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1. Introduction. Hurwitzian continued fraction expansions have the
form

[c0; c1, . . . , cn, Q1(k), . . . , Qp(k)]∞k=1

= [c0; c1, . . . , cn, Q1(1), . . . , Qp(1), Q1(2), . . . , Qp(2), Q1(3), . . .]

where c0 is an integer, c1, . . . , cn are positive integers, Q1, . . . , Qp are poly-
nomials with rational coefficients which take positive integral values for
k = 1, 2, . . . and at least one of the polynomials is not constant (see e.g.
[1], [8], [9]). Well-known examples are

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .] = [2; 1, 2k, 1]∞k=1,

tanh 1 =
e2 − 1
e2 + 1

= [0; 1, 3, 5, 7, . . .] = [0; 2k − 1]∞k=1,

tan 1 = [1; 1, 1, 3, 1, 5, 1, . . .] = [1; 2k − 1, 1]∞k=1.

The forms

αe2/g + β

γe2/g + δ
with α, β, γ, δ, g ∈ Z, g 6= 0, αδ − βγ 6= 0

are called Hurwitz numbers ([4], [5]). But the general relation between Hur-
witz numbers and Hurwitzian continued fraction expansions has not been
discovered yet (see [15, p. 129], e.g.).

Tasoev [13], [14] proposed a new continued fraction which is like Hur-
witzian but Qj(k) includes exponentials in k instead of polynomials. The

author [6] obtained the closed form of [0; ak, . . . , ak︸ ︷︷ ︸
m

]∞k=1 by using the method
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of Wall [16]. When m = 1 or 2, its closed form is simple with the fraction of
two infinite sums. In this paper some more general cases are treated. Fur-
thermore, in each case a continued fraction expansion can be obtained, by
using the negative continued fraction.

The same technique can be applied to Hurwitzian continued fraction
expansions. Once we get a continued fraction whose partial quotients consist
of arithmetic progressions (we call it of tanh type), we easily deduce its
counterpart (called tan type) with the negative continued fraction instead
of the simple continued fraction. More extended cases will also be mentioned.

2. The simple and negative continued fraction expansions. As
usual, α = [a0, a1, a2, . . .] denotes the simple continued fraction expansion
of α, where

α = a0 + θ0, a0 = bθc,
1/θn−1 = an + θn, an = b1/θn−1c (n ≥ 1).

The nth convergent pn/qn = [a0; a1, . . . , an] of α is given by the recurrence
relations

pn = anpn−1 + pn−2 (n ≥ 0), p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2 (n ≥ 0), q−1 = 0, q−2 = 1.

We now introduce the negative continued fraction expansion. We use the
definition and notation in [10] with a change of the position of the minus
sign, because it is more convenient when 0 < α < 1. The usual definition
can be found in [3]. The negative expansion of a real α is denoted by

α = −[0; a1, a2, a3, . . .] =
1

a1 −
1

a2 −
1

a3 − . . .
where the integers ai ≥ 2 are generated by ceiling functions rather than
floor functions in the continued fraction algorithm:

θ0 = {α},
1/θn−1 = an − θn, an = d1/θn−1e (n ≥ 1)

with corresponding convergents pn/qn = −[0; a1, . . . , an] given by

pn = anpn−1 − pn−2 (n ≥ 1), p0 = 0, p−1 = −1,

qn = anqn−1 − qn−2 (n ≥ 1), q0 = 1, q−1 = 0.

A simple continued fraction expansion can be transformed into a negative
continued fraction expansion by the following rule.
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Lemma 1 ([10]).

[0; a1, a2, a3, a4, a5, a6, a7, . . .]

= −[0; a1 + 1, 2, . . . , 2︸ ︷︷ ︸
a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, a5 + 2, 2, . . . , 2︸ ︷︷ ︸
a6−1

, a7 + 2, . . .].

Proof. We refer to [11, p. 227]. Since

[. . . , a, b, c, d, . . .] = [. . . , a, 0,−1, 1,−1, 0,−b,−c, . . .]
= [. . . , a− 1, 1,−b− 1,−c, . . .]

or
[. . . , a, b, c, d, . . .] = [. . . , a, 0, 1,−1, 1, 0,−b,−c, . . .]

= [. . . , a+ 1,−1,−b+ 1,−c, . . .],
we have

[. . . , a, b, c, d, e, . . .] = [. . . , a+ 1,−1,−b+ 1,−c,−d,−e, . . .]
= [. . . , a+ 1,−2, 1, b− 2, c, d, e, . . .]

= [. . . , a+ 1,−2, 2,−1,−b+ 3,−c,−d,−e, . . .]
= . . .

= [. . . , a+ 1,−2, 2, . . . , (−2)b−1

︸ ︷︷ ︸
b−1

, (−1)b(c+ 1), (−1)bd, (−1)be, . . .].

3. Tasoev’s continued fractions

Theorem 1. Let a be an integer and u a rational with a > 1 and ua ∈
Z+. Then

[0;uak]∞k=1 =
∑∞
s=0 u

−2s−1a−(s+1)2 ∏s
i=1(a2i − 1)−1

∑∞
s=0 u

−2sa−s2
∏s
i=1(a2i − 1)−1

.

Remark. If u = 1, then we have the first relation of the main theorem
in [6].

Proof of Theorem 1. Let the power series

fn(z) = rn,0 + rn,1z + rn,2z
2 + . . .

satisfy the relation

fn(z) = uan+1fn+1(z) + zfn+2(z)

for n = 0, 1, 2, . . . Then from

fn(z)
fn+1(z)

= uan+1 +
z

fn+1(z)
fn+2(z)
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we obtain the desired continued fraction expansion as

f1(1)
f0(1)

= [0;ua, ua2, ua3, . . .].

By comparing the constant and the coefficient of zs (s ≥ 1), rn,l must satisfy
the recurrence relations

rn,0 = uan+1rn+1,0,

rn,s = uan+1rn+1,s + rn+2,s−1.

By the first relation we have r0,0 = unan(n+1)/2rn,0. We can assume that
r0,0 = 1. Otherwise, any of rn,s will be multiplied by r0,0 and finally r0,0

will be cancelled in f1(1)/f0(1). Hence,

(1) rn,0 = u−na−n(n+1)/2.

By the second relation we have

(2) r0,s = unan(n+1)/2rn,s +
n∑

k=1

uk−1a(k−1)k/2rk+1,s−1.

By induction we shall show

rn,s = u−n−2sa−n(n+1)/2−2sn−s2
s∏

i=1

(a2i − 1)−1.

For s = 1 by (1) and (2) we have

r0,1 = unan(n+1)/2rn,1 +
n∑

k=1

uk−1a(k−1)k/2u−k−1a−(k+1)(k+2)/2

= unan(n+1)/2rn,1 + u−2
n∑

k=1

a−2k−1

= unan(n+1)/2rn,1 + u−2a−1(1− a−2n)(a2 − 1)−1.

Separating the terms including n from the constant terms without n, we
have

rn,1 = u−n−2a−n(n+1)/2−2n−1(a2 − 1)−1.

Assume that the assertion is valid for s− 1 and s. Then by (2) we have

r0,s+1

= unan(n+1)/2rn,s+1

+
n∑

k=1

uk−1a(k−1)k/2u−k−1−2sa−(k+1)(k+2)/2−2s(k+1)−s2
s∏

i=1

(a2i − 1)−1
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= unan(n+1)/2rn,s+1 + u−2s−2
n∑

k=1

a−2(s+1)k−(s+1)2
s∏

i=1

(a2i − 1)−1

= unan(n+1)/2rn,s+1 + u−2(s+1)a−(s+1)2
(1− a−2(s+1)n)

s+1∏

i=1

(a2i − 1)−1.

Separating the terms including n from the constant terms without n, we
have

rn,s+1 = u−n−2(s+1)a−n(n+1)/2−2(s+1)n−(s+1)2
s+1∏

i=1

(a2i − 1)−1.

Therefore, we obtain the desired form

[0;uak]∞k=1 =
f1(1)
f0(1)

=
∑∞
s=0 r1,s∑∞
s=0 r0,s

.

Theorem 2. Let a be an integer and u a rational with a > 1 and ua ∈
Z+. Then

[0;ua− 1, 1, uak+1 − 2]∞k=1 =
∑∞
s=0(−1)su−2s−1a−(s+1)2 ∏s

i=1(a2i − 1)−1
∑∞
s=0(−1)su−2sa−s2

∏s
i=1(a2i − 1)−1 .

Proof. Let the power series fn(z) = rn,0 + rn,1z+ rn,2z
2 + . . . satisfy the

relation
fn(z) = uan+1fn+1(z)− zfn+2(z)

instead of fn(z) = uan+1fn+1(z)+zfn+2(z) in Theorem 1. Then rn,l satisfies
the recurrence relations

rn,0 = uan+1rn+1,0,

rn,s = uan+1rn+1,s − rn+2,s−1.

Thus, in a similar manner to the proof of Theorem 1, we can have

rn,s = (−1)su−n−2sa−n(n+1)/2−2sn−s2
s∏

i=1

(a2i − 1)−1.

Therefore, from
f1(z)
f0(z)

=
z

ua− z

ua2 − z

ua3 − . . .
and Lemma 1 we obtain

[0;ua− 1, 1, uak+1 − 2]∞k=1 = −[0;uak]∞k=1 =
f1(1)
f0(1)

=
∑∞
s=0 r1,s∑∞
s=0 r0,s

.
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Theorem 3. Let a and b be integers and u and v be rationals with
a, b > 1 and ua, vb ∈ Z+. Then

[0;uak, vbk]∞k=1 =
∑∞
s=0 r1,s∑∞
s=0 r0,s

,

where for s = 0, 1, . . . ,

r0,2s = u−2sv−2sR0,2sa
−s(s+1)b−s

2
2s∏

i=1

(aibi − 1)−1,

r0,2s+1 = u−2s−1v−2s−1R0,2s+1a
−(s+1)2

b−s(s+1)
2s+1∏

i=1

(aibi − 1)−1,

r1,2s = u−2s−1v−2sR1,2sa
−(s+1)2

b−s(s+1)
2s∏

i=1

(aibi − 1)−1,

r1,2s+1 = u−2s−2v−2s−1R1,2s+1a
−(s+1)(s+2)b−(s+1)2

2s+1∏

i=1

(aibi − 1)−1,

with R0,0 = R1,0 = 1 and for s = 0, 1, . . . ,

R0,2s = asbsR0,2s−1 +R1,2s−1,

R0,2s+1 = as+1bsR0,2s +R1,2s,

R1,2s = R0,2s−1 + asbsR1,2s−1,

R1,2s+1 = R0,2s + asbs+1R1,2s.

Proof. Consider the power series fn(z) = rn,0 + rn,1z + rn,2z
2 + . . . ,

satisfying
f2n(z) = uan+1f2n+1(z) + zf2n+2(z),

f2n+1(z) = vbn+1f2n+2(z) + zf2n+3(z).

Thus, f1(1)/f0(1) = [0;uak, vbk]∞k=1. By comparing the constant terms we
have

r2n,0 = uan+1r2n+1,0,

r2n+1,0 = vbn+1r2n+2,0,

yielding

r2n,0 = u−nv−na−n(n+1)/2b−n(n+1)/2,

r2n+1,0 = u−n−1v−na−(n+1)(n+2)/2b−n(n+1)/2.

By comparing the coefficients of zs we have

r2n,s = uan+1r2n+1,s + r2n+2,s−1,

r2n+1,s = vbn+1r2n+2,s + r2n+3,s−1,



Hurwitzian and Tasoev’s continued fractions 167

yielding

r0,s = unvnan(n+1)/2bn(n+1)/2r2n,s

+
n∑

k=1

(ukvk−1ak(k+1)/2b(k−1)k/2r2k+1,s−1

+ uk−1vk−1a(k−1)k/2b(k−1)k/2r2k,s−1).

When s = 1, we get

r0,1 = unvnan(n+1)/2bn(n+1)/2r2n,1

+
n∑

k=1

(ukvk−1ak(k+1)/2b(k−1)k/2u−k−1v−ka−(k+1)(k+2)/2b−k(k+1)/2

+ uk−1vk−1a(k−1)k/2b(k−1)k/2u−kv−ka−k(k+1)/2b−k(k+1)/2)

= unvnan(n+1)/2bn(n+1)/2r2n,1 + u−1v−1
n∑

k=1

(a−k−1b−k + a−kb−k)

= unvnan(n+1)/2bn(n+1)/2r2n,1 + u−1v−1 · a+ 1
a(ab− 1)

(1− a−nb−n).

Separating the terms including n from those without n we obtain

r2n,1 = u−n−1v−n−1R0,1a
−n(n+1)/2−n−1b−n(n+1)/2−n(ab− 1)−1,

where R0,1 = a+ 1. Then

r2n+1,1 = u−1a−(n+1)(r2n,1 − r2n+2,0)

= u−1a−(n+1)(u−n−1v−n−1R0,1a
−n(n+1)/2−n−1b−n(n+1)/2−n(ab− 1)−1

− u−n−1v−n−1a−(n+1)(n+2)/2b−(n+1)(n+2)/2)

= u−n−2v−n−1R1,1a
−n(n+1)/2−2n−2b−n(n+1)/2−n−1(ab− 1)−1,

where R1,1 = b+ 1. In general, we can prove that

r2n,2s = u−n−2sv−n−2sR0,2sa
−n(n+1)/2−2sn−s(s+1)

× b−n(n+1)/2−2sn−s2
2s∏

i=1

(aibi − 1)−1

with R0,2s = asbsR0,2s−1 +R1,2s−1,

r2n+1,2s = u−n−2s−1v−n−2sR1,2sa
−n(n+1)/2−(2s+1)n−(s+1)2

× b−n(n+1)/2−2sn−s(s+1)
2s∏

i=1

(aibi − 1)−1

with R1,2s = R0,2s−1 + asbsR1,2s−1,
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r2n,2s+1 = u−n−2s−1v−n−2s−1R0,2s+1a
−n(n+1)/2−(2s+1)n−(s+1)2

× b−n(n+1)/2−(2s+1)n−s(s+1)
2s+1∏

i=1

(aibi − 1)−1

with R0,2s+1 = as+1bsR0,2s +R1,2s,

r2n+1,2s+1 = u−n−2s−2v−n−2s−1R1,2s+1a
−n(n+1)/2−(2s+2)n−(s+1)(s+2)

× b−n(n+1)/2−(2s+1)n−(s+1)2
2s+1∏

i=1

(aibi − 1)−1

with R1,2s+1 = R0,2s + asbs+1R1,2s.
We omit the detailed but routine induction.

Corollary 1.

[0;uak, vak]∞k=1 =
∑∞
s=0 u

−s−1v−sa−(s+1)(s+2)/2∏s
i=1(ai − 1)−1

∑∞
s=0 u

−sv−sa−s(s+1)/2
∏s
i=1(ai − 1)−1

,

where u and v are rational so that ua and va are positive integers.

Remark. If u = v = 1, then we have the second relation of the main
theorem in [6].

Proof of Corollary 1. If a = b, then

R0,s = R1,s =
s∏

i=1

(ai + 1) (s = 0, 1, . . .).

Thus, in Theorem 3,

r0,s =
∞∑

s=0

u−sv−sa−s(s+1)/2
s∏

i=1

(ai − 1)−1,

r1,s =
∞∑

s=0

u−s−1v−sa−(s+1)(s+2)/2
s∏

i=1

(ai − 1)−1.

The theorem corresponding to Corollary 1 is the following. One can
obtain it similarly by using the negative continued fraction expansion instead
of the simple expansion. We omit the proof.

Theorem 4. Let a be an integer and u a rational with a > 1, ua, va ∈
Z+ and va 6= 2. Then

[0;ua− 1, 1, va− 2, 1, uak+1 − 2, 1, vak+1 − 2]∞k=1

=
∑∞
s=0(−1)su−s−1v−sa−(s+1)(s+2)/2∏s

i=1(ai − 1)−1
∑∞
s=0(−1)su−sv−sa−s(s+1)/2

∏s
i=1(ai − 1)−1

.
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If a = 2 and v = 1, then

[0; 2u− 1, 2, 2k+1u− 2, 1, 2k+1 − 2, 1]∞k=1

=
∑∞
s=0(−1)su−s−12−(s+1)(s+2)/2∏s

i=1(2i − 1)−1
∑∞
s=0(−1)su−s2−s(s+1)/2

∏s
i=1(2i − 1)−1

.

4. Hurwitzian continued fractions. We start from an extension of
results of Elianu [2] and Lehmer [7].

Theorem 5.

[0;uc, v(c+ d), u(c+ 2d), v(c+ 3d), u(c+ 4d), v(c+ 5d), . . .]

=
∑∞
s=0(s!us+1(vd)s

∏s
i=0(c+ id))−1

∑∞
s=0(s!(uvd)s

∏s−1
i=0 (c+ id))−1

.

Proof. For simplicity put

An =
{
u(c+ nd) if n is even

v(c+ nd) if n is odd
(n = 0, 1, . . .).

Consider the power series

(3) fn(z) = rn,0 + rn,1z + rn,2z
2 + . . . (n = 0, 1, . . .),

satisfying

(4) fn(z) = Anfn+1(z) + fn+2(z).

Then from
fn(z)
fn+1(z)

= An +
z

fn+1(z)
fn+2(z)

we obtain the desired continued fraction expansion

f1(1)
f0(1)

= [0;uc, v(c+ d), u(c+ 2d), v(c+ 3d), . . .].

We now determine rn,0, rn,1, rn,2, . . . in (3). First, compare the constant
terms in (4) to get

rn,0 = Anrn+1,0 (n = 0, 1, . . .),

yielding r0,0 =
∏n−1
j=0 Ajrn,0. We can assume r0,0 = 1 without loss of gener-

ality. Hence,

(5) rn,0 =
n−1∏

j=0

A−1
j (n = 0, 1, . . .).

Next, compare the coefficients of zs (s ≥ 1) in (2) to obtain

rn,s = Anrn+1,s + rn+2,s−1 (n = 0, 1, . . .),
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yielding

(6) r0,s =
n−1∏

j=0

Ajrn,s +
n∑

k=1

k−2∏

j=0

Ajrk+1,s−1.

We shall prove by induction that

(7) rn,s =
1

s!(uvd)s

s−1∏

i=0

(c+ (n+ i)d)−1
n−1∏

j=0

A−1
j .

When s = 1, by (6) and (5) we have

r0,1 =
n−1∏

j=0

Ajrn,1 +
n∑

k=1

k−2∏

j=0

Aj

k∏

j=0

A−1
j

=
n−1∏

j=0

Ajrn,1 +
1
uvd

((
1
c
− 1
c+ d

)
+
(

1
c+ d

− 1
c+ 2d

)

+ . . .+
(

1
c+ (n− 1)d

− 1
c+ nd

))

=
n−1∏

j=0

Ajrn,1 +
1
uvd

(
1
c
− 1
c+ nd

)
.

Separating the terms including n from the constant terms without n, we
obtain

rn,1 =
1

uvd(c+ nd)

n−1∏

j=0

A−1
j .

Assume that (7) is valid for s− 1 and s. Then by (6) we have

r0,s+1 =
n−1∏

j=0

Ajrn,s+1 +
n∑

k=1

k−2∏

j=0

Aj
1

s!(uvd)s

s−1∏

i=0

(c+ (k + i+ 1)d)−1
k∏

j=0

A−1
j

=
n−1∏

j=0

Ajrn,s+1

+
1

s!(uvd)s

n∑

k=1

1
uv(c+ (k − 1)d)(c+ kd) . . . (c+ (k + s)d)

=
n−1∏

j=0

Ajrn,s+1 +
1

(s+ 1)!(uvd)s+1

×
((

1
c(c+ d) . . . (c+ sd)

− 1
(c+ d)(c+ 2d) . . . (c+ (s+ 1)d)

)
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+
(

1
(c+d)(c+2d) . . . (c+(s+1)d)

− 1
(c+2d)(c+3d) . . . (c+(s+2)d)

)

+ . . .+
(

1
(c+ (n− 1)d)(c+ nd) . . . (c+ (n+ s− 1)d)

− 1
(c+ nd)(c+ (n+ 1)d) . . . (c+ (n+ s)d)

))

=
n−1∏

j=0

Ajrn,s+1 +
1

(s+ 1)!(uvd)s+1

(
1

c(c+ d) . . . (c+ sd)

− 1
(c+ nd)(c+ (n+ 1)d) . . . (c+ (n+ s)d)

)
.

Separating the terms including n from the constant terms without n, we
obtain

rn,s+1 =
1

(s+ 1)!(uvd)s+1

s∏

i=0

(c+ (n+ i)d)−1
n−1∏

j=0

A−1
j .

Thus, assertion (7) holds. Therefore,

r0,s =
1

s!(uvd)s

s−1∏

i=0

(c+ id)−1,

r1,s =
1

s!(uvd)s

s−1∏

i=0

(c+ (i+ 1)d)−1A−1
0 =

1
s!us+1(vd)s

s∏

i=0

(c+ id)−1.

Example 1 ([2], [7]).

[0; c+ kd]∞k=1 =
Ic/d+1

(
2
d

)

Ic/d
(

2
d

) ,

where Iλ(z) are the modified Bessel functions of the first kind, defined by

Iλ(z) =
∞∑

ν=0

(z/2)λ+2ν

ν!Γ (λ+ ν + 1)
.

Proof. Put u = v = 1 and replace c by c+ d in Theorem 5. Then

[0; c+ kd]∞k=1 =
∑∞
s=0(s!ds

∏s+1
i=1 (c+ id))−1

∑∞
s=0(s!ds

∏s
i=1(c+ id))−1 .

On the other hand, by the definition of the modified Bessel functions of the
first kind,

Ic/d

(
2
d

)
=
(

1
d

)c/d ∞∑

s=0

1
s!d2sΓ (c/d+ s+ 1)

=
1

dc/dΓ (c/d+ 1)

∞∑

s=0

1
s!ds

∏s
i=1(c+ id)

,
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Ic/d+1

(
2
d

)
=

1
dc/dΓ (c/d+ 1)

∞∑

s=0

1

s!ds
∏s+1
i=1 (c+ id)

.

Example 2 ([14], (8)).

[0; (4k − 3)u, (4k − 1)v]∞k=1 =

√
v

u
tanh

1√
uv
.

Proof. Put c = 1 and d = 2 in Theorem 5. Then

[0; (4k − 3)u, (4k − 1)v]∞k=1 =
∑∞
s=0(us+1vs(2s+ 1)!)−1
∑∞
s=0((uv)s(2s)!)−1 .

On the other hand, from

sinhx =
∞∑

s=0

x2s+1

(2s+ 1)!
and coshx =

∞∑

s=0

x2s

(2s)!
,

we have √
v

u
tanh

1√
uv

=

√
v

u
·
∑∞
s=0(uv)−s−1/2((2s+ 1)!)−1
∑∞
s=0(uv)−s((2s)!)−1 .

Theorem 6.

[0;uc− 1, 1, v(c+ d)− 2, 1, u(c+ 2d)− 2, 1, v(c+ 3d)− 2, 1, . . .]

=
∑∞
s=0(−1)s(s!us+1(vd)s

∏s
i=0(c+ id))−1

∑∞
s=0(−1)s(s!(uvd)s

∏s−1
i=0 (c+ id))−1

.

Proof. Consider the power series

fn(z) = rn,0 + rn,1z + rn,2z
2 + . . . (n = 0, 1, . . .),

satisfying
fn(z) = Anfn+1(z)− zfn+2(z),

where An is the same as in the proof of Theorem 5. Then

f1(z)
f0(z)

=
z

A1 −
z

A2 −
z

A3 − . . .

,

entailing that
f1(1)
f0(1)

= −[0;A1, A2, A3, . . .].

By Lemma 1 we have

[0;uc− 1, 1, v(c+ d)− 2, 1, u(c+ 2d)− 2, 1, v(c+ 3d)− 2, 1, . . .]

= −[0;uc, v(c+ d), u(c+ 2d), v(c+ 3d), . . .].

The rest of the proof is similar to that of Theorem 5.
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Example 3 ([7]).

[0; c+ d− 1, 1, c+ (k + 1)d− 2]∞k=1 =
Jc/d+1

(
2
d

)

Jc/d
(

2
d

) ,

where Jλ(z) are the Bessel functions of the first kind, defined by

Jλ(z) =
(
z

2

)λ ∞∑

ν=0

(iz/2)2ν

ν!Γ (λ+ ν + 1)
.

Proof. Put u = v = 1 and replace c by c + d in Theorem 6. The result
follows similarly to Example 1.

Example 4.

[0;u− 1, 1, (4k − 1)v − 2, 1, (4k + 1)u− 2]∞k=1 =

√
v

u
tan

1√
uv
.

Proof. Put c = 1 and d = 2 in Theorem 6. Then
√
v

u
tan

1√
uv

=

√
v

u
· sin(uv)−1/2

cos(uv)−1/2
=
∑∞
s=0(−1)s(us+1vs(2s+ 1)!)−1
∑∞
s=0(−1)s(usvs(2s)!)−1

= −[0; (4k − 3)u, (4k − 1)v]∞k=1

= [0;u− 1, 1, (4k − 1)v − 2, 1, (4k + 1)u− 2]∞k=1.

Remark. (1) If u = a (> 1) and v = 1, then
1√
a

tan
1√
a

= [0; a− 1, 1, 4k − 3, 1, (4k + 1)a− 2]∞k=1

as shown in [14, (20)].
(2) If u = v = a (> 1), then

tan
1
a

= [0; a− 1, 1, (4k − 1)a− 2, 1, (4k + 1)a− 2]∞k=1

= [0; a− 1, 1, (2k + 1)a− 2]∞k=1

as shown in [14, (17)].
(3) If u = 1 and v = a (including a = 1), then

√
a tan

1√
a

= [0; 0, 1, (4k − 1)a− 2, 1, 4k − 1]∞k=1

= [1; (4k − 1)a− 2, 1, 4k − 1, 1]∞k=1

as shown in [14, (19)].

5. Some extended forms. Some Hurwitzian continued fraction expan-
sions of tanh type (or tan type) cannot be derived directly from Theorem 5
(or Theorem 6, respectively). For example,

2 tan 1 = [3; 12k − 4, 1, 3k − 1, 2, 3k, 1]∞k=1



174 T. Komatsu

(Tasoev missed one 1 in [14, (21)]). But applying Raney’s method [12], which
is developed in [11], e.g., we can obtain it from tan 1 = [1, 2k − 1, 1]∞k=1. The
continued fraction [a0; a1, a2, . . .] corresponds to the matrix product

(
a0 1
1 0

)(
a1 1
1 0

)(
a2 1
1 0

)
. . . = Ra0La1Ra2 . . . ,

where
Ra =

(
1 a
0 1

)
and La =

(
1 0
a 1

)
.

Set
A =

(
c 0
0 1

)
and A′ =

(
1 0
0 c

)
.

Using the transition formulae

AR = RcA, A′L = LcA′,

ALc = LA, A′Rc = RA′,

ALRc−1 = Rc−1LA′, A′RLc−1 = Lc−1RA

in the case where c = 2, we have, for k = 1, 2, . . . ,

A′L6k−3RL6k−1RL6k+1R = L12k−6A′RL6k−1RL6k+1R

= L12k−6LRAL6k−2RL6k+1R

= L12k−5RL3k−1R2AL6k+1R

= L12k−5RL3k−1R2L3kRLA′.

Therefore, by the correspondence of continued fractions with matrix prod-
ucts, we have

2 tan 1 = 2[1; 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, . . .]←→
ARLRL3RL5RL7RL9 . . . = R2RLA′ L3RL5RL7R L9RL11RL13R L15 . . .

= R3L L7RL2R2L3RL L19RL5R2L6RL L31 . . .

←→ [3; 8, 1, 2, 2, 3, 1, 20, 1, 5, 2, 6, 32, . . .].

In a similar manner one can obtain the following extended forms.

Proposition 1.

2

√
v

u
tanh

1√
uv

=





[
0; (4k − 3)u2 , (8k − 2)v

]∞
k=1 if u is even;

[
0; 4ku− 7u+1

2 , 1, 1, 4kv − 5
2v − 1, 1, 1,

4ku− 3u+1
2 , (16k − 2)v

]∞
k=1 if u is odd and v is even;

[
0; 6ku− 11u+1

2 , 1, 1, 6kv − 9v+1
2 , (24k − 14)u, 6kv − 5v+1

2 ,

1, 1, 6ku− 3u+1
2 , (24k − 2)v

]∞
k=1 if u is odd and v is odd.
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1
2

√
v

u
tanh

1√
uv

=





[
0; (8k − 6)u, (4k − 1) v2

]∞
k=1 if v is even;

[
0; (16k − 14)u, 4kv − 5v+1

2 , 1, 1, 4ku− 3
2u− 1,

1, 1, 4kv − v+1
2

]∞
k=1 if u is even and v is odd;

[
0; (24k − 22)u, 6kv − 9v+1

2 , 1, 1, 6ku− 7u+1
2 , (24k − 10)v,

6ku− 3u+1
2 , 1, 1, 6kv − v+1

2

]∞
k=1 if u is odd and v is odd.

Proposition 2.

2

√
v

u
tan

1√
uv

=





[
0; u2 − 1, 1, 8kv − 2v − 2, 1, 2ku+ u

2 − 2
]∞
k=1 if u is even;

[
0; u−1

2 , 2, 4kv − 5
2v − 1, 2, 4ku− 3u+3

2 , 1,

16kv − 2v − 2, 1, 4ku+ u−3
2

]∞
k=1 if u is odd and v is even;

[
0; u−1

2 , 2, 6kv− 9v+3
2 , 1, 24ku− 14u− 2, 1, 6kv− 5v+3

2 , 2, 6ku− 3u+3
2 ,

1, 24kv − 2v − 2, 1, 6ku+ u−3
2

]∞
k=1 if both u and v are odd.

1
2

√
v

u
tan

1√
uv

=





[
0; 2u− 1, 1, 2kv − v

2 − 2, 1, 8ku+ 2(u− 1)
]∞
k=1 if v is even;

[
0; 2u− 1, 1, 4kv − 5v+3

2 , 2, 4ku− 3
2u− 1, 2, 4kv − v+3

2 , 1,

16ku+ 2(u− 1)
]∞
k=1 if u is even and v is odd ;

[
0; 2u− 1, 1, 6kv − 9v+3

2 , 2, 6ku− 7u+3
2 , 1, 24kv − 10v − 2, 1,

6ku− 3u+3
2 , 2, 6kv − v+3

2 , 1, 24ku+ 2(u− 1)
]∞
k=1

if both u and v are odd.

Note that the negative continued fraction expansion does not completely
correspond to the simple continued fraction expansion unless u is even in the
case multiplied by 2 or v is even in the case divided by 2. One of the reasons is
that the partial quotients in the negative continued fraction expansion do not
allow the integer 1, but the integers larger than 1. Here is the corresponding
relation:

−[. . . , a+ 1, 2, b+ 1, . . .]←→ [. . . , a, 1, 1, b, . . .].
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The cases multiplied or divided by 3, 4, 5, . . . may be obtained but are not
simple. For instance,

1
3

tan 1 = [0; 1, 1, 12, 1, 4k − 3, 3, 4k − 2, 1, 1, 1,

4k − 2, 1, 36k + 1, 1, 4k − 1, 1, 36k + 13 ]∞k=1

= −[0; 2, 14, 4k − 1, 2, 2, 4k, 3, 4k, 36k + 3, 4k + 1, 36k + 15 ]∞k=1

and
1
3

tanh 1

= [0; 36k − 33, 4k − 3, 36k − 21, 4k − 2, 2, 1, 4k − 2, 2, 1, 4k − 1 ]∞k=1.
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