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Subrings in imaginary quadratic fields which
are not universal for GE2
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1. Introduction. Let R be a commutative ring with identity 1, R∗ the
group of units in R. Denote by SLn(R) and En(R) the special linear groups
and the subgroups of SLn(R) generated by elementary matrices respectively.

Let F be a number field and let S be a finite set of places containing S∞,
the set of infinite places in F . Denote by OS the ring of S-integers of F , i.e.,
OS = {x ∈ F | v(x) ≥ 0 for v 6∈ S}. If S = S∞, then OS is the ring of integers
of F . The study of K2(n,OS) is related to the presentation of En(OS). We
know that if n ≥ 3, then K2(n,OS) = K2(OS) and En(OS) = SLn(OS),
and if O∗S is infinite (i.e., |S| > 1), then the natural homomorphism from
K2(2, OS) to K2(n,OS) (n ≥ 3) is surjective and SL2(OS) = E2(OS) (cf.
A. J. Hahn and O. T. O’Meara [7], W. van der Kallen [11], B. Liehl [14] and
L. N. Vasershtĕın [17]).

It is known that K2F consists of symbols (see [13]). However, this is
not generally true for OS . Denote by OF the ring of integers of a quadratic
field F = Q(

√
d) and by dF the discriminant of F . For d > 0, J. Browkin

and J. Hurrelbrink [2] proved that K2OF is generated by symbols if and
only if dF = 5, 8, 13. T. Mulders [16] showed that if OF contains nontorsion
units, then it is often the case that K2OF is generated by Dennis–Stein
symbols. On the other hand, K. Hutchinson [8] showed that K2OF , where
F = Q(

√
−34,

√
−206), cannot be generated by Dennis–Stein symbols, al-

though O∗F is infinite.
For K2(2, OS), the explicit computations are quite rare. However, P. M.

Cohn [3, 4] determined K2(2, OF ) completely, where OF is the ring of inte-
gers of an imaginary quadratic field. In particular, it is proved that except
for dF = −7, −8, −11, K2(2, OF ) is generated by symbols as a normal sub-
group of St(2, OF ). F. Kirchheimer and J. Wolfart [12] computed K2(2, OF ),
where OF is the real quadratic field with dF = 5, 8, 12, 13. By the stability
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result of W. van der Kallen [11] and results in [2, 12], it can be seen that if
OF is the ring of integers of a real quadratic field, then OF is universal for
GE2 if and only if dF = 5, 8, 13, although O∗F is infinite.

Let v be a finite place outside S, S′ = S ∪ {v}, R = OS and R′ = OS′ .
Suppose that the prime ideal P in R corresponding to v is principal and the
natural homomorphism R∗ → (R/P )∗ is surjective. E. Abe and J. Morita [1]
showed that if R is universal for GE2, then so is R′. This raises the question
of whether the result is still true if P is nonprincipal.

The purpose of this note is to answer this question in the negative. In
fact, we prove the following result.

Theorem 1. Let F = Q(
√
d) and let p be a prime number , and n ≥ 2.

Suppose that d is one of the following forms:

(a) d = −p(pn + 1), here n 6= 3 if p = 2;
(b) d = −p(pn − 1);
(c) d = −(pn + 1), here p = 2 and n 6= 3;
(d) d = −(pn − 7), here p = 2 and n ≥ 6, n 6= 7, 15.

Then K2(2, OF [1/p]) cannot be generated by symbols, i.e., OF [1/p] is not
universal for GE2, where OF denotes the ring of integers in F = Q(

√
d).

2. Preliminaries. For any associative ring R with 1, denote by St(n,R)
(n ≥ 2) the Steinberg group over R, i.e., the group with generators xij(r)
with r ∈ R, and i, j distinct integers between 1 and n, and subject to the
relations

xij(r)xij(s) = xij(r + s),(1)

[xij(r), xkl(s)] =
{
xil(rs) if j = k, i 6= l,

1 if j 6= k, i 6= l,
(2)

wα(t)x−α(r)wα(t)−1 = xα(−trt)(3)

where wα(t) = xα(t)x−α(−t−1)xα(t), α = ij, −α = ji, r, s ∈ R and t ∈ R∗.
For n ≥ 3 only the relations (1) and (2) are needed. When n = 2, the
relation (2) is vacuous.

There is a natural surjective map φn : St(n,R)→ En(R) sending xij(r)
to eij(r). Denote by K2(n,R) the kernel of φn and by K2(R) the direct limit
of K2(n,R) (n ≥ 2).

Now suppose that R is a commutative ring. Given a pair of units u
and v, one can construct the universal symbol {u, v}α, called the symbol in
the sequel, as follows:

{u, v}α = hα(uv)hα(u)−1hα(v)−1,

where hα(u) = wα(u)wα(−1).
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Now we recall the definition of a ring to be universal for GE2 (see [3]).
For any a ∈ R, u, v ∈ R∗, write

E(a) =
(
a 1
−1 0

)
, [u, v] =

(
u 0
0 v

)
, D(u) = [u, u−1].

We shall write E(2, R) for the group generated by all E(a), D2(R) for
the group generated by all [u, v], and GE2(R) for the group generated by
E(2, R) and D2(R). It is easy to see that E2(R) = E(2, R).

We have the relations

E(a)E(0)E(b) = −E(a+ b), where a, b ∈ R,(4)

E(u)E(u−1)E(u) = −D(u),(5)

E(a)[u, v] = [v, u]E(v−1au), where a ∈ R and u, v ∈ R∗.(6)

In addition we have certain obvious relations in D2(R), expressing it
effectively as the direct product of two copies of R∗. The relations (4)–(6)
together with the relations in D2(R) are called the universal relations for
GE2(R). When they constitute a complete set of defining relations, R is
said to be universal for GE2. That R is universal for GE2 is equivalent to
the condition that K2(2, R) is generated by symbols as a normal subgroup
of St(2, R) (cf., R. K. Dennis and M. R. Stein [5]). Some examples of rings
which are not universal for GE2 are given in [6].

3. Proof of Theorem. Let R and S be any commutative rings with 1.
An additive group homomorphism f : R → S is said to be a U -homomor-
phism if f(1) = 1 and f(ux) = f(u)f(x) for all x ∈ R, u ∈ R∗ (see [3,
p. 39]).

Lemma 2 [3, Th. 11.2]. Suppose that R and S are commutative rings
with 1 and R is universal for GE2. If f : R → S is a U-homomorphism,
then f induces a group homomorphism f∗ : GE2(R)→ GE2(S) by the rule

E(r) 7→ E(f(r)), [u, v] 7→ [f(u), f(v)].

Lemma 3. Suppose that R and S are commutative rings with 1 and
there exist a U-homomorphism f from R to S and a, b ∈ R such that u =
1 + ab ∈ R∗ and 1 + f(a)f(b) 6= f(u). Then R is not universal for GE2.

Proof. Suppose that R is universal for GE2. Let f∗ be the induced ho-
momorphism in Lemma 2. Note that in GE2(R),

(7) E

(
b

u

)
E(a)E(−b)E

(
−a
u

)
= [u−1, u].

In GE2(S), we have

(8) E

(
f(b)
f(u)

)
E(f(a))E(−f(b))E

(
−f(a)
f(u)

)
= [f(u)−1, f(u)].
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Direct computation will show that the (2, 2)-entries on the two sides of
(8) are 1 + f(a)f(b) and f(u) respectively. By the assumption, this is a
contradiction.

Lemma 4 [15]. Let p be a prime number and n ≥ 2. If p 6= 2 or n 6= 3,
then the Diophantine equation

x2 = pn ± 1

has no solution x in Z.

Remark 1. From the lemma above we know that pn + 1 (n ≥ 2) is a
square if and only if p = 2 and n = 3.

Lemma 5 [10]. If n ≥ 6, n 6= 7, 15, then the Diophantine equation

x2 = 2n − 7

has no solution x in Z.

Now let us recall some basic facts on imaginary quadratic fields (see [9]).
Suppose that −d is a nonsquare positive integer and d = d1d

2
2, where d1 is

square-free, and d2 is a positive integer. Then Q(
√
d) = Q(

√
d1).

If d1 ≡ 2, 3 (mod 4), then dF = 4d1 and OF = Z+ Zω, where ω =
√
d1.

If d1 ≡ 1 (mod 4), then dF = d1 and OF = Z + Zω, where ω =
(1 +

√
d1)/2.

Let p be a prime number and P a prime ideal in OF containing p. If p
is odd and p | dF , then P = (p,

√
d1) and P 2 = (p). If p = 2 and 2 | dF , then

d1 ≡ 2, 3 (mod 4) and P 2 = (p), where P = (2,
√
d1) if d1 ≡ 2 (mod 4), and

P = (2, 1 +
√
d1) if d1 ≡ 3 (mod 4).

Lemma 6. Let F = Q(
√
d1), where d1 is a square-free negative inte-

ger. Assume that a prime number p ramifies in F , (p) = P 2. If (i) d1 is
composite, or (ii) d1 ≤ −3 and p = 2, then the ideal P is not principal.

Proof. Suppose that the ideal P is principal, P = (α), where α ∈ OF .
Then taking norms we get p = N(P ) = N(α).

If d1 ≡ 2, 3 (mod 4), then α = a+ b
√
d1, where a, b ∈ Z, b 6= 0.

If d1 ≡ 1 (mod 4), then α = 1
2 (a + b

√
d1), where a, b ∈ Z, b 6= 0, a ≡ b

(mod 2).
Hence N(α) = p gives

a2 − d1b
2 = p if d1 ≡ 2, 3 (mod 4),(9)

a2 − d1b
2 = 4p if d1 ≡ 1 (mod 4).(10)

If p = 2 is ramified in F , then d1 ≡ 2, 3 (mod 4) and (9) implies that
−d1 ≤ −d1b

2 ≤ p = 2. This contradicts assumptions (i) and (ii).
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Thus p is odd, and p | d1 since p ramifies in F . From (9) and (10) it
follows that p | a, consequently (9) and (10) take the form

(11) p

(
a

p

)2

− d1

p
b2 = 1 or 4.

Since d1 is composite and b 6= 0, we have −(d1/p)b2 ≥ −d1/p ≥ 2. The first
case of (11) is impossible. In the second case we have d1 ≡ 1 (mod 4), hence
4 ≥ −(d1/p)b2 ≥ −d1/p ≥ 3, thus b2 = 1. Then a ≡ b (mod 2) implies that
a is odd. Consequently p(a/p)2 ≥ p ≥ 3, and 4 = p(a/p)2−(d1/p)b2 ≥ 3+3,
contradiction.

Lemma 7. Let F , p, and P be as in Lemma 6. Then the mapping f :
OF [1/p] → Z[1/p] defined by a + bω 7→ a + b, where a, b ∈ Z[1/p], is a
U-homomorphism.

Proof. Since the ideal P is not principal in OF , it follows that OF [1/p]∗

is a multiplicative group generated by −1 and p. Thus OF [1/p]∗ = Z[1/p]∗.
Since the mapping f is Z[1/p]-linear, it is a U -homomorphism.

Now let us complete the proof of Theorem 1.
Let f be the U -homomorphism of Lemma 7. By Lemma 3, it is sufficient

to show that there exist s, t ∈ R = OF [1/p] such that 1 + st = u ∈ R∗ and
1 + f(s)f(t) 6= f(u).

Since ω =
√
d1 or 1

2 (1 +
√
d1), we get

√
d1 = ω or 2ω − 1. Hence

f(
√
d1) = 1 in both cases. Consequently, f(

√
d) = f(d2

√
d1) = d2.

In cases (a) and (b) of Theorem 1 we have d = −p(pn+ε), where ε = ±1,
and its maximal square-free divisor d1 is composite in view of Lemma 4. Let
s =
√
d/p and t =

√
d/pn. Then

u = 1 + st = 1 +
d

pn+1 = − ε

pn
∈ R∗.

Now, f(s) = d2/p and f(t) = d2/p
n, hence 1 + f(s)f(t) = 1 + d2

2/p
n+1 > 1,

and f(u) = u = −ε/pn < 1. Contradiction.
In case (c) of Theorem 1 we have d = −(2n + 1) and d1 ≤ −3 in view of

Lemma 4. Let s =
√
d and t =

√
d/2n. Then

u = 1 + st = 1 +
d

2n
= − 1

2n
∈ R∗.

Now, f(s) = d2 and f(t) = d2/2n, hence 1 + f(s)f(t) = 1 + d2
2/2

n > 0 and
f(u) = u = −1/2n < 0. Contradiction.

In case (d) of Theorem 1 we have d = −(2n − 7) and d1 ≤ −3 in view of
Lemma 5. Since d ≡ 3 (mod 4), 2 should ramify in F = Q(

√
d), and (2) = P 2.
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So P is not principal by Lemma 6. Let s =
√
d−3 and t = 1

2 (
√
d+ 3). Then

u = 1 + st = 1 +
1
2

(d− 9) =
1
2

(d− 7) = −2n−1 ∈ OF
[

1
2

]∗
.

Now, f(s) = d2−3 and f(t) = 1
2 (d2 + 3), then f(s)f(t) = 1

2 (d2
2−7) > −4 >

f(u) = u. Contradiction.
Thus in all cases 1 + f(s)f(t) 6= f(u).

4. Example. Let F = Q(
√
d), where d = −(2n + 1), n 6= 3 and R =

OF = OS∞ . Suppose that v is the finite place in F corresponding to the
prime ideal P in OF containing p = 2. Let S′ = S∞ ∪ {v}, and R′ = OS′ =
OF [1/2]. Note that if n = 2, then d = −5 and dF = −20, and if n ≥ 4, then
d ≡ −1 (mod 8), d2 is odd, d2

2 ≡ 1 (mod 8) and d1 ≡ −1 (mod 8). In either
case dF 6= −7,−8,−11, so R is universal for GE2. Although the natural
homomorphism R∗ → (R/P )∗ ' (Z/2Z)∗ is surjective, R′ is not universal
for GE2.
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