Note on a variant of the Erdős–Ginzburg–Ziv problem

by

CHAO WANG (Tianjin)

1. Introduction. P. Erdős, A. Ginzburg and A. Ziv [3] proved that from any sequence of integers of length 2n - 1 one can extract a subsequence of length n whose sum is congruent to zero modulo n.

A. Bialostocki and P. Dierker [1] proved that if $A = (a_1, \ldots, a_{2n-2})$ is a sequence of integers of length 2n - 2 and there are no indices i_1, \ldots, i_n belonging to $\{1, \ldots, 2n-2\}$ such that

(1)
$$a_{i_1} + a_{i_2} + \ldots + a_{i_n} \equiv 0 \pmod{n},$$

then there are two residue classes modulo n such that n-1 of the a_i 's belong to one of the classes and the remaining n-1 belong to the other class.

In order to study the relation between the number of classes present in a sequence $A = (a_1, \ldots, a_g)$ and the possibility to have a relation like (1), A. Bialostocki and M. Lotspeich [2] introduced the following function.

DEFINITION 1.1 ([2]). Let n, k be positive integers, $1 \leq k \leq n$. We define f(n, k) to be the least integer g for which the following holds: If $A = (a_1, \ldots, a_g)$ is a sequence of integers of length g such that the number of a_i 's that are distinct modulo n is equal to k, then there are n indices i_1, \ldots, i_n belonging to $\{1, \ldots, g\}$ such that $a_{i_1} + \ldots + a_{i_n} \equiv 0 \pmod{n}$.

The Erdős–Ginzburg–Ziv theorem implies that f(n,k) exists and is not greater than 2n - 1. It is easy to see that f(n,1) = n, f(n,2) = 2n - 1, $f(n,k) \ge n$, and

$$f(n,k) \le 2n-2 \quad \text{ for } 2 < k \le n.$$

For given n, we will formulate the problem and work in the context of \mathbb{Z}_n , the cyclic group of residue classes modulo n. Let us define f(n, k) in the following equivalent way.

DEFINITION 1.2 ([4]). Let n, k be positive integers, $1 \le k \le n$. Denote by f(n, k) the least integer g for which the following holds: If $A = (a_1, \ldots, a_g)$ is a sequence of elements of \mathbb{Z}_n of length g such that the number of distinct

²⁰⁰⁰ Mathematics Subject Classification: Primary 11B50.

 a_i 's is equal to k, then there are n indices i_1, \ldots, i_n belonging to $\{1, \ldots, g\}$ such that $a_{i_1} + \ldots + a_{i_n} = 0$.

NOTATION. A sequence A = (0, 0, 1, 1, 1, 2, 3, 5) will also be denoted by $A = (0^2, 1^3, 2, 3, 5)$. The elements of \mathbb{Z}_n will be denoted by $0, 1, \ldots, n-1$. L. Gallardo, G. Grekos and J. Pihko [4] proved

THEOREM 1.1 ([4]). Let n be a positive integer. Then f(n,n) = n if n is odd and f(n,n) = n + 1 if n is even.

THEOREM 1.2 ([4]). Let $n \ge 5$ and $1+n/2 < k \le n-1$. Then f(n,k) = n+2.

In this article, k and n will be positive integers. We prove the following theorems.

THEOREM 1.3. If
$$k = 2m + 1 \ge 3$$
 is odd and
 $n \ge \max\{4m^2 - 4, m(m+3)/2 + 2\}$

then

$$f(n,k) = 2n - m^2 - 1.$$

THEOREM 1.4. If k = 2m is even and

$$n \ge \max\{4m(m-1) - 4, m(m+1)/2 + 1\},\$$

then

$$f(n,k) = 2n - m(m-1) - 1.$$

2. Proofs. In order to prove Theorems 1.3 and 1.4, we need some preliminaries that appeared in [5].

THEOREM 2.1 ([5]). Let $n \ge 2$ and $2 \le k \le \lfloor n/4 \rfloor + 2$, and let (a_1, \ldots, a_{2n-k}) be a sequence of length 2n - k in \mathbb{Z}_n . Suppose that for any n-subset I of $\{1, \ldots, 2n - k\}$, $\sum_{i \in I} a_i \ne 0$. Then one can rearrange the sequence as

$$(\underbrace{a,\ldots,a}_{u},\underbrace{b,\ldots,b}_{v},c_1,\ldots,c_{2n-k-u-v}),$$

where $u \ge n-2k+3$, $v \ge n-2k+3$, $u+v \ge 2n-2k+2$ and a-b generates \mathbb{Z}_n .

In [5], Weidong Gao introduced the following two definitions.

DEFINITION 2.1 ([5]). Let $S = (a_1, \ldots, a_k)$ be a sequence of elements in \mathbb{Z}_n . For any $b \in \mathbb{Z}_n$, we denote by b + S the sequence $(b + a_1, \ldots, b + a_k)$. For any $1 \leq r \leq k$, we define $\sum_r(S)$ to be the set of all elements in \mathbb{Z}_n which can be expressed as a sum over an *r*-term subsequence of *S*, i.e.,

$$\sum_{r} (S) = \{ a_{i_1} + \ldots + a_{i_r} \mid 1 \le i_1 < \ldots < i_r \le k \}.$$

DEFINITION 2.2 ([5]). Let $S = (a_1, \ldots, a_m)$ and $T = (b_1, \ldots, b_m)$ be two sequences of elements in \mathbb{Z}_n with |S| = |T|. We say that S is equivalent to T (written $S \sim T$) if there exist an integer c coprime to n, an element $x \in \mathbb{Z}_n$, and a permutation δ of $\{1, \ldots, m\}$ such that $a_i = c(b_{\delta(i)} - x)$ for every $i = 1, \ldots, m$. Clearly, "~" is an equivalence relation; and if $S \sim T$, then $0 \in \sum_n (S)$ if and only if $0 \in \sum_n (T)$.

With the above two definitions, Theorem 2.1 is equivalent to

LEMMA 2.2. Let $n \ge 2$ and $2 \le k \le \lfloor n/4 \rfloor + 2$, and let $A = (a_1, \ldots, a_{2n-k})$ be a sequence of length 2n - k in \mathbb{Z}_n . If $0 \notin \sum_n (A)$, then

 $A \sim (0^u, 1^v, c_1, \dots, c_{2n-k-u-v}),$

where $u \ge n - 2k + 3$, $v \ge n - 2k + 3$, $u + v \ge 2n - 2k + 2$.

Proof of Theorem 1.3. Since $k = 2m + 1 \ge 3$, we have $m \ge 1$. Consider the sequence

$$E = (0^{n-m(m+3)/2-1}, 1^{n-m(m+1)/2}, \underbrace{2, 3, \dots, m}_{m-1}, \underbrace{n-m, n-m+1, \dots, n-1}_{m}),$$

which contains exactly k = 2m + 1 distinct elements of \mathbb{Z}_n and has

$$n - m(m+3)/2 - 1 + n - m(m+1)/2 + m - 1 + m = 2n - m^2 - 2$$

terms. Every n-term subsequence of E has non-zero sum, so

$$f(n,k) \ge 2n - m^2 - 1.$$

Suppose $E = (a_1, \ldots, a_{2n-m^2-1})$ is a sequence containing exactly k distinct elements of \mathbb{Z}_n . Since $n \ge 4m^2 - 4 = 4(m^2 + 1) - 8$, from Lemma 2.2, we know that

$$E \sim (0^u, 1^v, c_1, \dots, c_q),$$

where $u \ge n - 2m^2 + 1$, $v \ge n - 2m^2 + 1$, $u + v \ge 2n - 2m^2$, all $c_i \ne 0, 1$. As *E* contains *k* distinct elements of \mathbb{Z}_n , we have $q \ge 2m - 1$, $u + v \le 2n - m^2 - 1 - (2m - 1) = 2n - m(m + 2)$.

Let $F = (0^u, 1^v, c_1, \dots, c_q)$. Suppose $0 \notin \sum_n (E)$. Then $0 \notin \sum_n (F)$.

It is easy to verify that $u+v \ge n$, so $n-v \le u < u+1$. For each $1 \le i \le q$, if $n-v \le c_i \le u+1$, then $(0^{c_i-1}, 1^{n-c_i}, c_i)$ is an *n*-term subsequence of Fwhich has zero sum, which is impossible, so $c_i > u+1$ or $c_i < n-v$. Without loss of generality, we can assume that c_1, \ldots, c_s are all greater than u+1, and c_{s+1}, \ldots, c_q are all less than n-v.

It is easy to see that $c_i + c_j \ge n + 2, 1 \le i \ne j \le s$. Since

$$2n - c_i - c_j \le 2n - 2(u+2) = v + 2n - u - (u+v) - 4$$

$$\le v + 2n - (n - 2m^2 + 1) - (2n - 2m^2) - 4$$

$$= v - (n - 4m^2 + 4) - 1 < v,$$

it follows that if $c_i + c_j \le n + u + 2$, then $(0^{c_i+c_j-n-2}, 1^{2n-c_i-c_j}, c_i, c_j)$ is an *n*-term subsequence of F which has zero sum, so

(2)
$$c_i + c_j > n + u + 2, \quad 1 \le i \ne j \le s.$$

Suppose that for some t > 1 we have proved

(3)
$$c_{i_1} + \ldots + c_{i_{t-1}} > (t-2)n + u + (t-1), \quad 1 \le i_1, \ldots, i_{t-1} \le s,$$

 i_1, \ldots, i_{t-1} pairwise distinct

Then for every i_t such that $1 \le i_t \le s$ and $i_t \ne i_j, 1 \le j \le t - 1$,

(4)
$$c_{i_1} + \ldots + c_{i_{t-1}} + c_{i_t} \ge (t-2)n + u + (t-1) + 1 + (u+2)$$
$$= (t-2)n + 2u + t + 2$$
$$\ge (t-2)n + 2(n-2m^2+1) + t + 2$$
$$= (t-1)n + (n-4m^2+4) + t$$
$$\ge (t-1)n + t,$$

and

(5)
$$tn - c_{i_1} - \dots - c_{i_{t-1}} - c_{i_t}$$

$$\leq tn - [(t-2)n + u + (t-1) + 1] - (u+2)$$

$$= 2n - 2u - t - 2$$

$$= v + 2n - u - (u+v) - t - 2$$

$$\leq v + 2n - (n - 2m^2 + 1) - (2n - 2m^2) - t - 2$$

$$= v - (n - 4m^2 + 4) - (t-1) < v.$$

If $c_{i_1} + \dots + c_{i_{t-1}} + c_{i_t} \leq (t-1)n + u + t$, then (4) and (5) show that

$$(0^{c_{i_1}+\ldots+c_{i_t}-(t-1)n-t}, 1^{tn-c_{i_1}-\ldots-c_{i_t}}, c_{i_1},\ldots,c_{i_t})$$

is an n-term subsequence of F which has zero sum, so

(6)
$$c_{i_1} + \ldots + c_{i_t} > (t-1)n + u + t, \quad 1 \le i_1, \ldots, i_t \le s,$$

 i_1, \ldots, i_t pairwise distinct.

So we have proved that (6) holds for each $1 \le t \le s$ by induction. In particular, letting t = s, we have

(7)
$$c_1 + \ldots + c_s > (s-1)n + u + s.$$

On the other hand, it is easy to see that $c_{s+i}+c_{s+j} \le n, 1 \le i \ne j \le q-s$. Since

$$c_i + c_j - 2 \le 2(n - v - 1) - 2$$

= $u + 2n - v - (u + v) - 4$
 $\le u + 2n - (n - 2m^2 + 1) - (2n - 2m^2) - 4$
= $u - (n - 4m^2 + 4) - 1 < u$,

it follows that if $c_{s+i} + c_{s+j} \ge n - v$, then $(0^{c_{s+i}+c_{s+j}-2}, 1^{n-c_{s+i}-c_{s+j}}, c_{s+i}, c_{s+j})$ is an *n*-term subsequence of *F* which has zero sum, so

$$c_{s+i} + c_{s+j} < n - v, \quad 1 \le i \ne j \le q - s.$$

Suppose that for some t > 1 we have proved

(8)
$$c_{s+i_1} + \ldots + c_{s+i_{t-1}} < n - v, \quad 1 \le i_1, \ldots, i_{t-1} \le q - s,$$

 i_1, \ldots, i_{t-1} pairwise distinct.

Then for every i_t such that $1 \le i_t \le q - s$ and $i_t \ne i_j, 1 \le j \le t - 1$,

(9)
$$c_{s+i_1} + \ldots + c_{s+i_{t-1}} + c_{s+i_t} - t$$

 $\leq (n - v - 1) + (n - v - 1) - t$
 $= 2n - 2v - t - 2$
 $= u + 2n - v - (u + v) - t - 2$
 $\leq u + 2n - (n - 2m^2 + 1) - (2n - 2m^2) - t - 2$
 $= u - (n - 4m^2 + 4) - (t - 1) < u.$

If $c_{s+i_1} + \ldots + c_{s+i_{t-1}} + c_{s+i_t} \ge n - v$, then (8) and (9) show that $(0^{c_{s+i_1} + \ldots + c_{s+i_t} - t}, 1^{n-c_{s+i_1} - \ldots - c_{s+i_t}}, c_{s+i_1}, \ldots, c_{s+i_t})$

is an n-term subsequence of F which has zero sum, so

(10)
$$c_{s+i_1} + \ldots + c_{s+i_t} < n-v, \quad 1 \le i_1, \ldots, i_t \le q-s,$$

 i_1, \ldots, i_t pairwise distinct.

So we have proved (10) for each $1 \le t \le q - s$ by induction. In particular, letting t = q - s, we have

 $c_{s+1} + \ldots + c_q < n - v.$

The inequality (7) is equivalent to

$$(n-c_1) + (n-c_2) + \ldots + (n-c_s) < n-u-s.$$

For $1 \le i \le s$, let $e_i = n - c_i$. Then $0 < e_i < n - u - 1$ and

$$(11) e_1 + \ldots + e_s \le n - u - s - 1$$

For $1 \le i \le q-s$, let $d_i = c_{s+i}$. Then $1 < d_i < n-v$ and

(12)
$$d_1 + \ldots + d_{q-s} \le n - v - 1.$$

Suppose that $\{e_1, \ldots, e_s\}$ has w distinct elements. Then $\{d_1, \ldots, d_{q-s}\}$ has 2m - 1 - w distinct elements. From (11) and (12), we know that

$$e_1 + \ldots + e_s + d_1 + \ldots + d_{q-s} \le 2n - u - v - s - 2.$$

But in fact,

$$\begin{split} (e_1 + e_2 + \ldots + e_s + d_1 + d_2 + \ldots + d_{q-s}) &- (2n - u - v - s - 2) \\ &\geq 1 + 2 + 3 + \ldots + w + 1 \cdot (s - w) + 2 + 3 + \ldots + (2m - w) \\ &+ 2 \cdot (2n - m^2 - 1 - u - v - s - (2m - 1 - w)) - (2n - u - v - s - 2) \\ &\geq w(w + 1)/2 + s - w + (2m - w - 1)(2m - w + 2)/2 + 2n - 2m^2 \\ &- 4m - u - v - s + 2w + 2 \\ &= 2n - u - v + w^2 - 2mw + w - 3m + 1 \\ &\geq m(m + 2) + w^2 - 2mw + w - 3m + 1 \\ &= (m - w - 1/2)^2 + 3/4 > 0. \end{split}$$

Contradiction! So $0 \in \sum_{n}(E)$, which means $f(n,k) \leq 2n - m^2 - 1$, and the proof is finished.

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.3. We leave it to the interested reader. \blacksquare

Letting k = 2, 3, 4, 5, 6, we get the following corollary.

COROLLARY 2.3.

$$f(n, 2) = 2n - 1, \quad n \ge 2,$$

$$f(n, 3) = 2n - 2, \quad n \ge 4,$$

$$f(n, 4) = 2n - 3, \quad n \ge 4,$$

$$f(n, 5) = 2n - 5, \quad n \ge 12,$$

$$f(n, 6) = 2n - 7, \quad n \ge 20.$$

Acknowledgements. This work was done under the auspices of the Ministry of Education of China, the Ministry of Science and Technology, and the National Science Foundation of China.

I would like to thank Professor Gao Weidong and the referee for their helpful suggestions and comments.

References

- A. Bialostocki and P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110 (1992), 1–8.
- [2] A. Bialostocki and M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv theorem, I, in: Sets, Graphs and Numbers (Budapest, 1991), Colloq. Math. Soc. János Bolyai 60, North-Holland, 1992, 97–117.
- [3] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel Sect. F Math. Phys. 10 (1961/1962), 41–43.

- [4] L. Gallardo, G. Grekos and J. Pihko, On a variant of the Erdős-Ginzburg-Ziv problem, Acta Arith. 89 (1999), 331–336.
- [5] W. D. Gao, An addition theorem for finite cyclic groups, Discrete Math. 163 (1997), 257–265.

Center for Combinatorics Nankai University Tianjin 300071, P.R. China E-mail: wch2001@eyou.com

> Received on 20.5.2002 and in revised form on 22.10.2002

59

(4287)