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Lattice points in bodies with algebraic boundary
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Wolfgang Müller (Graz)

1. Introduction. Let F be a polynomial of even degree d in s variables
with integer coefficients. Assume that the leading homogeneous part F (d) in
the decomposition F = F (d) +G with deg(G) < d is positive definite. Then
DF (R) = {x ∈ Rd | F (x) ≤ R} is compact. Denote by AF (R) the number
of lattice points of the standard lattice Zs which are contained in DF (R).
Then AF (R) is approximately equal to vol(DF (R)). It is easy to see that
the discrepancy PF (R) = AF (R)− vol(DF (R)) satisfies

PF (R) = Ω(Rs/d−1).(1)

One only has to observe that AF (R+ ε) = AF (R) for R ∈ N and 0 < ε < 1,
but vol(DF (R + ε)) − vol(DF (R)) � Rs/d−1. Our aim is to give a sharp
upper bound for PF (R). To formulate the main result we introduce the
invariant h(F ) of F , defined as the smallest integer h such that F (d) has a
representation

F (d) =
h∑

i=1

AiBi

with homogeneous polynomials Ai, Bi ∈ Q[X1, . . . ,Xs] of positive degree.

Theorem 1. Assume that h(F ) > %(d) where %(2) = 4, %(4) = 288 and
%(d) = d(d− 1)2d−1(log 2)−dd! for d > 4. Then for R ≥ 1,

PF (R) = O(Rs/d−1).(2)

In the case d = 2 it is easy to see that h(F ) = s. Thus Theorem 1
contains as a special case the well known theorem of Walfisz [10] and Landau
[4] who proved (2) for rational quadratic forms of dimension s > 4. If F (d)

is non-singular, i.e. the only solution of ∂
∂xi

(F (d)(x)) = 0, 1 ≤ i ≤ s, in Cs is
x = 0, then h(F ) ≥ s/2 (cf. [7, p. 282]). In this case the theorem gives the
exact order of PF (R) if s > 2%(d). The proof of Theorem 1 uses a variant of
the Hardy–Littlewood method. For general F this method was first used by
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Schmidt in his famous work on diophantine equations [6], [8]. For special F
the estimate (2) can be true for much smaller s. As an example we prove

Theorem 2. Let F0(X) =
∑s

i=1 λiX
d
i with d ≥ 2 even and integer

coefficients λi > 0. Then PF0(R) = O(Rs/d−1), provided that s ≥ min(d2d−1,
%0(d)). Here %0 denotes an explicitly computable function which satisfies
%0(d) ∼ 2d3 log d for d→∞.

As noted by Randol [5] Theorem 2 cannot be true if s < d2 − d+ 1. See
Krätzel [3] for a detailed study of PF0(R) for small s. With some obvious
modifications our proof shows that Theorem 2 remains true for real coeffi-
cients λi > 0.

Recently, Bentkus and Götze [1] studied PF (R) for polynomials F with
real coefficients and leading homogeneous part

F (d)(X) =
s0∑

i=1

λiX
d
i + P (X) (λi > 0).(3)

Here P denotes a homogeneous polynomial of degree d such that the degree
of P viewed as a polynomial in (X1, . . . ,Xs0) is strictly smaller than d. They
proved (2) under the assumptions that s0 = s and s > α(d) or s0 < s and
s0 > 2dα(d), where α(2) = 8, α(4) = 1512 and α(d) = d2d−1e3d log d for
d > 4. The condition (3) on the leading homogeneous part of F is rather
restrictive. Bentkus and Götze already remarked that one should expect that
(2) is true for general F if h(F ) is sufficiently large. The main advantage of
their method is that it applies to polynomials with real coefficients, whereas
we have to assume that F has integer coefficients.

2. The Hardy–Littlewood method. Let B = (−1, 1]s. Assume that
R ∈ N and DF (R) ⊆ R1/dB for R ≥ c(F ) sufficiently large. Otherwise
consider cF instead of F , where c ∈ N is sufficiently large, and use AF (R) =
AcF (cR). To count the number of lattice points in DF (R) we introduce
the auxiliary function χ = I(−R−1/2,R+1/2) ∗ δ which is the convolution of
the indicator function with a symmetric probability density δ ∈ C∞(R)
satisfying supp(δ) ⊆ [−1/2, 1/2]. Then χ(u) = 1 if |u| ≤ R, χ(u) = 0 if
|u| ≥ R + 1 and 0 ≤ χ(u) ≤ 1 if R < |u| < R + 1. By Fourier inversion one
obtains

χ(u) =
�

R
χ̂(t)e(−tu) dt =

�

R
χ̂(t)e(tu) dt,(4)

where

χ̂(t) =
�

R
χ(u)e(tu) du = Î(−R−1/2,R+1/2)(t)δ̂(t).
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Here e(x) = e2πix as usual. Furthermore,

Î(−R−1/2,R+1/2)(t) =
1
πt

sin(2πt(R+ 1/2)).

Applying j-fold partial integration one obtains δ̂(t)�j (|t|+ 1)−j for j ≥ 0.
Hence

χ̂(t)� 1
|t| (1 + |t|)−j (j ≥ 0).(5)

Set N = d(R+ 1)1/de+ 1/2. Then F (k) ≤ R implies k ∈ NB and (4) yields

AF (R) =
∑

n∈NB∩Zs
χ(F (n)) =

�

R
SN (t)χ̂(t) dt(6)

with
SN (t) =

∑

n∈NB∩Zs
e(tF (n)).

This should be compared with the following integral which counts the num-
ber of lattice points on the boundary of DF (R):

1�

0

SN (t)e(−tR) dt.

It is not surprising that the properties of SN (t) known from the Hardy–
Littlewood method can be used to analyse AF (R). The main difference
comes from the behaviour of χ̂(t) for small t. Note that SN (t) is one-periodic
if F has integer coefficients. The following proposition deals with these small
values of t.

Proposition. Assume that for N ≥ 1:

(A)
�

(0,1]

|SN (t)| dt� N s−d.

(B)
�

(N1−d,1]

|SN (t)| dt
t
� N s−d.

(C) There exists an ω > d such that for |t| ≤ N 1−d
∑

n∈NB′∩Zs
e(tF (n+ u))� N s−ωd|t|−ω(7)

uniformly in u ∈ B and all boxes B′ ⊆ B with sides parallel to the coordinate
axes.

(D) There exists an ω > d such that for |t| ≥ N−d,
�

NB′
e(tF (x)) dx� N s−ωd|t|−ω(8)

uniformly in all boxes B′ ⊆ B with sides parallel to the coordinate axes.

Then PF (R)� Rs/d−1.
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The proof of this Proposition is given in Section 3. Here we describe the
“axiomatic” form of the Hardy–Littlewood method given by Schmidt [6]. If
F is a polynomial with integer coefficients, SN (t) can be evaluated asymp-
totically in a neighbourhood of a rational number with small denominator.
The union of these neighbourhoods is called the major arcs. To be precise
let 0 < ∆ ≤ 1 and set, for 1 ≤ a ≤ q ≤ N∆ with (a, q) = 1,

M∆(q, a) =
{
t ∈ R/Z

∣∣∣∣
∣∣∣∣t−

a

q

∣∣∣∣ <
1
q
N∆−d

}
.

Then the major arcs and minor arcs are defined by

M∆ =
⋃

1≤a≤q≤N∆

(a,q)=1

M∆(q, a) and m∆ = (R/Z) \M∆.

Note that M∆ is the union of disjoint intervals if N is sufficiently large.
If F is homogeneous, i.e. F = F (d), we define Ω(F ) as the supremum of

all ω > 0 such that for all ∆ ∈ (0, 1] and t ∈ m∆,
∑

n∈NB′∩Zs
e(tF (n+ u))�F,ω N

s−ω∆(9)

uniformly for all u ∈ B and all boxes B′ ⊆ B with sides parallel to the
coordinate axes. If F is an arbitrary polynomial with leading form F (d) we
define Ω(F ) as the supremum of all ω > 0 such that for all ∆ ∈ (0, 1] and
t ∈ m∆,

∑

n∈NB′∩Zs
e(tF (d)(n) + P (n))�F,ω N

s−ω∆(10)

uniformly for all polynomials P ∈ R[X1, . . . ,Xs] with deg(P ) < d and all
boxes B′ ⊆ B with sides parallel to the coordinate axes.

Ω(F ) is similar to the invariant ω(F ) introduced by Schmidt [6]. The
latter is defined as the supremum of all ω > 0 such that for all ∆ ∈ (0, 1]
and t ∈ m∆, (9) is true with u = 0 uniformly for all boxes B ′ ⊆ B. We prove
that the assumption Ω(F ) > d implies (A)–(D) of the above Proposition.

Theorem 3. If Ω(F ) > d then PF (R)� Rs/d−1.

Theorem 1 follows immediately from Theorem 3 and the following in-
equality:

Ω(F ) ≥ h(F )
τ(d)

.(11)

Here τ(2) = 2, τ(4) = 72 and τ(d) < (d − 1)2d−1(log 2)−dd! in general.
With Ω(F ) replaced by ω(F ) this is Theorem 6.A in [6, p. 86]. We have to
verify that Schmidt’s inequality remains true with our modified invariant
Ω(F ). To see this note that Schmidt’s proof starts with a d-fold application
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of Weyl’s inequality. This transforms the exponential sum in the definition
of Ω(F ) into an exponential sum of the form

∑
e(Gd(n1, . . . , nd)), where

G(X) = tF (d)(X) +P (X) and Gd is the unique symmetric multilinear form

which satisfies G(d)(X) = (−1)d

d! Gd(X, . . . ,X). If P is a polynomial of degree

strictly less than d, then Pd = 0. It follows that Gd = tF
(d)
d . Hence the new

exponential sum does not depend on P . From this moment on, one proceeds
as in [6]. Note that Ω(F ) and the above lower bound on Ω(F ) depend only
on the leading form of F .

3. Proof of the Proposition. Assume that conditions (A)–(D) of the
Proposition are satisfied. The representation (6), together with (5), (A)
and (B), yields

AF (R) =
�

|t|≤N1−d

SN (t)χ̂(t) dt(12)

+O

( �

(N1−d,1]

|SN (t)| dt
t

+
∞∑

j=1

1
j2

�

(j,j+1]

|SN (t)| dt
)

=
�

|t|≤N1−d

SN (t)χ̂(t) dt+O(N s−d).

If |t| ≤ N1−d we use an asymptotic expansion of SN (t). There are several
ways to obtain it. We use the following expansion of a sufficiently smooth
complex-valued function g : Rs → C due to Bentkus and Götze [1]. Let
J ∈ N, and x, u1, . . . , uJ ∈ Rs. Then

g(x) = g(x+ u1) +
J−1∑

j=1

gj + rJ ,(13)

where for 1 ≤ j < J ,

gj =
∑

|α|=j
c(α)g(j)(x+ um+1)[uα1

1 . . . uαmm ]

and

rJ =
∑

|α|=J
c′(α)

1�

0

(1− τ)αm−1g(J)(x+ τum)[uα1
1 . . . uαmm ] dτ.

The summation extends over all α = (α1, . . . , αm) ∈ Nm with 1 ≤ m ≤ j
and |α| = ∑m

i=1 αi = j. Furthermore, g(j)(x)[uα1
1 . . . uαmm ] denotes the j-fold

directional derivative

g(j)(x)[uα1
1 . . . uαmm ] =

∂j

∂λα1
1 . . . ∂λαmm

g(x+ λ1u1 + . . .+ λmum)

∣∣∣∣
λ1=...=λm=0
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and

c(α) =
(−1)m

α1! . . . αm!
, c′(α) =

(−1)m

α1! . . . αm−1!(αm − 1)!
.

This expansion can be obtained by iteratively applying Taylor expansions,
first to λ 7→ g(x + λu1) and then for every summand g(α1)(x)[uα1

1 ] in the
resulting expansion to λ 7→ g(α1)(x + λu2)[uα1

1 ]. After J such steps one
obtains (13).

We use (13) with g(x) = e(tF (x)). Summing over x ∈ NB ∩ Zs and
integrating over (u1, . . . , uJ) ∈ T J with T = (−1/2, 1/2]s, yields

SN (t) = G0(t) +
J−1∑

j=1

Gj(t) +RJ(t) ,(14)

where

G0(t) =
�

T

∑

x∈NB∩Zs
g(x+ u1) du1 =

�

NB

g(x) dx,

Gj(t) =
∑

|α|=j
c(α)

�

Tm

( �

NB

g(j)(x)[uα1
1 . . . uαmm ] dx

)
d(u1, . . . , um),

RJ(t) =
∑

|α|=J
c′(α)

1�

0

(1− τ)αm−1

×
�

Tm

∑

x∈NB∩Zs
g(J)(x+ τum)[uα1

1 . . . uαmm ] d(u1, . . . , um) dτ.

With the choice J = d we prove that
�

|t|≤N1−d

Rd(t)χ̂(t) dt� N s−d(15)

and for 0 ≤ j < d,
�

|t|>N1−d

Gj(t)χ̂(t) dt� N s−d.(16)

From this it follows that

�

|t|≤N1−d

SN (t)χ̂(t) dt =
d−1∑

j=0

�

|t|≤N1−d

Gj(t)χ̂(t) dt+O(N s−d)

=
d−1∑

j=0

Hj +O(N s−d),

where
Hj =

�

R
Gj(t)χ̂(t) dt.
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Together with (12) and the definition of N we obtain

AF (R) =
d−1∑

j=0

Hj +O(Rs/d−1).

H0 yields the main term since

H0 =
�

R
G0(t)χ̂(t) dt =

�

NB

�

R
e(tF (x))χ̂(t) dt dx =

�

NB

χ(F (x)) dx

=
�

F (x)≤R
dx+O

( �

R<F (x)≤R+1

dx
)

= vol(DF (R)) +O(Rs/d−1).

In the remaining part of this section we prove (15), (16) and Hj = 0 for
j ≥ 1. This will complete the proof of the Proposition. We begin with the
following lemma which can be proved by induction.

Lemma 3.1. Let g(x) = e(tF (x)) and x, u1, . . . , uj ∈ Rs. Then

g(j)(x)[u1, . . . , uj ] = g(x)
j∑

l=1

(2πit)lPj,l(x),(17)

where Pj,l, 1 ≤ l ≤ j, are polynomials with deg(Pj,l) ≤ ld − j whose coeffi-
cients are linear in u1, . . . , uj. They can be determined recursively by

Pj+1,1(x) =
s∑

i=1

∂

∂xi
(Pj,1(x))u(i)

j+1,

Pj+1,l(x) =
s∑

i=1

∂

∂xi
(Pj,l(x))u(i)

j+1+Pj,l−1(x)
s∑

i=1

∂F

∂xi
(x)u(i)

j+1 (2≤ l≤j),

Pj+1,j+1(x) = Pj,j(x)
s∑

i=1

∂F

∂xi
(x)u(i)

j+1,

and

P1,1(x) =
s∑

i=1

∂F

∂xi
(x)u(i)

1 .

Here u(i)
j denotes the ith component of uj.

To prove (15) we consider the cases |t| ≤ N−d and N−d < |t| ≤ N1−d

separately. If |t| ≤ N−d we estimate g(d) trivially. Since Pj,l(x) � N ld−j

uniformly in u1, . . . , uj ∈ T and x ∈ 2NB, (17) and |t|Nd ≤ 1 imply
g(j)(x)[u1, . . . , uj ] � |t|Nd−j. Hence Rd(t) � |t|N s. Together with χ̂(t) �
|t|−1 this yields

�

|t|≤N−d
RJ(t)χ̂(t) dt�

�

|t|≤N−d
N s dt� N s−d.(18)
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In the case N−d < |t| ≤ N1−d we use assumption (C). Since the estimate in
(C) is uniform in all boxes B′ ⊆ B with sides parallel to the coordinate axes
we can apply partial summation. This yields, for an arbitrary polynomial P ,

∑

n∈NB
e(tF (n+ u))P (n+ u)� Ndeg(P )+s−ωd|t|−ω

uniformly in u ∈ T . Together with (17) we obtain
∑

n∈NB∩Zs
g(d)(n+ τum)[uα1

1 . . . uαmm ]

=
d∑

l=1

(2πit)l
∑

n∈NB∩Zs
Pd,l(n+ τum)e(tF (n+ τum))

� N−d+s−ωd|t|−ω
d∑

l=1

(|t|Nd)l � Nd2−d+s−ωd|t|d−ω.

Since ω > d it follows that
�

(N−d,N1−d]

Rd(t)χ̂(t) dt� Nd2−d+s−ωd �

(N−d,N1−d]

td−ω−1 dt� N s−d.

This together with (18) implies (15).
To prove (16) we use (D). Since the estimate in (D) is uniform in all

boxes B′ ⊆ B we can apply partial integration. This gives, for an arbitrary
polynomial P and |t| ≥ N−d,

�

NB

P (x)e(tF (x)) dx� Ndeg(P )+s−ωd|t|−ω.

Hence Lemma 3.1 implies, for |t| ≥ N−d (uniformly in u1, . . . , um ∈ T ),

�

NB

g(j)(x)[uα1
1 . . . uαmm ] dx =

j∑

l=1

�

NB

(2πit)lPj,l(x)e(tF (x)) dx

�N s−j−ωd|t|−ω
j∑

l=1

(|t|Nd)l�N s+j(d−1)−ωd|t|j−ω.

For 0 ≤ j < d this together with (5) yields
�

|t|>N1−d

Gj(t)χ̂(t) dt�N s+j(d−1)−ωd
( �

(N1−d,1]

tj−ω−1 dt+
�

(1,∞)

t−2 dt
)
�N s−ω.

Since ω > d this implies (16).
Finally, we prove

Lemma 3.2. Hj = 0 for j ≥ 1.
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Proof. By Lemma 3.1 and the definition of Hj we obtain, for j ≥ 1,

Hj =
�

R
Gj(t)χ̂(t) dt

=
∑

|α|=j
c(α)

�

R

�

Tm

�

NB

g(j)(x)[uα1
1 . . . uαmm ]χ̂(t) dx d(u1 . . . um) dt

=
∑

|α|=j
c(α)

�

Tm

j∑

l=1

�

NB

Pj,l(x)
�

R
e(tF (x))χ̂(l)(t) dt dx d(u1 . . . um)

=
∑

|α|=j
c(α)

�

Tm

j∑

l=1

�

NB

Pj,l(x)χ(l)(F (x)) dx d(u1 . . . um)

=
∑

|α|=j
c(α)

�

Tm

j∑

l=1

�

Rs
Pj,l(x)χ(l)(F (x)) dx d(u1 . . . um).

Here we used χ̂(l)(t) = (2πit)lχ̂(t) and the fact that χ(l)(F (x)) = 0 if x 6∈
NB. In the case j = 1 Lemma 3.1 yields

H1 = −
�

T

�

Rs
P1,1(x)χ(1)(F (x)) dx du1

= −
�

Rs

s∑

i=1

∂F

∂xi
(x)χ(1)(F (x)) dx

�

T

u
(i)
1 du1 = 0.

Remember that T = (−1/2, 1/2]s . For j ≥ 1 we prove that
j+1∑

l=1

�

Rs
Pj+1,l(x)χ(l)(F (x)) dx = 0.(19)

This implies Hj = 0 for j ≥ 2. To prove (19) set

Hj,l =
�

Rs

s∑

i=1

∂

∂xi
(Pj,l(x))u(i)

j+1χ
(l)(F (x)) dx.

Using partial integration one obtains, for 2 ≤ l ≤ j + 1,

�

Rs
Pj,l−1(x)

s∑

i=1

∂F

∂xi
(x)u(i)

j+1χ
(l)(F (x)) dx

=
s∑

i=1

u
(i)
j+1

�

Rs
Pj,l−1(x)

∂

∂xi
(χ(l−1)(F (x))) dx

= −
s∑

i=1

u
(i)
j+1

�

Rs

∂

∂xi
(Pj,l−1(x))χ(l−1)(F (x)) dx = −Hj,l−1.
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This together with the representation of Pj+1,l in Lemma 3.1 implies
�

Rs
Pj+1,1(x)χ(1)(F (x)) dx = Hj,1,

�

Rs
Pj+1,l(x)χ(l)(F (x)) dx = Hj,l −Hj,l−1 (2 ≤ l ≤ j),

�

Rs
Pj+1,j+1(x)χ(j+1)(F (x)) dx = −Hj,j .

Adding these j + 1 equations yields (19). This completes the proof of Lem-
ma 3.2 and the proof of the Proposition.

4. Proof of Theorem 3. We have to prove that Ω(F ) > d implies
(A)–(D) of the Proposition. We start with (D). It is only here that we use,
for inhomogeneous F , the more sophisticated definition (10) instead of (9).

Lemma 4.1. If 0 < ω < Ω(F ) then
�

NB′
e(tF (u)) du� N s min(1, (|t|Nd)−ω)

uniformly for all boxes B′ ⊆ B with sides parallel to the coordinate axes.

Proof. The estimate is trivial for |t| ≤ N−d. If |t| > N−d the substitution
u = Q−1x with QN ≥ 1 yields

�

NB′
e(tF (u)) du = Q−s

�

QNB′
e(tF (Q−1x)) dx(20)

= Q−s
( ∑

n∈QNB′∩Zs
e(tF (Q−1n)) +O(|t|Nd(QN)s−1)

)
.

To prove (20) cover QNB′ by cubes of the form n + T , T = [−1/2, 1/2)s.
There are at mostO((QN)s−1) cubes which intersect the boundary ofQNB ′.
Furthermore, for x ∈ n+ T with n ∈ QNB′, one finds

e(tF (Q−1x)) = e(tF (Q−1n)) +O(|t|Q−1Nd−1)

since ∂
∂xi

(tF (Q−1x)) � |t|Q−1 ∂F
∂xi

(Q−1x) � |t|Q−1Nd−1. This proves (20).
The exponential sum in (20) has the form

∑

n∈QNB′∩Zs
e(tQ−dF (d)(n) + P (n))

with a polynomial P ∈ R[X1, . . . ,Xs] of degree strictly smaller than d. For
0 < ∆ ≤ 1 choose Q such that |t|Q−d = (QN)∆−d. Then QN ≥ 1 and
|t|Q−d lies on the boundary of M∆(1, 1). By the definition (10) of Ω(F )
the exponential sum is� (QN)s−ω∆. If F is homogeneous the same follows
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from the alternative definition (9). Now (20) implies
�

NB′
e(tF (u)) du� Q−s(QN)s−ω∆ + |t|Q−1N s+d−1

� N s−ωd|t|−ω +N s(|t|Nd)1−1/∆.

Both terms on the right hand side are equal if we set ∆ = (1+ω)−1 ∈ (0, 1].

Lemma 4.2. Ω(F ) > d implies that condition (C) of the Proposition is
satisfied.

Proof. Condition (C) is trivially satisfied if |t| ≤ N−d. If N−d < |t| ≤
N1−d choose ∆(t) such that |t| = N∆(t)−d, i.e. ∆(t) = d+ log |t|/logN . The
condition N−d < |t| ≤ N1−d ensures ∆(t) ∈ (0, 1]. With this choice t lies on
the boundary of M∆(t)(1, 1). Hence t ∈ m∆(t) and the definition (10) or (9)
implies, for every Ω(F ) > ω > d,

∑

n∈NB′∩Zs
e(tF (n+ u))� N s−ω∆(t) � N s−ωd|t|−ω

uniformly for all u ∈ B and all boxes B′ ⊆ B with sides parallel to the
coordinate axes. This proves (C).

To verify conditions (A) and (B) of the Proposition, we split the domain
of integration into a part covered by minor arcs and a second part covered
by major arcs.

Lemma 4.3 (minor arcs). If Ω(F ) > d and 0 < ∆ < 1 then
�

m∆

|SN (t)| dt� N s−d,(21)

�

(N1−d,1]∩m∆

|SN (t)| dt
t
� N s−d.(22)

Proof. We prove (22). The proof of (21) is analogous; see [6, p. 24,
Lemma 4.B], for an even sharper estimate. Choose ω such that Ω(F ) >
ω > d. If ∆ = 1 the definition of Ω(F ) implies SN (t)� N s−ω for all t ∈ m1.
Hence

�

(N1−d,1]∩m1

|SN (t)| dt
t
� N s−ω �

(N1−d,1]

dt

t
� N s−ω logN � N s−d.

If 0 < ∆ < 1 we split (∆, 1] into subintervals (∆i−1,∆i], where ∆ = ∆0 <
∆1 < . . . < ∆n = 1. Then

m∆ = ((R/Z) \M1) ∪
n⋃

i=1

M∆i \M∆i−1 = m1 ∪
n⋃

i=1

ri,
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where ri = M∆i \M∆i−1 ⊆M∆i . Since M∆ has Lebesgue measure

λ(M∆)�
∑

1≤a≤q≤N∆

q−1N∆−d � N2∆−d,

it follows that λ(ri) � N2∆i−d. Furthermore, the definition of Ω(F ) yields
for t ∈ ri ⊆ m∆i−1 the estimate SN (t)� N s−ω∆i−1 . Hence we obtain

�

(Nd−1,1]∩m∆

|SN (t)| dt
t
�

�

(Nd−1,1]∩m1

|SN (t)| dt
t

+
n∑

i=1

�

(Nd−1,1]∩ri

|SN (t)| dt
t

� N s−d +
n∑

i=1

N s−ω∆i−1
�

(Nd−1,1]∩ri

dt

t
.

Since ri ⊆M∆i we consider (for (a, q) 6= (1, 1))

�

M∆(q,a)∩(0,1]

dt

t
=

a
q

+ 1
q
N∆−d

�

a
q
− 1
q
N∆−d

dt

t
= log

1 + 1
aN

∆−d

1− 1
aN

∆−d �
1
a
N∆−d.(23)

It follows that
�

(N1−d,1]∩M∆

dt

t
�

∑

1≤a≤q≤N∆

1
a
N∆−d � N∆−d ∑

1<q≤N∆

log q � N2∆−d logN.

Altogether we obtain
�

(Nd−1,1]∩m∆

|SN (t)| dt
t
� N s−d +

n∑

i=1

N s−d−(ω−2)∆i−1+2(∆i−∆i−1) logN

� N s−d +N s−d−(ω−2)∆+2ε � N s−d,

if we choose ∆i − ∆i−1 < ε sufficiently small. This proves (22) for every
∆ ∈ (0, 1].

Lemma 4.4 (major arcs). If Ω(F ) > 2 and 0 < ∆ < 1/4 then
�

M∆

|SN (t)| dt� N s−d,(24)

�

(N1−d,1]∩M∆

|SN (t)| dt
t
� N s−d.(25)

Proof. If F is a polynomial with integer coefficients and t is close to
a rational number with small denominator, then SN (t) can be evaluated
asymptotically. It is well known (cf. [6, p. 26, Lemma 5.A]) that for every
t ∈M∆(q, a), we have

SN (t) = S

(
a

q

)
G0

(
t− a

q

)
+O(qN s−1+∆),(26)
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where

S

(
a

q

)
= q−s

∑

n∈q(0,1]s∩Zs
e

(
a

q
F (n)

)
, G0(t) =

�

NB

e(tF (u)) du.

Since a/q with (a, q) = 1 lies in M1(q, a) with N = q, the definition of Ω(F )
implies

S

(
a

q

)
� q−ω(27)

for every ω<Ω(F ). Additionally, by Lemma 4.1,G0(t)�N s min(1, |tNd|−ω)
for ω < Ω(F ) . Since Ω(F ) > 2 we can choose ω > 2. Using these estimates
it is easy to prove (24) and (25). We demonstrate (25). Since

∣∣∣∣t−
a

q

∣∣∣∣ ≤
1
q
N∆−d for t ∈M∆(q, a),

it follows that t ≥ a/(2q). Hence
�

M∆(q,a)∩(0,1]

|SN (t)| dt
t

�
∣∣∣∣S
(
a

q

)∣∣∣∣
q

a

�

|u|≤ 1
q
N∆−d

|G0(u)| du+ qN s−1+∆
�

M∆(q,a)∩(0,1]

dt

t
.

The substitution u = N−dv yields
�

|u|≤ 1
q
N∆−d

|G0(u)| du = N−d
�

|v|≤ 1
q
N∆

|G0(N−dv)| dv

� N s−d �

|v|≤ 1
q
N∆

min(1, |v|−ω) dv � N s−d.

Together with (23) and (27) we obtain
�

(N1−d,1]∩M∆

|SN (t)| dt
t
� N s−d ∑

1≤a≤q≤N∆

(a−1q1−ω + a−1qN2∆−1)

� N s−d(1 +N4∆−1) logN � N s−d.

5. Proof of Theorem 2. Let F0(X) =
∑s

i=1 λiX
d
i with integer co-

efficients λi > 0. It is known that Ω(F0) ≥ s21−d (see [6, p. 24] and the
remarks following (11)). Hence Theorem 3 implies PF0(R) � Rs/d−1 if
s > d2d−1. For large d this can be substantially improved by Vinogradov’s
mean value theorem. We prove that (A)–(D) of the Proposition are satisfied
if s > %0(d), where %0(d) is an explicitly computable function which satisfies
%0(d) ∼ 2d3 log d for d→∞.
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First we prove that (C) and (D) are satisfied if s > d2, d > 2. To do
this we establish (7) and (8) with ω = s/d. By [2, Theorem 2.2] (the second
derivative test), it follows that

∑

M<n≤M ′
e(t(n+ u)d)� (|t|Md−2)−1/2 +M(|t|Md−2)1/2

uniformly for u ∈ [−1, 1] and 1 ≤ M < M ′ ≤ 2M . Splitting [0, N ] into
dyadic intervals of the form (2j−1U, 2jU ] with U = |t|−1/d we obtain

∑

0≤n≤N
e(t(n+ u)d)� 1 + U +

∑

j

(|t|−1/2(2jU)1−d/2 + |t|1/2(2jU)d/2)

� 1 + U + |t|−1/2U1−d/2 + |t|1/2Nd/2

� |t|−1/d + |t|1/2Nd/2.

It follows that∑

n∈NB′
e(tF0(n+ u))� (|t|−1/d + |t|1/2Nd/2)s � |t|−s/d

if |t| ≤ N1−d. This proves (7) with ω = s/d. To prove (D) observe that for
t > 0,

N�

0

e(txd) dx = t−1/dd−1
tNd�

0

ξ1/d−1e(ξ) dξ � t−1/d

(the last integral is bounded by an absolute constant). This proves (8) with
ω = s/d.

Next we prove (A) and (B). Let

f(t) =
∑

1≤n≤N
e(tnd),

then SN (t) =
∏s
i=1(1 + 2f(λit)). By Hölder’s inequality it is sufficient to

prove �

(0,1]

|f(t)|s dt� N s−d and
�

(λiN1−d,1]

|f(t)|s dt
t
� N s−d.(28)

To estimate the special function f(t) one can work with larger major arcs.
Let N = d(R+ 1)1/de+ 1/2 and set

M(q, a) =
{
t ∈ R/Z

∣∣∣∣
∣∣∣∣t−

a

q

∣∣∣∣ ≤
P

qR

}
, P =

N

2d
.

Write M for the union of the M(q, a) with 1 ≤ a ≤ q ≤ P and (a, q) = 1,
and set m = (R/Z) \M.

Lemma 5.1 (major arcs). If s > 2d and c > 0 then
�

M

|f(t)|s dt� N s−d and
�

(cN1−d,1]∩M

|f(t)|s dt
t
� N s−d.



Lattice points in bodies with algebraic boundary 23

Proof. By [9, Theorem 4.1], for t ∈M(q, a) and any ε > 0,

f(t) =
1
q
S

(
a

q

)
v

(
t− a

q

)
+O(q1/2+ε),

where, by [9, Theorem 4.2 and Lemma 2.8],

1
q
S

(
a

q

)
� q−1/d and v(t)� min(N, |t|−1/d).

This yields
�

(cN1−d,1]∩M

|f(t)|s dt
t
�

∑

1≤a≤q≤P

(
q−s/d

�

|u|≤P/(qR)

|v(u)|s du+ qs/2+ε P

qR

)
q

a
.

Since
�

|u|≤P/(qR)

|v(u)|s du� N s−d +
�

(N−d,P/(qR)]

u−s/d du� N s−d,

we obtain, for s > 2d,
�

(cN1−d,1]∩M

|f(t)|s dt
t
� N s−d∑

q≤N
q1−s/d log q +N1−d∑

q≤N
qs/2+2ε � N s−d.

This proves the second assertion of the lemma. The first one follows in the
same way.

Finally, we estimate the contribution of the minor arcs to (28). Since
�

(λiNd−1,1]∩m

|f(t)|s dt
t
� N1−d �

m

|f(t)|s dt

(28) is a consequence of Lemma 5.1 and the following lemma.

Lemma 5.2 (minor arcs). There is an explicitly computable function
%0(d), which satisfies %0(d) ∼ 2d3 log d for d→∞, such that for s ≥ %0(d),

�

m

|f(t)|s dt� N s−2d+1.

Proof. We use Wooley’s refinement of Vinogradov’s mean value theorem.
The original form of the mean value theorem yields Lemma 5.2 with %0(d) ∼
4d3 log d. By [9, Theorem 5.6], there is an explicitly computable function
σ(d) such that for t ∈ m,

f(t)� N1−σ(d) logN.

We have σ(d) ∼ (2d2 log d)−1 for d → ∞. Furthermore, by [9, Theorem 5.5
and (5.37)], for every integer l ≥ 1,

�

(0,1]

|f(t)|2dl dt� N2dl−d+ηl(d),
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where

ηl(d) =
1
2
d(d− 1)

(
1− 5

4d

)l−1

.

These estimates imply, for every l ≥ 1,
�

m

|f(t)|s dt� (sup
t∈m
|f(t)|s−2dl)

�

(0,1]

|f(t)|2dl dt

� N (s−2dl)(1−σ(d))+2dl−d+ηl(d)(logN)s−2dl.

There is an l such that the right hand side is � N s−2d+1 if

s > min
l

{
ηl(d)
σ(d)

+ 2dl
}

+
d− 1
σ(d)

= %0(d),

say. By [9, Theorem 5.7], the minimum is � d2 log d, thus %0(d) ∼ 2d3 log d
for d→∞.

We remark that for small d Theorem 2 can be further sharpened. For
instance, Hua’s lemma ([9, Lemma 2.5]) can be used to prove PF0(R) �
Rs/d−1 for s > 2d+1 − 2.
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