χ) = 0 in a number of cases (of
course, N must be small relative to m then). This means that the remainder
term of (14) must be 6= 0 in general; otherwise, the main term would also
vanish in the cases mentioned, which is impossible. Two exceptions, however,
are worth noticing: If m = 1, χ 6= χ0, then S(1, χ) = L(2, χ)N/(2π2). This
result can be found in [4, Theorem 2] already. In the case m = 2, the formula

cot(x) cot(2x) = cot2(x)/2− 1/2(15)

shows that S(2, χ) = S(1, χ)/2 for each χ 6= χ0. For m ≥ 3, however, the
corresponding trigonometric formulas are no longer helpful.

3. The classical Dedekind sums can be defined in a purely rational way
in terms of the sawtooth function

((x)) =
{
x− bxc − 1/2 if x 6∈ Z,

0 otherwise.

A slight generalization of such a sum is

S(m,N ; j) =
N−1∑

k=1

((
k

N

))((
mk + j

N

))
,

where j ∈ Z is arbitrary (cf., for instance, [5, p. 72]). For j = 0 this definition
gives S(m,N) = S(m,N ; 0). The reader may ask how our sums S(m,χ)
are connected with the above “rational” Dedekind sums. In the case of a
primitive character χ ∈ X+

N this connection is remarkably simple, namely

S(m,χ) =
τ(χ)
N

N−1∑

j=1

χ(j)S(m,N ; j).(16)

Here τ(χ) is the usual Gauss sum

τ(χ) =
N−1∑

k=1

χ(k)e2kπi/N .
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Our original proof of Theorem 1 was based on this identity. As we said
above, it was much more complicated, but a considerable part of these com-
plications was due to the case of imprimitive characters, where (16) is less
beautiful.

2. The correlation coefficients. The first aim of this section is to
show that the sums Λ(m,χ) and S(m,χ) of (8) and (3) are equal up to
a simple factor. The formula

L(1, ψ) =
π

2N

N−1∑

j=1

ψ(j) cot(jπ/N)(17)

holds for arbitrary characters ψ ∈ X−N , cf. [6, Proposition 1]. Applied to (8),
this formula gives

Λ(m,χ) =
π2

4N2

N−1∑

j=1

cot(jπ/N)
N−1∑

k=1

χ(k) cot(kπ/N)
∑

ψ∈X−N

ψ(mj)ψ(k).

The last of these sums can be simplified by means of the orthogonality
relation

∑

ψ∈X−N

ψ(j) =

{
ϕ(N)/2 if j ≡ 1 mod N,
−ϕ(N)/2 if j ≡ −1 mod N,
0 otherwise.

(18)

This yields

Λ(m,χ) =
π2ϕ(N)χ(m)

N
S(m,χ),(19)

which is what we desired.
Now we consider the vector space Cn with the standard (hermitian)

inner product 〈−,−〉 (which is C-linear in the first component) and the
corresponding norm ‖ − ‖. For a (statistical) vector X = (Xj) ∈ Cn,

Z(X) =
(
Xj −

1
n

∑

j

Xj

)
∈ Cn

denotes its centred version. Then
1
n
‖Z(X)‖2

is the variance of X. If, moreover, Y ∈ Cn is another vector, then
1
n
〈Z(X), Z(Y )〉

is the statistical covariance of X and Y . These quantities occur in the cor-
relation coefficient

K(X,Y ) =
〈Z(X), Z(Y )〉
‖Z(X)‖ · ‖Z(Y )‖(20)
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of X and Y , which is defined if Z(X), Z(Y ) are both 6= 0. If |K(X,Y )|
is close to 1, then Z(Y ) is nearly a C-multiple of Z(X), in the opposite
case K(X,Y ) ≈ 0, these vectors are almost orthogonal to each other. In
the language of statistics one would say that X and Y are dependent or
independent instead. From the viewpoint of euclidean geometry, however,
one identifies Cn with R2n and calls arccos(Re{K(X,Y )}) the angle between
Z(X) and Z(Y ). In the special situation studied here both vectors X, Y will
have real mean values, i.e.,

∑
j Xj and

∑
j Yj are real numbers. This implies

(21)

‖Z(X)‖2 = ‖X‖2 − 1
n

(∑

j

Xj

)2
,

〈Z(X), Z(Y )〉 = 〈X,Y 〉 − 1
n

∑

j

Xj

∑

j

Yj ;

so these expressions look simpler than those obtained from the mere defini-
tion of the variance or covariance.

In the remainder of this section n equals ϕ(N)/2, N ≥ 3. We identify
the set

CX
−
N = {(xψ)ψ∈X−N : xψ ∈ C}

with Cn and consider the vector

X = (L(1, ψ))ψ∈X−N ∈ C
n

of the Introduction. Recall the relevant modifications of X, namely,

X ′ = (L(1, χψ))ψ∈X−N , X ′′ = (ψ(m)L(1, ψ))ψ∈X−N ,

with χ ∈ X+
N and m ∈ Z, (m,N) = 1. The correlation coefficient

K(m,χ) = K(X ′′,X ′)

is defined by (20). At this point we mention that the correlation remains
the same if X remains unchanged, say X ′ = X, whereas the second vector
X ′′ undergoes both kinds of character translations: In fact, for

X ′′′ = (χψ(m)L(1, χψ))ψ∈X−N
we haveK(m,χ) = K(X ′′′,X). Because ofK(−m,χ) = −K(m,χ) it suffices
to consider natural numbers m.

Our proof of Theorem 2 is based on the formulas (21). So it requires,
first of all, the knowledge of the asymptotic behaviour of the mean values
of X ′′ and X ′ when m is fixed and N tends to infinity. To this end we use

∑

ψ∈X−N

ψ(m)L(1, ψ) =
ϕ(N)π

2N
cot(m∗π/N);(22)
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here m∗ is, as above, an inverse of m mod N . Like (5), this follows from (17)
by means of the orthogonality relation (18). In the case of an arbitrary m,
(22) supplies the mean value of X ′′; the case m = 1 gives the mean value
of X ′. The asymptotics of the right hand side of (22) can be read from

π

N
cot(m∗π/N) =

{
1 +O(1/N) if m = 1,
O(1/N) if m > 1.

(23)

The case m = 1 of (23) is an immediate consequence of (9). In the case
m > 1, we have mm∗ = 1+kN , k ∈ Z, k 6= 0, and may suppose |m∗| ≤ N/2.
Accordingly, 1/2 ≥ |m∗/N | = |k/m+1/(Nm)| ≥ 1/m−1/(3m), so (9) gives
cot(m∗π/N) = L(3m/(2π)) = O(1).

The next entries of (21) are the variances or, in our terminology,

‖X ′′‖2 = ‖X ′‖2 =
∑

ψ∈X−N

|L(1, ψ)|2.

As above, let χ0 denote the trivial character mod N . Then L(2, χ0) =∏
p|N (1− 1/p2)ζ(2); hence (6) yields

∑

ψ∈X−N

|L(1, ψ)|2 =
ϕ(N)

2
(L(2, χ0) +O(1/N)).(24)

From (21)–(24) we obtain

‖Z(X ′)‖2 =
ϕ(N)

2
(L(2, χ0)− 1 +O(1/N)).

This equals ‖Z(X ′′)‖2 in the case m = 1. For m > 1, (23) implies

‖Z(X ′′)‖2 =
ϕ(N)

2
(L(2, χ0) +O(1/N))

instead. Altogether, the asymptotics of the denominator of K(X ′′,X ′) is
clear now, cf. (20). The numerator, in turn, involves

〈X ′′,X ′〉 =
∑

ψ∈X−N

ψ(m)L(1, ψ)L(1, χψ) = Λ(m,χ),

cf. (8). In view of (19), this is basically the same as S(m,χ), whose behaviour
is described by Theorem 1. It is not hard to put these facts together and
to prove Theorem 2 and its analogues for m = ±1 or χ = χ0. One should,
however, recall that the remainder term of S(m,χ) vanishes in the case
χ 6= χ0, m = ±1, cf. the second remark at the end of Section 1. We have,
indeed,

Theorem 4. Let m ∈ Z, m 6= 0, be fixed , N varying but prime to m,
further χ ∈ X+

N . If N tends to infinity , then
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K(m,χ) = H(m,χ) +O

(
logN
N

)
,

where the main term H(m,χ) and sharper versions of the error term look
as follows:

(a) Let m 6= ±1. Then

H(m,χ) =
χ(m)L(2, χ)

m
√
L(2, χ0)2 − L(2, χ0)

,

χ0 denoting the trivial character mod N . In the case χ = χ0, the error term
is O(N−1 log logN).

(b) Let m = ±1. Then

H(m,χ) = m
L(2, χ)− 1
L(2, χ0)− 1

.

The error term is O(1/N) for χ 6= χ0, and = 0 otherwise.

Remarks. 1. The better error term in the case m 6= ±1, χ = χ0, is a
consequence of the first remark at the end of Section 1 (whose proof was
part of the first version of this article).

2. Because of the Cauchy–Schwarz inequality, |H(m,χ)| is expected to
be ≤ 1 for large values of N . In case (b) of Theorem 4 this is obviously true
for all values of N . In case (a) it suffices to show

L(2, χ0)

m
√
L(2, χ0)2 − L(2, χ0)

≤ 1,

which is equivalent to L(2, χ0) ≥ m2/(m2− 1). Since m and N are coprime,

L(2, χ0) =
∞∑

k=1
(k,N)=1

1
k2 ≥

∞∑

j=0

1
m2j =

m2

m2 − 1
.

3. Let m 6= ±1. From

π2

15
=
ζ(4)
ζ(2)

=
∏

p

1
1 + 1/p2 ≤ |L(2, χ)| ≤ ζ(2) =

π2

6
(25)

one sees that for all possible values of N ,

|H(m,χ)| ≥ C/m with C =
2π

5
√
π2 − 6

≈ 0.638817.

Accordingly, there is always some (statistical) dependence between X ′′

and X ′ if m is small and N large.

Next we introduce another modification of the vector X, namely,

X̃ = (ψ(m)L(1, ψ))ψ∈X−N ,
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which differs from X ′′ inasmuch as the character value ψ(m) is replaced
by ψ(m). Clearly X̃ = X ′′ if m = ±1. In the case m 6= ±1, however, the
correlation coefficient

K̃(m,χ) = K(X̃,X ′)

is fairly different from K(m,χ). There are two reasons for this fact: First,
the factor χ(m) disappears from the main term H(m,χ), since

∑

ψ∈X−N

ψ(m)L(1, ψ)L(1, χψ) = χ(m)Λ(m,χ),

cf. (8). Second, the asymptotic behaviour of the mean value of X̃ is different;
indeed,

2
ϕ(N)

∑

ψ∈X−N

ψ(m)L(1, ψ) =
π

N
cot
(
mπ

N

)
= 1/m+O(1/N),

cf. (22), (9). In the end we have

Theorem 5. In the setting of Theorem 4, let m be different from ±1.
Then

K̃(m,χ) =
L(2, χ)− 1

m
√
L(2, χ0)2 − (1 + 1/m2)L(2, χ0) + 1/m2

+O

(
logN
N

)
.

In the case χ = χ0, the error term can be replaced by O(N−1 log logN).

Remark. The expression under the square root in Theorem 5 is at least
(L(2, χ0) − 1)2. This implies that the main term of |K̃(m,χ)| is always
≤ 1/m.

3. The Galois module of cot(π/N) cot(mπ/N) in the main case.
Put ζN = e2πi/N . Then QN = Q(ζN ) is the Nth cyclotomic field. The
Galois group G = Gal(QN/Q) consists of the automorphisms %k, (k,N) = 1,
defined by ζN 7→ ζkN . Let

Q[G] =
⊕

%∈G
Q%

denote the rational group ring over G, which acts on the field QN in the
usual way. For a number a ∈ QN ,

Q[G]a =
∑

%∈G
Q%(a)

is the Galois module of a. This module can be described completely in
terms of eigenvalues of the matrix (%jk∗(a))j,k; here 1 ≤ j, k ≤ N , (j,N) =
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(k,N) = 1, and kk∗ ≡ 1 mod N . The eigenvalues mentioned have the shape

y(a |χ) =
∑

k≤N
(k,N)=1

χ(k)%k(a), χ ∈ XN .(26)

We do not discuss all details of this description; they have been given, e.g.,
in [4]. Some important facts, however, will be highlighted in the next two
paragraphs.

Fix a character χ ∈ XN for the time being and let d = ord(χ) denote
its order. We say χ′ ∈ XN is conjugate to χ if χ and χ′ generate the same
subgroup of XN ; in this case we write χ′ ∼ χ. Clearly χ′ ∼ χ implies
d = ord(χ′). First suppose y(a |χ) = 0. Then the same holds for each χ′ ∼ χ.
So we have a system of ϕ(d) relations of the form

y(a |χ′) = 0, χ′ ∼ χ,(27)

among the conjugates %k(a) of a. By (26), however, the coefficients of these
relations are character values, hence they are not rational in general. But
one can transform this system into an equivalent system of relations

∑

k≤N
(k,N)=1

cj,k%k(a) = 0, j = 0, 1, . . . , ϕ(d)− 1,(28)

with all coefficients cj,k ∈ Q. To this end one chooses an integer g such that
ord(χ(g)) = d. For each j and each k as in (28), let dj,k denote the order of
the root of unity χ(gjk). Then the integers

cj,k = µ(dj,k)ϕ(d)/ϕ(dj,k)

have the desired property (here µ(−) is the Möbius function).
The proof of this assertion uses the Vandermonde matrix (χ′(gj))j,χ′ ,

whose subscripts run through j = 0, 1, . . . , ϕ(d)− 1 and all χ′ ∼ χ; further,
it is based on the fact that

∑
χ′∼χ χ

′(gjk) is a rational integer, namely, the
number cj,k just displayed.

The characters corresponding to nonvanishing eigenvalues y(a |χ) 6= 0,
on the other hand, determine the structure of the Q[G]-moduleQ[G]a, cf. [4].
Each class of conjugate characters of this kind gives rise to a certain simple
submodule of Q[G]a; and in this way one obtains the complete decomposition
of Q[G]a into simple components. One also knows the idempotent elements
that generate the corresponding simple ideals of Q[G]. Moreover, the Galois
rank rk(a) of a, i.e., the Q-dimension of Q[G]a, is given by the formula

rk(a) = |{χ ∈ XN : y(a |χ) 6= 0}|.
We consider the case when a lies in Q+

N = QN ∩R. Because of %−k(a) =
%k(a) for all k, y(a |χ) = 0 for all odd characters χ ∈ XN . Therefore, the
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Galois module structure of Q[G]a is determined by the set

{χ ∈ X+
N : y(a |χ) = 0}.

If this set is empty, then rk(a) = ϕ(N)/2, i.e., Q[G]a = Q+
N . Otherwise, this

set describes the nontrivial rational relations (28) among the conjugates of a;
further,

rk(a) = ϕ(N)/2− |{χ ∈ X+
N : y(a |χ) = 0}|.(29)

In what follows we concentrate on the particular number

a = cot(π/N) cot(mπ/N),

with m ∈ Z prime to N , as usual. The notation

a(j, k) = cot(jπ/N) cot(kπ/N)

(j, k ∈ Z prime to N) will be useful. Because of

i cot(kπ/N) = (1 + ζkN )/(1− ζkN ), (k,N) = 1,

a(1,m) lies in Q+
N , indeed, and its conjugates are the numbers

a(k,mk) = %k(a(1,m)), (k,N) = 1.(30)

Together with (3) and (26), this gives the fundamental identity

y(a(1,m) |χ) = 4NS(m,χ).(31)

One has to decide, thus, which of the generalized Dedekind sums S(m,χ),
χ ∈ X+

N , vanish. It is clear that we may restrict ourselves to positive num-
bers m.

We start with the case m = 1, which is known (cf. [8], [11]). At the end
of Section 1 we remarked that

S(1, χ) =
L(2, χ)N

2π2 6= 0

for each χ ∈ X+
N , χ 6= χ0. Moreover, (6) in connection with (19) gives

S(1, χ0) =
NL(2, χ0)

2π2 − ϕ(N)
4N

(32)

=
1
4

∏

p|N

(
1− 1

p

)(
N

3

∏

p|N

(
1 +

1
p

)
− 1
)
,

which cannot vanish for N ≥ 3. Altogether, rk(a(1, 1)) = ϕ(N)/2 for all
N ≥ 3.

In the case m = 2, N ≥ 3, the aforementioned remark yields y(a(1, 2) |χ)
6= 0 whenever χ 6= χ0, whereas y(a(1, 2) |χ0) = 0 only for N = 5 (use (15)
and (32)). So rk(a(1, 2)) = ϕ(N)/2 for all N ≥ 6. The next theorem shows
that the statement “rk(a(1,m)) = ϕ(N)/2” (the so-called “main case”)
holds whenever N is large relative to m:
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Theorem 6. Let N ≥ 10 and m be natural numbers with (m,N) = 1.
If

N

logN
>

30
π2

(
m2 + 2m+

2m
logN

)
(33)

then rk(a(1,m)) = ϕ(N)/2.

Proof. If rk(a(1,m)) < ϕ(N)/2, then S(m,χ) = 0 for some character
χ ∈ X+

N , by (31). So (14) entails

|L(2, χ)|N
2m

≤ (m+ 2) logN + 2.

Because of |L(2, χ)| ≥ π2/15 (cf. (25)), this requires that N/logN does not
exceed the right side of (33).

Theorem 3 is a slightly weaker but more handsome version of Theorem 6.
For its proof suppose that (33) does not hold. We evaluate the constants of
(33) numerically and assume m ≥ 13 and N ≥ 5000. This yields

N

logN
< 3.04

(
1 +

2
13

+
2

13 log 5000

)
m2 < Cm2

for C = 3.57. Put β = 3.34, further x = βCm2 logm. Thus, βC < 12 and

log x ≤ 2 logm+ log logm+ log 12 ≤
(

2.37 +
log 12
log 13

)
logm ≤ β logm;

here we have used log logm ≤ 0.37 logm, which is, indeed, true for all
m under consideration. Accordingly, x/log x ≥ Cm2. By the monoton-
icity of the function N/logN , N/logN < Cm2 cannot hold for N ≥ x =
11.9238m2 logm. Theorem 3 follows since the conditions m ≥ 13 and N ≥
12m2 logm automatically imply N ≥ 5000.

The casesm = 1, 2 have been treated above. So the only cases not covered
by Theorem 3 concern the numbers m ∈ {3, 4, . . . , 12}. Here (33) shows that
rk(a(1,m)) = ϕ(N)/2 as soon asN ≥ Cm, where the value of Cm can be read
from the following list of pairs (m,Cm): (3, 275), (4, 474), (5, 733), (6, 1052),
(7, 1435), (8, 1883), (9, 2397), (10, 2979), (11, 3630), (12, 4352).

Remark. The data collected by the author suggests that a bound like
N ≥ 2m2 might be sufficient for rk(a(1,m)) = ϕ(N)/2 in the case of prime
numbers N (at least). In fact, the largest exceptions we know have the shape
N = m2 + 3m+ 1 (cf. the next section).

4. The Galois module of cot(π/N) cot(mπ/N): special results. We
adopt the notations of the foregoing section but also consider negative val-
ues m. As above, m∗ denotes a multiplicative inverse of m mod N . In addi-
tion, one should recall that a(j, k) (j, k prime to N) depends on the residue
classes of j and k mod N only.
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In the first part of this section we consider pairs (m,N) for which the
above “main case” does not hold, so rk(a(1,m)) < ϕ(N)/2. We start with
a sort of equivalence for the pairs (m,N) that helps keeping the final list
small. Because of

a(1,−m) = −a(1,m)

the Galois modules of a(1,m) and a(1,−m) are the same. Moreover, a(1,m∗)
is conjugate to a(1,m), since

%m(a(1,m∗)) = a(m,mm∗) = a(m, 1) = a(1,m),

cf. (30). So the Galois modules of a(1,m) and a(1,m∗) are also identic.
Hence it is justified to say that two pairs (m′, N) and (m′′, N) are trivially
equivalent if m′ and m′′ are congruent mod N to one of the numbers m,
−m, m∗, −m∗.

From now on we identify XN with the character group of the Galois
group G, i.e., we put

χ(%k) = χ(k)

for each χ ∈ XN and each automorphism %k. In the case of the trivial
character χ = χ0 this gives χ0(%k) = 1 for each %k. The following criterion
supplies, in a sense, all pairs (m,N) with rk(a(1,m)) < ϕ(N)/2 known to
the author, and, in fact, all existing pairs with m ≤ 30, N a prime. Recall
that each system y(a(1,m) |χ) = 0 of vanishing eigenvalues (χ running
through a certain conjugacy class in X+

N ) means that the maximal Galois
rank ϕ(N)/2 decreases by the number ϕ(ord(χ)) and gives rise to the same
number of independent relations, cf. (27)–(29).

Proposition 1. Let H be a subgroup of the Galois group G and a ∈ QN
such that the trace

T (a) =
∑

%∈H
%(a)

is rational. Then y(a |χ) = 0 for each character χ 6= χ0 which is trivial
on H (i.e., χ(%) = 1 whenever % ∈ H). If T (a) = 0, this is also true for
χ = χ0.

Proof. By (26),

y(a |χ) =
∑

%∈G
χ(%)%(a).

Let R ⊆ G be a complete system of representatives of G/H. Thus,

y(a |χ) =
∑

σ∈R

∑

%∈H
χ(σ%)σ%(a).
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Let χ be trivial on H and T (a) ∈ Q. Then χ(σ%) = χ(σ) and

y(a |χ) =
∑

σ∈R
χ(σ)σ(T (a)) = T (a)

∑

σ∈R
χ(σ).

So T (a) = 0 implies y(a |χ) = 0. If, on the other hand, χ 6= χ0, the character
sum on the right hand side vanishes, since χ can be considered as a nontrivial
character of G/H.

Our first application of Proposition 1 is

Proposition 2. Let N ≥ 3 and m ∈ Z be such that m2 ≡ −1 mod N .
If χ ∈ X+

N is a character with χ(m) = 1, then

y(a(1,m) |χ) = 0.

Proof. The subgroup H = 〈%m〉 of G has order 4 and

T (a(1,m)) = a(1,m) + a(m,m2) + a(m2,m3) + a(m3,m4) = 0,

since a(m,m2) = a(m,−1) = −a(1,m) and, in the same way, a(m3,m4) =
a(m3,−m2) = −a(m2,m3).

We briefly consider the case of a prime number N = p. There is a natural
number m such that m2 ≡ −1 mod p if, and only if, p ≡ 1 mod 4. For such
a pair (m, p) the set {χ ∈ X+

p : χ(m) = 1} is a subgroup of index 2 in X+
p .

Hence (29) and Proposition 2 give

Corollary 1. If N = p is a prime ≡ 1 mod 4 and m2 ≡ −1 mod p,
then rk(a(1,m)) ≤ (p− 1)/4.

The next application of Proposition 1 gives a less obvious result:

Proposition 3. Let N ≥ 3 and m ∈ Z be such that m2 + m + 1 ≡
0 mod N . If χ ∈ X+

N , χ 6= χ0, is a character with χ(m) = 1, then

y(a(1,m) |χ) = 0.

Proof. Let x, y, z be real numbers such that none of them is of the form
nπ but x+ y+ z = nπ for some integer n (e.g., the angles of a triangle have
this property). Then

cot(x) cot(y) + cot(y) cot(z) + cot(z) cot(x) = 1.(34)

This can easily be verified by means of the addition theorem

cot(x+ y) = (cot(x) cot(y)− 1)/(cot(x) + cot(y)).

Because of m2 + m + 1 ≡ 0 mod N , m is prime to N and m3 ≡ 1 mod N .
Note that a character χ with the properties in question exists only if N > 3,
so H = 〈%m〉 is a group of order 3. The numbers x = π/N , y = mπ/N and
z = m2π/N are such that (34) holds. Accordingly,

T (a(1,m)) = a(1,m) + a(m,m2) + a(m2, 1) = 1,

and Proposition 1 gives the result.



86 K. Girstmair

In the situation of Proposition 3, we have m+ 1 ≡ −m2 ≡ −m∗ mod N .
The pairs (m,N) and (m+ 1, N) are, thus, trivially equivalent in the above
sense. The number of characters χ in question amounts to ϕ(N)/6−1, which
means rk(a(1,m)) = rk(a(1,m+ 1)) ≤ ϕ(N)/3 + 1.

The criterion contained in Proposition 1 is not hard to check in any
particular case—but the settings of Propositions 2 and 3 are the only ones
for which the author a priori knows that it applies. Are there other examples
(m,N) such that the generalized Dedekind sum S(m,χ) vanishes for some
χ ∈ X+

N ? This is, in fact, true. We enclose a list of pairs of this kind with
prime moduli N = p. They have been found by means of the following
search procedure: Let m and the prime p be given, p below some bound
like 12m2 logm, cf. Theorem 3. Each conjugacy class of even characters χ is
completely determined by its order d—and these orders are just the divisors
of ϕ(p)/2 = (p − 1)/2. Looking for some χ with ord(χ) = d such that
S(m,χ) = 0 we use, first, one of the relations (28), say for j = 1. In other
words, if

∣∣∣
p−1∑

k=1

c1,ka(k, km)
∣∣∣ < 0.001,(35)

then the character χ corresponding to d is a candidate for S(m,χ) = 0.
A precision of 24 decimal digits produced only candidates such that the left
side of (35) was < 10−16; this suggests that S(m,χ) really vanishes. We
know two different possibilities how to check this by means of computer
calculations but confine ourselves to sketching one here: By (16), S(m,χ)
= 0 if, and only if,

p−1∑

k=1

χ(k)S(m, p; k) = 0.

As in the case of (27) and (28), we transform this equation into an equivalent
system of linear equations with integral coefficients, namely,

p−1∑

k=1

cj,kS(m, p; k) = 0, j = 0, 1, . . . , ϕ(d)− 1,(36)

the coefficients cj,k being those of (28). It is not hard to verify that
4pS(m, p; k) is in Z whenever p > 3. Hence 4p times the left side of (36) is
always a rational integer, so it is easy to decide whether it is zero or not.
All candidates found by our search passed this test and a number of other
criteria like computing the left side of (35) with higher precision.

Our list is supposed to be exhaustive in the following sense: Each possible
pair (p,m) with m ≤ 30 and rk(a(1,m)) < ϕ(p)/2 is trivially equivalent (as
defined above) either to one of the types covered by Propositions 2, 3 or
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to a pair from our list. For m = 30, Theorem 6 yields 30293 as the largest
upper bound for p one has to deal with.

Additional pairs (m, p) with rk(a(1,m)) < ϕ(p)/2

m p d m p d

4 29 2 20 461 2, 5, 10

7 53 2 21 101 2

8 89 2 21 109 2

9 61 2 25 317 2

11 53 2 26 151 3

12 181 2 27 349 2

13 101 2 27 397 2

15 109 2 27 811 3

15 137 2 28 97 3

16 173 2 30 113 2

19 163 3 30 137 2

20 163 3 30 991 5

Since p and d = ord(χ) are known, we also know the possible groups H
of Proposition 1. Computing the respective traces shows that all pairs of
the list are of the type described by this proposition—but the group H is
always considerably large, in contrast with the situations of Propositions 2
and 3. This has to do with the fact that d is small. Moreover, (29) implies
that

rk(a(1,m)) = ϕ(p)/2−
∑

d

ϕ(d)

is close to ϕ(p)/2 for these examples.
In the final part of this paper we consider some cases where y(a(1,m) |χ)

cannot vanish. We start with a prime numberN = p and the trivial character
χ = χ0. By (1), y(a(1,m) |χ0) = 4pS(m, p). It is known that the ordinary
Dedekind sum S(m, p) vanishes if, and only if, m2 ≡ −1 mod p, cf. [9]. So
we have a (rather weak) partial converse of Proposition 2:

Proposition 4. Let N = p ≥ 3 be a prime number and m ∈ Z, p -m,
be such that m2 6≡ −1 mod p. Then y(a(1,m) |χ0) 6= 0.

Next let χ be a primitive character mod N . We sketch a result that was
proved in detail in the first version of this paper. By means of a reduction
formula for Dedekind sums ([5], p. 79) one can show that the sum on the
right side of (16) equals m∗B2,χ/2 plus an algebraic integer. Here B2,χ is
the generalized Bernoulli number belonging to the complex conjugate of χ,
cf. [3]. The reference mentioned also says when B2,χ/2 is not an algebraic
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integer: The number N must be an odd prime power N = pr, r ≥ 1, and χ
must be of the shape χ = χ2

1 for a generator χ1 of the (cyclic) group XN .
For such a number N a character χ of this type is, conversely, even and
primitive. The denominator of B2,χ/2 contains a prime ideal lying above p
then. This means that m∗B2,χ/2 cannot be integral either. Hence we have,
in view of (31),

Proposition 5. Let p ≥ 3 be a prime, N = pr, r ≥ 1, and m not
divisible by p. Let χ1 be a generator of the cyclic group XN and χ = χ2

1.
The number y(a(1,m) |χ)/τ(χ) is not an algebraic integer and , thus, 6= 0.
Accordingly , rk(a(1,m)) ≥ ϕ(ϕ(N)/2).

In the setting of Proposition 5, ord(χ) = ϕ(N)/2 is the largest order
an even character can take, which is reflected by the fact that rk(a(1,m))
cannot be much smaller than its largest possible value ϕ(N)/2. If N = p is
a prime of the shape 2q + 1, q ≥ 3 another prime, then ϕ(ϕ(p)/2) = q − 1.
Moreover, we have p ≡ 3 mod 4, so m2 6≡ −1 mod p for all m not divisible
by p. Accordingly, Propositions 4 and 5 give

Corollary 2. Let q ≥ 3 and p = 2q + 1 be prime numbers, further
m ∈ Z not divisible by p. For N = p, rk(a(1,m)) = ϕ(N)/2.
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