On the 3-class field tower of some biquadratic fields

by
Eiji Yoshida (Nagoya)

1. Introduction. Let K be an algebraic number field. For a prime number p, let $K^{(0)}=K$ and $K^{(i)}$ denote the Hilbert p-class field of $K^{(i-1)}$ for $i \geq 1$. Then we have the tower of fields

$$
K=K^{(0)} \subseteq K^{(1)} \subseteq \ldots \subseteq K^{(\infty)}=\bigcup_{i=0}^{\infty} K^{(i)}
$$

We call this tower the p-class field tower of K. We say that K has a finite (resp. an infinite) p-class field tower if $\left|K^{(\infty)}: K\right|<\infty$ (resp. $\left|K^{(\infty)}: K\right|$ $=\infty$). Golod and Shafarevich (cf. [3]) proved that there exist algebraic number fields which possess infinite class field towers. In particular, if K is a real quadratic field, they have shown that K has an infinite 2-class field tower if the 2-rank of the ideal class group of K is greater than 5 . In this paper, we shall consider a number field with abelian p-class field towers (i.e. $K^{(1)}=K^{(2)}$). Hajir [5] has given all imaginary quadratic fields with abelian class field towers and Benjamin, Lemmermeyer and Snyder [1] have determined all real quadratic number fields with abelian 2-class field towers. Here we shall give a necessary and sufficient condition for the 3-class field tower of K to terminate at $K^{(1)}$, when K is a biquadratic field which contains $\sqrt{-3}$.
1.1. Notation. Throughout this paper, $\mathbb{Z}, \mathbb{Q}, \mathbb{N}$ will be used in the usual sense. If L is an algebraic number field, let $L^{(1)}$ and $C l_{L}$ be the Hilbert 3class field over L and the 3 -class group (the 3-primary part of the ideal class group) of L, and h_{L} be the order of $C l_{L}$. Let E_{L}, O_{L} be the group of units and the ring of integers of L respectively. If L is a Galois extension of an algebraic number field F, then $\operatorname{Gal}(L / F)$ is the Galois group for L / F. Let K / \mathbb{Q} be a complex biquadratic extension and k_{i} be the three quadratic subfields of K. If two quadratic subfields have cyclic 3-class groups and the third one has

[^0]trivial 3-class group, we denote these fields by k_{1}, k_{2} and k_{3} respectively. (When $k_{3}=\mathbb{Q}(\sqrt{-3})$, we denote the complex subfield of K by k_{1} and the real subfield of K by k_{2}.) In general, if $L / k_{i}(i=1,2,3)$ is an unramified abelian extension, then L / \mathbb{Q} is a Galois extension. In particular, if L / k_{i} is a cyclic extension with odd degree, then $\operatorname{Gal}(L / \mathbb{Q})$ is a dihedral group. Therefore if $k_{i}^{(1)} / k_{i}$ is a cyclic extension, then there exist three intermediate fields of $k_{i}^{(1)} / \mathbb{Q}$ which are cubic extensions over \mathbb{Q} and these fields are conjugate over \mathbb{Q}. We denote one of the three fields by F_{i} if two quadratic subfields have cyclic 3 -class groups and the third one has trivial 3 -class group. In the case $k_{3}=\mathbb{Q}(\sqrt{-3})$, we choose $j(j=1,2)$ for which the discriminant of k_{j} is divisible by 3 and denote the fundamental units of F_{1} and F_{2} by $\left\{\varepsilon_{0}\right\}$, $\left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ respectively.

The purpose of this paper is the following.
Theorem 1. Assume that $k_{3}=\mathbb{Q}(\sqrt{-3})$ and set $A_{1}=\left\{\varepsilon_{0}\right\}, A_{2}=$ $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{1} \varepsilon_{2}, \varepsilon_{1} \varepsilon_{2}^{2}\right\}$. Assume that $h_{K} \neq 1$. Then the 3 -class field tower of K terminates at $K^{(1)}$ if and only if $C l_{k_{1}}$ is a cyclic group, and either

- $C l_{k_{2}}$ is trivial, or
- $C l_{k_{2}}$ is cyclic, and there are no $\varepsilon \in A_{j}$ which satisfy

$$
\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{L_{j}(\sqrt{-3})}\right)
$$

2. Proof of Theorem 1. When L is a finite extension of an algebraic number field F, we denote the map induced by extension of ideals by $\lambda_{L / F}$: $C l_{F} \rightarrow C l_{L}$. The following lemma exhibits a close relation between $C l_{K}$ and $C l_{k_{i}}$.

Lemma 1 ([10]). Let L be a biquadratic field of \mathbb{Q}. Let $L_{i}(i=1,2,3)$ denote the three intermediate fields of L. Then the map $\lambda: C l_{L_{1}} \oplus C l_{L_{2}} \oplus$ $C l_{L_{3}} \rightarrow C l_{L}$ given by $\left(\mathfrak{A}_{1}, \mathfrak{A}_{2}, \mathfrak{A}_{3}\right) \mapsto \lambda_{L / L_{1}} \mathfrak{A}_{1} \cdot \lambda_{L / L_{2}} \mathfrak{A}_{2} \cdot \lambda_{L / L_{3}} \mathfrak{A}_{3}\left(\mathfrak{A}_{i} \in C l_{L_{i}}\right)$ is an isomorphism.

From Lemma 1, $\lambda_{K / k_{i}}: C l_{k_{i}} \rightarrow C l_{K}(i=1,2,3)$ are injective and so each $C l_{k_{i}}$ can be identified with a subgroup of $C l_{K}$. The following result will simplify our work.

Lemma 2 ([1]). Let L be an algebraic number field, and let r denote the p-rank of E_{L} / E_{L}^{p}. If the p-class field tower of L is abelian, then the rank of the p-class group of L is not greater than $(1+\sqrt{1+8 r}) / 2$.

When K is a complex biquadratic extension of \mathbb{Q} and $p=3$, Lemma 2 implies that if $K^{(1)}=K^{(2)}$, then the rank of $C l_{K}$ is less than 3 . If K has a cyclic 3 -class group, then $K^{(1)}=K^{(2)}$. Hence we consider the case where $C l_{K} \cong\left(3^{s}, 3^{t}\right)$ for $s, t \in \mathbb{N}-\{0\}$. (Here $\left(3^{s}, 3^{t}\right)$ means the direct product of cyclic groups of orders $3^{s}, 3^{t}$.)

Lemma 3. Let K / \mathbb{Q} be a complex biquadratic extension with noncyclic 3 -class group. If the 3-class field tower of K terminates at $K^{(1)}$, then the three quadratic subfields k_{i} of K can be ordered in such a way that $C l_{k_{1}}$ and $C l_{k_{2}}$ are cyclic and $C l_{k_{3}}$ is trivial.

Proof. By Lemma 2, the 3-rank of $C l_{K}$ is 2 . By Lemma 1, there are two possibilities: either two quadratic subfields have cyclic 3-class groups and the third one has trivial 3-class group, or one has 3-rank 2 and the 3-class groups of the other two are trivial. In the last case, let k denote the field with 3 -rank 2 . When k is a complex quadratic field, by Lemma 2, its 3-class field tower does not terminate with $k^{(1)}$. When k is a real quadratic field, by [11], its 3-class field tower does not terminate with $k^{(1)}$. Hence the same holds for K.

By Lemma 3 , in the case $C l_{K} \cong\left(3^{s}, 3^{t}\right)$, we have the following diagram where $K_{1}=K F_{1}, K_{2}=K F_{2}$, and K_{i} / K are unramified cyclic cubic extensions.

From the following lemma, we see that $K_{i} / k_{3}(i=1,2,3,4)$ are Galois extensions.

Lemma 4 ([8]). Let F be an algebraic number field and L be a quadratic extension of F. Suppose that the class number of F is prime to an odd prime number p and the class number of L is divisible by p. Let L^{\prime} be an unramified extension of degree p over L. Then L^{\prime} / F is a Galois extension and $\operatorname{Gal}\left(L^{\prime} / F\right)$ is a dihedral group of order $2 p$.

Since $\operatorname{Gal}\left(K_{i} / k_{3}\right) \cong S_{3}\left(S_{3}\right.$ denotes the symmetric group of degree 3$)$, there exist three distinct intermediate fields of K_{i} / k_{3} which are non-Galois cubic extensions of k_{3}. We denote one of the three fields by $L_{i}(i=1,2,3,4)$. In the case $k_{3}=\mathbb{Q}(\sqrt{-3})$, we can set $L_{i}(i=1,2)$ to be $F_{i}(\sqrt{-3})$.

Proposition 1. If the rank of $C l_{K}$ is 2 , then

$$
h_{K_{i}}=\frac{h_{K} h_{L_{i}}^{2}}{3} \quad \text { or } \quad h_{K_{i}}=\frac{h_{K} h_{L_{i}}^{2}}{9} \quad(i=1,2,3,4)
$$

In order to prove Proposition 1, we use the method of Callahan [2]. If H is a finite group, we denote by $H^{\prime}, Z(H)$ and $|H|$ the commutator subgroup, the center, and the number of elements of H respectively. If $x, y \in H$ and H_{1} is a subgroup of H, we set $x^{y}=y^{-1} x y$ and $\left(H_{1}\right)_{y}=\left\{z \in H_{1} \mid z^{y}=z\right\}$. We define $V_{i}=\operatorname{Gal}\left(K_{i}^{(1)} / k_{3}\right), U_{i}=\operatorname{Gal}\left(K_{i}^{(1)} / K\right)$ and $A_{i}=\operatorname{Gal}\left(K_{i}^{(1)} / K_{i}\right)$ $(i=1,2,3,4)$. By Lemma 4, we have $\operatorname{Gal}\left(K_{i} / k_{3}\right) \cong S_{3} \cong V_{i} / A_{i}$. Since $K^{(1)}$ is a maximal abelian extension of K contained in $K_{i}^{(1)}, \operatorname{Gal}\left(K_{i}^{(1)} / K^{(1)}\right)=U_{i}^{\prime}$. We can pick $\sigma, \tau \in V_{i}-A_{i}$ so that

$$
\sigma^{2}=1, \quad(\sigma \tau)^{2} \equiv \tau^{3} \equiv 1\left(\bmod A_{i}\right), \quad \tau \in U_{i}, \sigma \in \operatorname{Gal}\left(K_{i}^{(1)} / L_{i}\right)
$$

There is an action of V_{i} / A_{i} on A_{i} given by

$$
V_{i} / A_{i} \times A_{i} \rightarrow A_{i}, \quad\left(x A_{i}, a\right) \mapsto a^{x}
$$

This action is well defined as A_{i} is an abelian normal subgroup of V_{i}. The two automorphisms $a \mapsto a^{\sigma}$ and $a \mapsto a^{\tau}$ define an action of S_{3} on A_{i}. Since $\lambda_{K_{i} / L_{i}}: C l_{L_{i}} \rightarrow C l_{K_{i}}$ is injective and $\lambda_{K_{i} / L_{i}}\left(C l_{L_{i}}\right)$ is mapped onto $\left(A_{i}\right)_{\sigma}$ by the Artin map, we have $C l_{L_{i}} \cong\left(A_{i}\right)_{\sigma}$. Thus we study the structure of A_{i} and $\left(A_{i}\right)_{\sigma}$ to prove Proposition 1. First we need two lemmas.

Lemma 5 ([4, Theorem 1.4, p. 336]). Let G be any finite group of odd order and let $\sigma: G \rightarrow G$ be an automorphism of G of order 2 . Suppose that $x^{\sigma}=x \Leftrightarrow x=1$. Then G is abelian.

Lemma 6. Let B_{i} be the minimal normal subgroup of U_{i} which contains $\left(A_{i}\right)_{\sigma}$. Then $B_{i}=U_{i}^{\prime}$.

Proof. First we define

$$
\left(A_{i}\right)_{\sigma}^{\tau}=\left\{a^{\tau} \mid a \in\left(A_{i}\right)_{\sigma}\right\}
$$

and show $B_{i}=\left\langle\left(A_{i}\right)_{\sigma},\left(A_{i}\right)_{\sigma}^{\tau}\right\rangle$, the group generated by $\left(A_{i}\right)_{\sigma}$ and $\left(A_{i}\right)_{\sigma}^{\tau}$. Let $N_{\tau}: A_{i} \rightarrow A_{i}$ be defined by $N_{\tau} a=a a^{\tau} a^{\tau^{2}}$ for each $a \in A_{i}$. Then for all $a \in\left(A_{i}\right)_{\sigma}, N_{\tau} a$ is fixed by σ, τ. Since the class number of k_{3} is prime to 3 , we have $N_{\tau} a=1$ and thus $a^{\tau^{2}} \in\left\langle\left(A_{i}\right)_{\sigma},\left(A_{i}\right)_{\sigma}^{\tau}\right\rangle$ for all $a \in\left(A_{i}\right)_{\sigma}$. This shows that $B_{i}=\left\langle\left(A_{i}\right)_{\sigma},\left(A_{i}\right)_{\sigma}^{\tau}\right\rangle$.

Next we prove U_{i} / B_{i} is abelian. It is clear that the automorphism $a \mapsto a^{\sigma}$ induces an automorphism of U_{i} / B_{i} of order 2. Assume that there exists u $\left(\bmod B_{i}\right)$ such that $u^{\sigma} \equiv u\left(\bmod B_{i}\right)$. If $u=\tau^{l} a$ for $a \in A_{i}$ and $l=1,2$, then $u^{\sigma}=\left(\tau^{l} a\right)^{\sigma}=\left(\tau^{l}\right)^{\sigma} a^{\sigma} \equiv \tau^{-l}\left(\bmod A_{i}\right)$. Since $u^{\sigma} \equiv u\left(\bmod A_{i}\right)$, we get $\tau^{-l} \equiv \tau^{l}\left(\bmod A_{i}\right)$. This implies $\tau \in A_{i}$. Therefore $u \in A_{i}$. Since $a a^{\sigma} \in\left(A_{i}\right)_{\sigma}$ for $a \in A_{i}$, it follows that $u^{\sigma} \equiv u^{-1}\left(\bmod B_{i}\right)$. Hence $u^{\sigma} \equiv u^{-1} \equiv u\left(\bmod B_{i}\right)$ and $u \in B_{i}$. Thus by Lemma $5, U_{i} / B_{i}$ is abelian and $B_{i} \supseteq U_{i}^{\prime}$. Conversely,
since $U_{i} / U_{i}^{\prime} \cong \operatorname{Gal}\left(K^{(1)} / K\right)$ and from Lemma 1, we have $x^{\sigma} \equiv x^{-1}\left(\bmod U_{i}^{\prime}\right)$ for $x \in U_{i}$. Hence $\left(A_{i}\right)_{\sigma} \subset U_{i}^{\prime}$ and $B_{i}=U_{i}^{\prime}$.

Proof of Proposition 1. If $x \in\left(A_{i}\right)_{\sigma} \cap\left(A_{i}\right)_{\sigma}^{\tau}$, then $x=y^{\tau}$ for some $y \in\left(A_{i}\right)_{\sigma}$ and

$$
x=x^{\sigma}=y^{\tau \sigma}=y^{\sigma \tau^{2}}=y^{\tau^{2}}=x^{\tau}
$$

Hence $x \in Z\left(U_{i}\right)$. On the other hand, if $x \neq 1$, we see that U_{i} is nonabelian. Therefore $Z\left(U_{i}\right) \subset A_{i}$ and $Z\left(U_{i}\right)=\left\{a \in A_{i} \mid a^{\tau}=a\right\}$. Since $Z\left(U_{i}\right) \cong$ $\left\{\Im \in C l_{K_{i}} \mid \Im^{\tau}=\Im\right\} \subset C l_{K_{i}}$, from the formula for the ambiguous ideal classes of K_{i} / K (see [3]), $\left|Z\left(U_{i}\right)\right|=h_{K} / 3$. Moreover by [6], $\left|\operatorname{Ker} \lambda_{K_{i} / K}\right|=$ $3 \cdot\left|E_{K}: N_{K_{i} / K} E_{K_{i}}\right|=3$ or 9 , hence $\left|\lambda_{K_{i} / K}\left(C l_{K}\right)\right|=h_{K} / 9$ or $h_{K} / 3$ and for all $x \in \lambda_{K_{i} / K}\left(C l_{K}\right), x^{\sigma}=x \Leftrightarrow x=1$. We see that $\left|\left(A_{i}\right)_{\sigma} \cap\left(A_{i}\right)_{\sigma}^{\tau}\right| \leq 3$. Thus

$$
\begin{aligned}
h_{K_{i}} & =\left|A_{i}\right|=\left|U_{i}\right| / 3=\left|U_{i} / U_{i}^{\prime}\right| \cdot\left|U_{i}^{\prime}\right| / 3 \\
& =h_{K} \cdot\left|\left(A_{i}\right)_{\sigma}\right| \cdot\left|\left(A_{i}\right)_{\sigma}^{\tau}\right| / 3 \cdot\left|\left(A_{i}\right)_{\sigma} \cap\left(A_{i}\right)_{\sigma}^{\tau}\right| \\
& =h_{K} h_{L_{i}}^{2} / 3 \text { or } h_{K} h_{L_{i}}^{2} / 9
\end{aligned}
$$

If H is a finite p-group for a prime $p \in \mathbb{N}$ and $H_{1} \neq\{1\}$ is any normal subgroup of H, then $Z(H) \cap H_{1} \neq\{1\}([4$, Theorem 6.4 , p. 31]). Hence if F is an algebraic number field and $F^{(2)} \neq F^{(1)}$, then there exists a normal extension F^{\prime} of F such that F^{\prime} is a proper intermediate field of $F^{(2)} / F^{(1)}$ and $\operatorname{Gal}\left(F^{(2)} / F^{\prime}\right) \subset Z\left(\operatorname{Gal}\left(F^{(2)} / F\right)\right)$. Since F^{\prime} is a normal extension of F which contains $F^{(1)}$, we also have a normal extension $F^{\prime \prime}$ of F such that $F^{\prime \prime}$ is a proper intermediate field of $F^{\prime} / F^{(1)}$ and $\operatorname{Gal}\left(F^{\prime} / F^{\prime \prime}\right) \subset Z\left(\operatorname{Gal}\left(F^{\prime} / F\right)\right)$. By repeating this procedure, we can find a normal extension L of F such that $\left|L: F^{(1)}\right|=3$ and $\operatorname{Gal}\left(L / F^{(1)}\right) \subset Z(\operatorname{Gal}(L / F))$. We set $G=\operatorname{Gal}(L / F)$ and $N=\operatorname{Gal}\left(L / L^{\prime}\right)$ where L^{\prime} is an unramified cyclic cubic extension of F. For $\sigma, \tau \in G$, we denote $\sigma^{-1} \tau^{-1} \sigma \tau$ by $[\sigma, \tau]$. In order to prove Theorem 1, we have to show the following lemma.

Lemma 7. Let F be an algebraic number field and assume $C l_{F} \cong\left(3^{s}, 3^{t}\right)$. Then $F^{(1)}=F^{(2)}$ if and only if there is an unramified cyclic cubic extension L^{\prime} of F with $h_{L^{\prime}}=h_{F} / 3$.

Proof. Suppose that there exists an unramified cyclic cubic extension L^{\prime} of F with $h_{L^{\prime}}=h_{F} / 3$ and $F^{(1)} \neq F^{(2)}$. Then $L^{\prime(1)}=F^{(1)}$. Hence $G^{\prime}=$ $\operatorname{Gal}\left(L / F^{(1)}\right)=\operatorname{Gal}\left(L / L^{\prime(1)}\right)=N^{\prime}$. On the other hand, since $G / G^{\prime} \cong C l_{F} \cong$ $\left(3^{s}, 3^{t}\right), G$ is generated by two elements σ_{1} and σ_{2}. Since $\left|G^{\prime}\right|=3$, we can pick σ_{1}, σ_{2} so that $G^{\prime}=\left\langle\left[\sigma_{1}, \sigma_{2}\right]\right\rangle$. Notice that N is the subgroup of G. Hence index 3 of N is one of the four subgroups $\left\langle\sigma_{1}, \sigma_{2}^{3}, G^{\prime}\right\rangle,\left\langle\sigma_{2}, \sigma_{1}^{3}, G^{\prime}\right\rangle$, $\left\langle\sigma_{1} \sigma_{2}, \sigma_{2}^{3}, G^{\prime}\right\rangle$, and $\left\langle\sigma_{1} \sigma_{2}^{2}, \sigma_{2}^{3}, G^{\prime}\right\rangle$. As $G^{\prime} \subset Z(G)$ and $\left|G^{\prime}\right|=3$, we have $\left[\sigma_{1}^{i}, \sigma_{2}^{3 j}\right]=\left[\sigma_{1}, \sigma_{2}\right]^{3 i j}=1(i, j \in \mathbb{Z})$. This implies that $\left\langle\sigma_{1}, \sigma_{2}^{3}, G^{\prime}\right\rangle^{\prime}=\{1\}$. Similarly $\left\langle\sigma_{2}, \sigma_{1}^{3}, G^{\prime}\right\rangle^{\prime}=\left\langle\sigma_{1} \sigma_{2}, \sigma_{2}^{3}, G^{\prime}\right\rangle^{\prime}=\left\langle\sigma_{1} \sigma_{2}^{2}, \sigma_{2}^{3}, G^{\prime}\right\rangle^{\prime}=\{1\}$. Hence $N^{\prime}=$
$\{1\}$. This contradicts $F^{(1)}=L^{\prime(1)}$. Conversely, if $F^{(1)}=F^{(2)}$, it is easy to see that $F^{(1)}=L^{\prime(1)}$, and hence $h_{L^{\prime}}=h_{F} / 3$.

We shall consider whether $h_{L_{i}}=1$ or not. If $k_{3}=\mathbb{Q}(\sqrt{-3})$, then the following proposition holds.

Proposition 2. Assume that $C l_{K} \cong\left(3^{s}, 3^{t}\right)$ and $k_{3}=\mathbb{Q}(\sqrt{-3})$. Then the class number of L_{j} is divisible by 3 if and only if there exists $\varepsilon \in A_{j}$ such that $\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right)$.

Proof. We consider the decomposition of the prime ideals of F_{j}. The ideal of k_{j} lying above 3 is completely decomposed in $k_{j}^{(1)}$ because 3 is ramified in k_{j}. Hence the decomposition of 3 in F_{j} is

$$
3=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2}
$$

where $\mathfrak{p}_{i}(i=1,2)$ are ideals of F_{j} lying above 3 . Suppose that $h_{L_{j}} \neq 1$. Let L^{\prime} be an unramified cyclic cubic extension over L_{j}. Since $C l_{k_{j}}$ is cyclic, the class number of F_{j} is prime to 3 . Hence L^{\prime} / F_{j} is a normal extension from Lemma 4. Moreover, by Kummer theory, $L^{\prime}=L_{j}(\sqrt[3]{\alpha})$ where $\alpha \in L_{j}^{*}-L_{j}^{* 3}$ $\left(L_{j}^{*}=L_{j}-\{0\}\right), \alpha$ is prime to 3 and $(\alpha)=\mathfrak{A}^{3}\left(\mathfrak{A}\right.$ is an ideal of $\left.L_{j}\right)$. Let $\sigma^{\prime} \in \operatorname{Gal}\left(L^{\prime} / F_{j}\right)$ be an extension of the nontrivial automorphism of L_{j} over F_{j}. Then $\alpha^{\sigma^{\prime}} \equiv \alpha\left(\bmod L_{j}^{* 3}\right)$. Hence $L^{\prime}=L_{j}(\sqrt[3]{\alpha})=L_{j}\left(\sqrt[3]{N_{L_{j} / F_{j}} \alpha}\right)$ where $N_{L_{j} / F_{j}}$ is a norm from L_{j} to F_{j}. Furthermore, since the class number of F_{j} is prime to 3 , we can put $\varepsilon \in A_{j}$ so that $L^{\prime}=L_{j}(\sqrt[3]{\varepsilon})$.

The decompositions of $\mathfrak{p}_{i}(i=1,2)$ in L_{j} are either

- $\mathfrak{p}_{1}=\mathfrak{P}_{1}^{2}, \mathfrak{p}_{2}=\mathfrak{P}_{2} \mathfrak{P}_{3}$ or
- $\mathfrak{p}_{1}=\mathfrak{P}_{1}^{2}, \mathfrak{p}_{2}=\mathfrak{P}_{2}, N_{L_{j} / F_{j}} \mathfrak{P}_{2}=\mathfrak{p}_{2}^{2}$,
where $\mathfrak{P}_{i}(i=1,2,3)$ are prime ideals of L_{j} lying above 3 . Since $L^{\prime}=L_{j}(\sqrt[3]{\varepsilon})$ is unramified, the equation $X^{3} \equiv \varepsilon\left(\bmod \mathfrak{P}_{i}^{3}\right)$ has a root in $O_{L_{j}}$ for $i=1,2,3$. Assume that $\mathfrak{p}_{2}=\mathfrak{P}_{2} \mathfrak{P}_{3}$. Since $O_{L_{j}} / \mathfrak{P}_{i}^{3} \cong O_{\mathbb{Q}(\sqrt{-3})} /\left(\sqrt{-3}{ }^{3}\right)$, we have $\varepsilon \equiv \pm 1$ $\left(\bmod \mathfrak{P}_{i}^{3}\right)$ for $i=1,2,3$. Hence $\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right)$.

Assume that $\mathfrak{p}_{2}=\mathfrak{P}_{2}$ and $N_{L_{j} / F_{j}} \mathfrak{P}_{2}=\mathfrak{p}_{2}^{2}$. Let $\alpha=\alpha_{1}+\alpha_{2} \sqrt{-3} \in$ $O_{L_{j}}\left(\alpha_{1}, \alpha_{2} \in F_{j}\right)$ satisfy $\alpha^{3} \equiv \varepsilon\left(\bmod \mathfrak{P}_{2}^{3}\right)$. Since $2 \alpha_{1}, 2 \alpha_{2} \sqrt{-3} \in O_{L_{j}}$, we can make $\alpha_{1}, \alpha_{2} \sqrt{-3} \in O_{L_{j}}$ by replacing $\alpha_{1}, \alpha_{2} \sqrt{-3}$ with $-2 \alpha_{1},-2 \alpha_{2} \sqrt{-3}$. Since $\mathfrak{p}_{2}=\mathfrak{P}_{2}$, we see that $\left(\alpha_{1}-\alpha_{2} \sqrt{-3}\right)^{3} \equiv \varepsilon\left(\bmod \mathfrak{P}_{2}^{3}\right)$. Hence

$$
\begin{aligned}
\alpha^{3}-\left(\alpha_{1}-\alpha_{2} \sqrt{-3}\right)^{3} & =\left(\alpha_{1}+\alpha_{2} \sqrt{-3}\right)^{3}-\left(\alpha_{1}-\alpha_{2} \sqrt{-3}\right)^{3}\left(\bmod \mathfrak{P}_{2}^{3}\right) \\
& =2\left(3 \alpha_{1}^{2} \alpha_{2} \sqrt{-3}-3 \alpha_{2}^{3} \sqrt{-3}\right) \equiv 0\left(\bmod \mathfrak{P}_{2}^{3}\right)
\end{aligned}
$$

Since $3 \alpha_{1}^{2} \in \mathfrak{P}_{2}$, we have $-3 \alpha_{2}^{3} \sqrt{-3} \in \mathfrak{P}_{2}$ and hence $\alpha_{2} \sqrt{-3} \in \mathfrak{P}_{2}$. Consequently,

$$
\alpha^{3} \equiv \alpha_{1}^{3}+3 \alpha_{1}^{2} \alpha_{2} \sqrt{-3}-9 \alpha_{1} \alpha_{2}^{2}-3 \alpha_{2}^{3} \sqrt{-3} \equiv \alpha_{1}^{3}\left(\bmod \mathfrak{P}_{2}^{3}\right)
$$

We have $\varepsilon \equiv \pm 1\left(\bmod \mathfrak{P}_{i}^{3}\right)$ for $i=1,2$. Thus $\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right)$.
Conversely, if there exists $\varepsilon \in A_{j}$ such that $\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right)$, then $\varepsilon \equiv \pm 1\left(\bmod \mathfrak{P}_{i}^{3}\right)(i=1,2,3$ or $i=1,2)$ and $L_{j}(\sqrt[3]{\varepsilon})$ is an unramified cyclic cubic extension over L_{j}.

The next result is well known.
Lemma 8 ([12, Theorem 10.10, p. 190]). Let $d>1$ be square-free. Let r_{1} (resp. r_{2}) be the 3 -rank of the ideal class group of $\mathbb{Q}(\sqrt{-3 d})($ resp. $\mathbb{Q}(\sqrt{d}))$. Then

$$
r_{2} \leq r_{1} \leq r_{2}+1
$$

Proof of Theorem 1. If $K^{(1)}=K^{(2)}$, we see that $C l_{K}$ is a nontrivial cyclic group or an abelian group of rank 2 from Lemma 2 . If $C l_{K}$ is a nontrivial cyclic group, then $C l_{k_{1}}$ is a nontrivial cyclic group and $C l_{k_{2}}$ is trivial from Lemmas 1 and 8. If $C l_{K}$ is an abelian group of rank 2, then $C l_{k_{1}}$ and $C l_{k_{2}}$ are nontrivial cyclic groups. In this case $h_{K_{i}}=h_{K} / 3$ for all $i=1,2,3,4$. By Propositions 1 and $2, F_{j}$ has no unit which satisfies the condition of Theorem 1. Conversely, if F_{j} has no such unit, then $h_{L_{j}}=1$ and $h_{K_{j}}=h_{K} / 3$ by Proposition 1. By Lemma 7 , we have $K^{(1)}=K^{(2)}$.
3. Some examples. From the proof of Proposition 2, we see that

$$
\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right) \Leftrightarrow \varepsilon^{2} \equiv 1\left(\bmod \mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{3}\right)
$$

where $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are distinct prime ideals of $O_{F_{j}}$ lying above 3 and $3=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2}$. Let

$$
x^{3}+a x^{2}+b x-1 \quad(a, b \in \mathbb{Z})
$$

be the minimal polynomial of ε^{2}. Then the minimal polynomial of $\varepsilon^{2}-1$ is

$$
x^{3}+(a+3) x^{2}+(2 a+b+3) x+a+b
$$

Since $\varepsilon^{2}-1 \in \mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{3}$, we see that

$$
\frac{\varepsilon^{2}-1}{3} \in O_{F_{j}}, \quad 27|a+b, \quad 9| 2 a+b+3, \quad a+3=2 a+b+3-(a+b)
$$

Moreover, since

$$
\left(\varepsilon^{2}-1\right)^{3} \in \mathfrak{p}_{2}^{9}, \quad(a+3)\left(\varepsilon^{2}-1\right)^{2} \in \mathfrak{p}_{2}^{10}, \quad(2 a+b+3)\left(\varepsilon^{2}-1\right) \in \mathfrak{p}_{2}^{7}
$$

we have $81 \mid a+b$.
The minimal polynomial of $\varepsilon^{2}+a / 3$ is

$$
x^{3}-3\left(a_{0}^{2}-b_{0}\right) x+2 a_{0}^{3}-3 a_{0} b_{0}-1,
$$

where $a=3 a_{0}, b=3 b_{0}$, and we see that

$$
3\left(a_{0}^{2}-b_{0}\right)=\frac{(a+3)^{2}}{3}-(2 a+b+3)
$$

$$
2 a_{0}^{3}-3 a_{0} b_{0}-1=\frac{2(a+3)^{3}}{27}-\frac{(a+3)(2 a+b+3)}{3}+a+b
$$

The next lemma concerns the decomposition of ideals of a cubic field.
Lemma 9 ([7]). Let L be a cubic field over \mathbb{Q} and let α be a primitive element of L whose minimal polynomial is $x^{3}-a x+b$ where $a, b \in \mathbb{Z}, a, b \neq 0$. Define $v_{3}(m)=\max \left\{s\left|3^{s}\right| m\right\}$. Then $3=\mathfrak{p}_{1} \mathfrak{p}_{2}^{2}$ if and only if either

- $v_{3}(a)=2 t+1, v_{3}(b) \geq 3 t+2$, or
- $v_{3}(a) \geq 2 t+1, v_{3}(b)=3 t$, and either
$-a / 3^{2 t} \equiv 3(\bmod 9),\left(b / 3^{3 t}\right)^{2} \equiv a / 3^{2 t}+1(\bmod 27)$ and $v_{3}\left(4 a^{3}-27 b^{2}\right)$ is odd, or
$-a / 3^{2 t} \equiv 6,0(\bmod 9),\left(b / 3^{3 t}\right)^{2} \equiv a / 3^{2 t}+1(\bmod 9)$.
By the above lemma and since $9 \mid a+3,2 a+b+3$, we see that

$$
27\left|\frac{(a+3)^{2}}{3}-(2 a+b+3), \quad 27\right| a+3,2 a+b+3
$$

As $81 \mid a+b$, we have

$$
3^{5}\left|2 a_{0}^{3}-3 a_{0} b_{0}-1, \quad 3^{5}\right| a+b
$$

Thus if $\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right)$, then $27 \mid a+3,2 a+b+3$ and $3^{5} \mid a+b$. Conversely, it is easy to see that if $27 \mid a+3,2 a+b+3$ and $3^{5} \mid a+b$, then $\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right)$. Thus

$$
\varepsilon^{2} \equiv 1\left(\bmod 3 \sqrt{-3} \cdot O_{F_{j}(\sqrt{-3})}\right) \Leftrightarrow 27\left|a+3,2 a+b+3,3^{5}\right| a+b
$$

By utilizing the above fact, one can find examples of $K^{(1)}=K^{(2)}$ and $K^{(1)} \neq K^{(2)}$.

An example of $K^{(1)}=K^{(2)}$. Let $F=\mathbb{Q}(\theta)$ be a cubic extension over \mathbb{Q} with $\theta^{3}-9 m \theta^{2}-1=0(m \in \mathbb{N}-\{0\})$ and let $k=\mathbb{Q}\left(\sqrt{-3\left(4(3 m)^{3}+1\right)}\right)$. From [7], we see that $k F / k$ is an unramified cyclic cubic extension. Furthermore by [9], the root of the equation $x^{3}-9 m x^{2}-1=0$ is either a fundamental unit of F or its square. It is clear that θ does not satisfy the condition of Theorem 1 and since $\left(\theta^{2}\right)^{3}-81 m^{2}\left(\theta^{2}\right)^{2}+18 m\left(\theta^{2}\right)-1=0$, neither does θ^{2}. Therefore the following holds.

Corollary 1. Let $K=\mathbb{Q}\left(\sqrt{-3\left(4(3 m)^{3}+1\right)}, \sqrt{-3}\right)(m \in \mathbb{N}-\{0\})$. Assume that $C l_{K} \cong\left(3^{s}, 3^{t}\right)$. Then $K^{(1)}=K^{(2)}$.

An example of $K^{(1)} \neq K^{(2)}$. Let $F=\mathbb{Q}(\theta)$ with $\theta^{3}+3 \theta+a^{3}=0$ where $a \in \mathbb{N}-\{0\}$ and let $k=\mathbb{Q}\left(\sqrt{-3\left(a^{6}+4\right)}\right)$. By [7], if $3 \mid a$, then $F k / k$ is an unramified cyclic cubic extension. The minimal polynomial of $1-a^{2}-a \theta$ is

$$
x^{3}+3\left(a^{2}-1\right) x^{2}+\left(3\left(a^{2}-1\right)^{2}+3 a^{2}\right) x-1
$$

Assume that $a \not \equiv 0(\bmod 7)$. The discriminant of $x^{3}+3 x+a^{3}$ is $-27\left(a^{6}+4\right) \equiv$ $5 \not \equiv 0(\bmod 7)$. Moreover

$$
\begin{aligned}
& x^{3}+3 x+a^{3} \\
\equiv & \begin{cases}x^{3}+3 x+1 \equiv(x+3)\left(x^{2}-3 x+5\right)(\bmod 7) & \text { if } a^{3} \equiv 1(\bmod 7) \\
x^{3}+3 x-1 \equiv(x-3)\left(x^{2}+3 x+5\right)(\bmod 7) & \text { if } a^{3} \equiv-1(\bmod 7)\end{cases}
\end{aligned}
$$

Hence $\mathfrak{p}=(\theta+3,7)\left(a^{3} \equiv 1(\bmod 7)\right)$ and $\mathfrak{p}=(\theta-3,7)\left(a^{3} \equiv-1(\bmod 7)\right)$ are prime ideals of F lying above 7 whose relative degree is 1 .

If $a \not \equiv 0(\bmod 7)$, the polynomial $x^{3}-\left(1-a^{2}-a \theta\right)$ is irreducible in O_{F} / \mathfrak{p} because if $a \not \equiv 0(\bmod 7)$, then $x^{3}-\left(1-a^{2}-a \theta\right) \equiv x^{3} \pm 3(\bmod \mathfrak{p})$. Thus $1-a^{2}-a \theta \notin E_{F}^{3}$ since if $3 \mid a$, then $27\left|3 a^{2}=3\left(a^{2}-1\right)+3,27\right| 3 a^{2}+3 a^{4}$ and $3^{5} \mid 3 a^{4}=3\left(a^{2}-1\right)+3\left(a^{2}-1\right)^{2}+3 a^{2}$. Therefore the class number of $L_{j}=F(\sqrt{-3})$ is divisible by 3 . Suppose that $C l_{K}$ is cyclic where $K=$ $\mathbb{Q}\left(\sqrt{-3\left(a^{6}+4\right)}, \sqrt{-3}\right)$. Then $\operatorname{Gal}\left(K^{(1)} / \mathbb{Q}(\sqrt{-3})\right)$ is a dihedral group and so is $\operatorname{Gal}\left(K^{(1)} / F(\sqrt{-3})\right)$. Hence $F(\sqrt{-3})\left(\sqrt[3]{1-a^{2}-a \theta}\right)$ is not contained in $K^{(1)}$. This is a contradiction. Hence the 3-rank of the ideal class group of $K=\mathbb{Q}\left(\sqrt{-3\left(a^{6}+4\right)}, \sqrt{-3}\right)$ is greater than 2 . Consequently, the following holds.

Corollary 2. Let $K=\mathbb{Q}\left(\sqrt{-3\left(a^{6}+4\right)}, \sqrt{-3}\right)$. Assume that $a \not \equiv 0$ $(\bmod 7)$ and $a \equiv 0(\bmod 3)$. Then $K^{(1)} \neq K^{(2)}$.

Example 1: $k_{1}=\mathbb{Q}(\sqrt{-237}), k_{2}=\mathbb{Q}(\sqrt{79}), k_{3}=\mathbb{Q}(\sqrt{-3})$. Then for $K=\mathbb{Q}(\sqrt{-237}, \sqrt{-3})$ we have $C l_{K} \cong(3,3)$ and $k_{j}=k_{1}=\mathbb{Q}(\sqrt{-237})$, and a primitive element of F_{1} is one of the roots of the polynomial

$$
x^{3}-3 x-160
$$

A fundamental unit of F_{1} is the root of

$$
x^{3}-149 x^{2}+23357 x-1
$$

The root of

$$
x^{3}+24513 x^{2}+545549151 x-1
$$

is the second power of the fundamental unit of F_{1}. Then 149 is prime to 3 , and $27\|24513+3,27\| 545549151+24513$. Therefore F_{1} has no unit which satisfies the assumption of Theorem 1 . Thus for $K=\mathbb{Q}(\sqrt{-237}, \sqrt{-3})$, $K^{(1)}=K^{(2)}$.

EXAMPLE 2: $k_{1}=\mathbb{Q}(\sqrt{-12540667}), k_{2}=\mathbb{Q}(\sqrt{3 \cdot 12540667}), k_{3}=$ $\mathbb{Q}(\sqrt{-3})$. Then $3 \| h_{k_{1}}=3$ and $3 \| h_{k_{2}}=3$. (The class numbers of k_{1} and k_{2} are 609 and 3 respectively). As a unit of $F_{j}=F_{2}$ which satisfies the assumption of Theorem 1, we can take a root of

$$
x^{3}-2190 x^{2}+179337 x-1
$$

Then $3^{7}\left\|-2190+3,3^{11}\right\|-2190+179337$ and this root is not the cube of any unit of F_{2}. The class number of L_{2} is 27 and $K^{(1)} \neq K^{(2)}$.

We calculated these results by KASH.

References

[1] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory 73 (1998), 182-194.
[2] T. Callahan, The 3-class groups of non-Galois cubic fields, 1, Mathematika 21 (1974), 72-89.
[3] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
[4] D. Gorenstein, Finite Groups, Harper \& Row, 1968.
[5] F. Hajir, On the class numbers of Hilbert class fields, Pacific J. Math. 1997, Olga Taussky-Todd memorial issue, 177-187.
[6] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 (1982), 1-25.
[7] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
[8] D. J. Madden and W. Y. Vélez, A note on the normality of unramified, abelian extensions of quadratic extensions, Manuscripta Math. 30 (1980), 343-349.
[9] R. Morikawa, On units of certain cubic number fields, Abh. Math. Sem. Univ. Hamburg 39 (1973), 72-77.
[10] N. Nakagoshi, On the class number relations of abelian extensions whose Galois groups are of type (p, p), Math. Rep. Toyama Univ. 4 (1981), 91-106.
[11] A. Nomura, On the existence of unramified p-extensions, Osaka J. Math. 28 (1991), 55-62.
[12] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan
E-mail: m98111i@math.nagoya-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: 11R16, 11R37.
 Key words and phrases: class field tower, biquadratic field, cubic field, ideal class group/3-class group.

