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Unique representation bases for the integers

by

Melvyn B. Nathanson (Bronx, NY)

1. Additive bases for the integers. Let A be a set of integers, and
let rA(n) denote the number of representations of n in the form n = a+ a′,
where a, a′ ∈ A and a ≤ a′. The function rA(n) is called the representation
function of the set A. An unsolved problem of Erdős and Turán states that
if A is a subset of the semigroup N0 of nonnegative integers and rA(n) ≥ 1
for all sufficiently large integers n, then the representation function rA(n)
is unbounded. On the other hand, it is known that the group of integers Z
contains sets A with the property that rA(n) ≥ 1 for all n ∈ Z and r(n) is
bounded.

A set A of integers is called an additive basis for the integers if rA(n) ≥ 1
for all n ∈ Z, and a unique representation basis if rA(n) = 1 for all n ∈ Z.
The purpose of this paper is to construct a family of arbitrarily sparse
unique representation bases for Z. When a greedy algorithm is used in this
construction, we obtain a unique representation basis A whose growth is
logarithmic in the sense that the number of elements a ∈ A with |a| ≤ x is
bounded above and below by constant multiples of log x. In the last section
of this paper we state some open problems suggested by the additive bases
that we have constructed.

2. Bases with arbitrarily slow growth. For sets A and B of integers
and for any integer c, we define the sumset

A+B = {a+ b : a ∈ A, b ∈ B}
and the translation

A+ c = {a+ c : a ∈ A}.
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For the sumset
2A = A+ A = {a+ a′ : a, a′ ∈ A},

we have the representation function

rA(n) = card{(a, a′) ∈ A× A : a ≤ a′ and a+ a′ = n}.
The counting function for the set A is

A(y, x) = card{a ∈ A : y ≤ a ≤ x}.
In particular, A(−x, x) counts the number of integers a ∈ A such that
|a| ≤ x.

Theorem 1. Let f(x) be a function such that limx→∞ f(x) =∞. There
exists an additive basis A for the group Z of integers such that

rA(n) = 1 for all n ∈ Z,

and
A(−x, x) ≤ f(x) for all sufficiently large x.

Proof. We shall construct an ascending sequence A1 ⊆ A2 ⊆ . . . of finite
sets such that

|Ak| = 2k for all k ≥ 1,

rAk(n) ≤ 1 for all n ∈ Z,
rAk(n) = 1 for all n such that |n| ≤ k.

It follows that the infinite set

A =
∞⋃

k=1

Ak

is a unique representation basis for the integers.
We construct the sets Ak by induction. Let A1 = {0, 1}. We assume that

for some k ≥ 1 we have constructed sets A1 ⊆ . . . ⊆ Ak such that |Ak| = 2k
and

rAk(n) ≤ 1 for all n ∈ Z.

We define the integer

dk = max{|a| : a ∈ Ak}.
Then

Ak ⊆ [−dk, dk], 2Ak ⊆ [−2dk, 2dk].

If both numbers dk and −dk belong to Ak, then, since 0 ∈ A1 ⊆ Ak and
dk ≥ 1, we would have the following two representations of 0 in the sum-
set 2Ak:

0 = 0 + 0 = (−dk) + dk.
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This is impossible, since rAk(0) ≤ 1, hence only one of the two integers dk
and −dk belongs to Ak. It follows that if dk 6∈ Ak, then

{2dk, 2dk − 1} ∩ 2Ak = ∅,
and if −dk 6∈ Ak, then

{−2dk,−(2dk − 1)} ∩ 2Ak = ∅.
Define the integer bk by

bk = min{|b| : b 6∈ 2Ak}.
Then 1 ≤ bk ≤ 2dk − 1.

To construct the set Ak+1, we choose an integer ck such that ck ≥ dk. If
bk 6∈ 2Ak, let

Ak+1 = Ak ∪ {bk + 3ck,−3ck}.
We have

bk = (bk + 3ck) + (−3ck) ∈ 2Ak+1.

If bk ∈ 2Ak, then −bk 6∈ 2Ak and we let

Ak+1 = Ak ∪ {−(bk + 3ck), 3ck}.
Again we have

−bk = −(bk + 3ck) + 3ck ∈ 2Ak+1.

Since
dk < 3ck < 3ck + bk,

it follows that |Ak+1| = |Ak|+ 2 = 2(k + 1). Moreover,

dk+1 = max{|a| : a ∈ Ak+1} = bk + 3ck.

For example, since A1 = {0, 1} and 2A1 = {0, 1, 2}, it follows that d1 =
b1 = 1. For c1 ≥ 1 we have

A2 = {−(1 + 3c1), 0, 1, 3c1}.
Then

2A2 = {−(2 + 6c1),−(1 + 3c1),−3c1,−1, 0, 1, 2, 3c1, 1 + 3c1, 6c1}
and d2 = 1 + 3c1 and b2 = 2.

We can assume that bk 6∈ 2Ak, hence Ak+1 = Ak∪{bk+3ck,−3ck}. (The
argument in the case bk ∈ 2Ak and −bk 6∈ 2Ak is similar.) We shall show
that the sumset 2Ak+1 is the disjoint union of the following four sets:

2Ak+1 = 2Ak ∪ (Ak + bk + 3ck) ∪ (Ak − 3ck) ∪ {bk, 2bk + 6ck,−6ck}.
If u ∈ 2Ak, then

−2ck ≤ −2dk ≤ u ≤ 2dk ≤ 2ck.

Suppose that v = a+bk+3ck ∈ Ak+bk+3ck, where a ∈ Ak. The inequalities

−ck ≤ −dk ≤ a ≤ dk ≤ ck and 1 ≤ bk ≤ 2dk − 1 ≤ 2ck − 1
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imply that
2ck + 1 ≤ v ≤ 6ck − 1 < 2bk + 6ck.

Similarly, if w = a− 3ck ∈ Ak − 3ck, then

−6ck < −4ck ≤ w ≤ −2ck.

These inequalities imply that the sets 2Ak, Ak + bk + 3ck, Ak − 3ck, and
2{bk + 3ck,−3ck} are pairwise disjoint, unless ck = dk and −2dk ∈ 2Ak ∩
(Ak−3dk). If −2dk ∈ 2Ak, then −dk ∈ Ak. If −2dk ∈ Ak−3dk, then dk ∈ Ak.
This is impossible, however, because Ak does not contain both integers dk
and −dk.

Since the sets Ak + bk +3ck and Ak−3ck are translations, it follows that

rAk+1(n) ≤ 1 for all integers n.

Let A =
⋃∞
k=1Ak. For all k ≥ 1 we have 2 = b2 ≤ b3 ≤ . . . and bk < bk+2,

hence b2k ≥ k + 1. Since b2k is the minimum of the absolute values of the
integers that do not belong to 2A2k, it follows that

{−k,−k + 1, . . . ,−1, 0, 1, . . . , k − 1, k} ⊆ 2A2k ⊆ 2A

for all k ≥ 1, and so A is an additive basis. If rA(n) ≥ 2 for some n,
then rAk(n) ≥ 2 for some k, which is impossible. Therefore, A is a unique
representation basis for the integers.

We observe that if x ≥ d1 and k is the unique integer such that dk ≤
x < dk+1, then

A(−x, x) = Ak+1(−x, x) =
{

2k for dk ≤ x < 3ck,

2k + 1 for 3ck ≤ x < bk + 3ck = dk+1.
In the construction of the set Ak+1, the only constraint on the choice of the
number ck was that ck ≥ dk. Given a function f(x) that tends to infinity,
we shall use induction to construct a sequence of integers {ck}∞k=1 such that
A(−x, x) ≤ f(x) for all x ≥ c1. We begin by choosing the integer c1 ≥ d1 so
that

f(x) ≥ 4 for x ≥ c1.

Then
A(−x, x) ≤ 4 ≤ f(x) for c1 ≤ x ≤ d2.

Let k ≥ 2, and suppose we have selected an integer ck−1 ≥ dk−1 such that

f(x) ≥ 2k for x ≥ ck−1, A(−x, x) ≤ f(x) for c1 ≤ x ≤ dk.
There exists an integer ck ≥ dk such that

f(x) ≥ 2k + 2 for x ≥ ck.
Then

A(−x, x) = 2k ≤ f(x) for dk ≤ x < 3ck,

A(−x, x) ≤ 2k + 2 ≤ f(x) for 3ck ≤ x ≤ dk+1,
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hence A(−x, x) ≤ f(x) for c1 ≤ x ≤ dk+1. It follows that

A(−x, x) ≤ f(x) for all x ≥ c1.

This completes the proof of Theorem 1.

3. Bases with logarithmic growth. In Theorem 1 we constructed
unique representation bases whose counting functions tend slowly to infin-
ity. It is natural to ask if there exist unique representation bases that are
dense in the sense that their counting functions tend rapidly to infinity. In
the following theorem we use the previous algorithm to construct a unique
representation basis A whose counting function A(−x, x) has order of mag-
nitude log x.

Theorem 2. There exists a unique representation basis A for the inte-
gers such that

2 log x
log 5

+ 2
(

1− log 3
log 5

)
≤ A(−x, x) ≤ 2 log x

log 3
+ 2 for all x ≥ 1.

Proof. We apply the method of Theorem 1 with

ck = dk for all k ≥ 1.

This is essentially a greedy algorithm construction, since at each iteration
we choose the smallest possible value of ck. It is instructive to compute the
first few sets Ak. Since

A1 = {0, 1}, 2A1 = {0, 1, 2},
we have b1 = 1 and c1 = d1 = 1. Then

A2 = {−4, 0, 1, 3}, 2A2 = {−8,−4,−3,−1, 0, 1, 2, 3, 4, 6},
hence b2 = 2, c2 = d2 = 4. The next iteration of the algorithm produces the
sets

A3 = {−14,−4, 0, 1, 3, 12},
2A3 = {−28,−18,−14,−13,−11,−8,−4,−3}

∪ {−2,−1, 0, 1, 2, 3, 4, 6, 8, 12, 13, 15, 24},
so we obtain b3 = 5, c3 = d3 = 14, and

A4 = {−42,−14,−4, 0, 1, 3, 12, 47}.
We shall compute upper and lower bounds for the counting function

A(−x, x). For k ≥ 1 we have 1 ≤ bk ≤ 2ck − 1 and ck+1 = 3ck + bk, hence

3ck + 1 ≤ ck+1 ≤ 5ck − 1.

Since c1 = 1, it follows by induction on k that

3k − 1
2
≤ ck ≤

3 · 5k + 5
20
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and so
log ck
log 5

+ 1 ≤ log((20ck − 5)/3)
log 5

≤ k ≤ log(2ck + 1)
log 3

≤ log ck
log 3

+ 1

for all k ≥ 1. We obtain an upper bound for A(−x, x) as follows. If ck ≤
x < 3ck, then

A(−x, x) = Ak(−x, x) = 2k ≤ 2 log ck
log 3

+ 2 ≤ 2 log x
log 3

+ 2.

If 3ck ≤ x < ck+1, then

A(−x, x) = Ak+1(−x, x) = 2k + 1 ≤ 2 log ck
log 3

+ 3

≤ 2 log(x/3)
log 3

+ 3 ≤ 2 log x
log 3

+ 1.

Therefore,

A(−x, x) ≤ 2 log x
log 3

+ 2 for all x ≥ 1.

We obtain a lower bound for A(−x, x) similarly. If ck ≤ x < 3ck, then

A(−x, x) = 2k ≥ 2 log ck
log 5

+ 2 ≥ 2 log(x/3)
log 5

+ 2

≥ 2 log x
log 5

+ 2
(

1− log 3
log 5

)
=

2 log x
log 5

+ 0.63 . . .

If 3ck ≤ x < ck+1, then, since

ck+1 = dk+1 = bk + 3ck ≤ 5ck − 1,

we have

A(−x, x) = 2k + 1 ≥ 2 log ck
log 5

+ 3 >
2 log(x/5)

log 5
+ 3 =

2 log x
log 5

+ 1.

Therefore,

A(−x, x) ≥ 2 log x
log 5

+ 2
(

1− log 3
log 5

)
for all x ≥ 1.

This completes the proof of Theorem 2.

4. Heuristics and open problems. Let A be a set of integers. If A
is a unique representation basis for Z, or, more generally, if A is a set of
integers with a bounded representation function, then A(−x, x)� √x. The
following simple result gives an explicit upper bound.

Theorem 3. Let A be a nonempty set of integers such that the repre-
sentation function of A is bounded. If rA(n) ≤ r for all n, then A(−x, x) ≤√

8rx for all x ≥ r.
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Proof. Let A(−x, x) = k. The number of ordered pairs (a, a′) ∈ A × A
with −x ≤ a ≤ a′ ≤ x is exactly (k2 + k)/2. For each of these ordered pairs
we have −2x ≤ a+a′ ≤ 2x. For each integer n ∈ [−2x, 2x] there are at most
r such pairs (a, a′) with a+ a′ = n, and so

k2 + k

2
≤ r(4x+ 1).

It follows that

A(−x, x) = k ≤
√

8rx+
8r + 1

4
− 1

2
≤
√

8rx for x ≥ r.

This completes the proof.

Theorem 3 has a natural analogue for sets A of nonnegative integers.

Theorem 4. Let A be a set of nonnegative integers such that every suf-
ficiently large integer can be represented as the sum of two elements of A. If
rA(n) ≥ 1 for all n > n0, then

A(0, x) ≥ 2
√
x− 1 for all x ≥ n2

0.

If A is a set of nonnegative integers such that rA(n) ≤ r for all n ≥ 0, then

A(0, x) ≤ 2
√
rx for all x ≥ 1.

Proof. Let A(0, x) = k. Suppose that rA(n) ≥ 1 for all n > n0. The
number of ordered pairs (a, a′) ∈ A × A with 0 ≤ a ≤ a′ ≤ x is exactly
(k2 + k)/2. For each such pair we have 0 ≤ a+ a′ ≤ 2x. For each integer n
with n0 < n ≤ 2x there is at least one pair (a, a′) with a+ a′ = n, and so

k2 + k

2
≥ 2x− n0.

It follows that

A(0, x) = k ≥
√

4x− 2n0 +
1
4
− 1

2
≥ 2
√
x− 1 for x ≥ n2

0.

Suppose that rA(n) ≤ r for all n ≥ 0. If a, a′ ∈ A and 0 ≤ a ≤ a′ ≤ x,
then 0 ≤ a + a′ ≤ 2x. Since rA(0) ≤ 1 and rA(1) ≤ 1, it follows, as in the
proof of Theorem 3, that

k2 + k

2
≤ r(2x− 1) + 2,

and so

A(0, x) = k ≤
√

4rx+
17− 8r

4
− 1

2
≤ 2
√
rx for x ≥ 1.

This completes the proof.

A set A of nonnegative integers is called a basis (resp. an asymptotic
basis) if every (resp. every sufficiently large) integer can be represented as the
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sum of two elements of A. By Theorem 1, there exist arbitrarily sparse sets
of integers that are unique representation bases for Z. On the other hand, by
Theorem 4, a set A of nonnegative integers that is a basis or asymptotic basis
for the set of nonnegative integers must have a counting function A(0, x)
that grows at least as fast as

√
x, and if the representation function of A

is bounded, then A(0, x) cannot grow faster than a constant multiple of√
x. This phenomenon can be interpreted as follows: If 0 ≤ n ≤ N , then

there are infinitely many pairs (a, a′) of integers whose sum is n, and the
summands a and a′ can be arbitrarily large in absolute value. On the other
hand, if a and a′ are constrained to be nonnegative integers, then they must
be chosen from the finite number of integers in the bounded interval [0, N ].
If A is an asymptotic basis, then A is forced to contain many numbers
in the interval [0, N ], and this increases the probability that some number
has many representations. This phenomenon may underlie the Erdős–Turán
conjecture.

Theorem 1 asserts that a unique representation basis A for the inte-
gers can be arbitrarily sparse, while Theorem 3 states that A cannot be
too dense, since A(−x, x) � √x. In Theorem 2 we constructed a unique
representation basis such that A(−x, x) ≥ (2/log 5) log x + 0.63. It is not
known what functions can be lower bounds for counting functions of unique
representation bases. Here are some unsolved problems on this theme.

1. For each real number c > 2/log 5, does there exist a unique represen-
tation basis A such that A(−x, x) ≥ c log x for all sufficiently large x?

2. Does there exist a unique representation basis A such that

lim
x→∞

A(−x, x)
log x

=∞?

3. Does there exist a number θ > 0 and a unique representation basis A
such that A(−x, x) ≥ xθ for all sufficiently large x?

4. Does there exist a number θ < 1/2 such that A(−x, x) ≤ xθ for every
unique representation basis A and for all sufficiently large x?
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