Note on a variant of the Erdős-Ginzburg-Ziv problem

by
Chao Wang (Tianjin)

1. Introduction. P. Erdős, A. Ginzburg and A. Ziv [3] proved that from any sequence of integers of length $2 n-1$ one can extract a subsequence of length n whose sum is congruent to zero modulo n.
A. Bialostocki and P. Dierker [1] proved that if $A=\left(a_{1}, \ldots, a_{2 n-2}\right)$ is a sequence of integers of length $2 n-2$ and there are no indices i_{1}, \ldots, i_{n} belonging to $\{1, \ldots, 2 n-2\}$ such that

$$
\begin{equation*}
a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{n}} \equiv 0(\bmod n) \tag{1}
\end{equation*}
$$

then there are two residue classes modulo n such that $n-1$ of the a_{i} 's belong to one of the classes and the remaining $n-1$ belong to the other class.

In order to study the relation between the number of classes present in a sequence $A=\left(a_{1}, \ldots, a_{g}\right)$ and the possibility to have a relation like (1), A. Bialostocki and M. Lotspeich [2] introduced the following function.

Definition 1.1 ([2]). Let n, k be positive integers, $1 \leq k \leq n$. We define $f(n, k)$ to be the least integer g for which the following holds: If $A=\left(a_{1}, \ldots, a_{g}\right)$ is a sequence of integers of length g such that the number of a_{i} 's that are distinct modulo n is equal to k, then there are n indices i_{1}, \ldots, i_{n} belonging to $\{1, \ldots, g\}$ such that $a_{i_{1}}+\ldots+a_{i_{n}} \equiv 0(\bmod n)$.

The Erdős-Ginzburg-Ziv theorem implies that $f(n, k)$ exists and is not greater than $2 n-1$. It is easy to see that $f(n, 1)=n, f(n, 2)=2 n-1$, $f(n, k) \geq n$, and

$$
f(n, k) \leq 2 n-2 \quad \text { for } 2<k \leq n
$$

For given n, we will formulate the problem and work in the context of \mathbb{Z}_{n}, the cyclic group of residue classes modulo n. Let us define $f(n, k)$ in the following equivalent way.

Definition 1.2 ([4]). Let n, k be positive integers, $1 \leq k \leq n$. Denote by $f(n, k)$ the least integer g for which the following holds: If $A=\left(a_{1}, \ldots, a_{g}\right)$ is a sequence of elements of \mathbb{Z}_{n} of length g such that the number of distinct

[^0]a_{i} 's is equal to k, then there are n indices i_{1}, \ldots, i_{n} belonging to $\{1, \ldots, g\}$ such that $a_{i_{1}}+\ldots+a_{i_{n}}=0$.

Notation. A sequence $A=(0,0,1,1,1,2,3,5)$ will also be denoted by $A=\left(0^{2}, 1^{3}, 2,3,5\right)$. The elements of \mathbb{Z}_{n} will be denoted by $0,1, \ldots, n-1$.
L. Gallardo, G. Grekos and J. Pihko [4] proved

Theorem 1.1 ([4]). Let n be a positive integer. Then $f(n, n)=n$ if n is odd and $f(n, n)=n+1$ if n is even.

Theorem 1.2 ([4]). Let $n \geq 5$ and $1+n / 2<k \leq n-1$. Then $f(n, k)=$ $n+2$.

In this article, k and n will be positive integers. We prove the following theorems.

Theorem 1.3. If $k=2 m+1 \geq 3$ is odd and

$$
n \geq \max \left\{4 m^{2}-4, m(m+3) / 2+2\right\}
$$

then

$$
f(n, k)=2 n-m^{2}-1
$$

Theorem 1.4. If $k=2 m$ is even and

$$
n \geq \max \{4 m(m-1)-4, m(m+1) / 2+1\}
$$

then

$$
f(n, k)=2 n-m(m-1)-1
$$

2. Proofs. In order to prove Theorems 1.3 and 1.4 , we need some preliminaries that appeared in [5].

Theorem 2.1 ([5]). Let $n \geq 2$ and $2 \leq k \leq[n / 4]+2$, and let $\left(a_{1}, \ldots\right.$, $a_{2 n-k}$) be a sequence of length $2 n-k$ in \mathbb{Z}_{n}. Suppose that for any n-subset I of $\{1, \ldots, 2 n-k\}, \sum_{i \in I} a_{i} \neq 0$. Then one can rearrange the sequence as

$$
(\underbrace{a, \ldots, a}_{u}, \underbrace{b, \ldots, b}_{v}, c_{1}, \ldots, c_{2 n-k-u-v}),
$$

where $u \geq n-2 k+3, v \geq n-2 k+3, u+v \geq 2 n-2 k+2$ and $a-b$ generates \mathbb{Z}_{n}.

In [5], Weidong Gao introduced the following two definitions.
Definition 2.1 ([5]). Let $S=\left(a_{1}, \ldots, a_{k}\right)$ be a sequence of elements in \mathbb{Z}_{n}. For any $b \in \mathbb{Z}_{n}$, we denote by $b+S$ the sequence $\left(b+a_{1}, \ldots, b+a_{k}\right)$. For any $1 \leq r \leq k$, we define $\sum_{r}(S)$ to be the set of all elements in \mathbb{Z}_{n} which can be expressed as a sum over an r-term subsequence of S, i.e.,

$$
\sum_{r}(S)=\left\{a_{i_{1}}+\ldots+a_{i_{r}} \mid 1 \leq i_{1}<\ldots<i_{r} \leq k\right\}
$$

Definition 2.2 ([5]). Let $S=\left(a_{1}, \ldots, a_{m}\right)$ and $T=\left(b_{1}, \ldots, b_{m}\right)$ be two sequences of elements in \mathbb{Z}_{n} with $|S|=|T|$. We say that S is equivalent
to T (written $S \sim T$) if there exist an integer coprime to n, an element $x \in \mathbb{Z}_{n}$, and a permutation δ of $\{1, \ldots, m\}$ such that $a_{i}=c\left(b_{\delta(i)}-x\right)$ for every $i=1, \ldots, m$. Clearly, " \sim " is an equivalence relation; and if $S \sim T$, then $0 \in \sum_{n}(S)$ if and only if $0 \in \sum_{n}(T)$.

With the above two definitions, Theorem 2.1 is equivalent to
Lemma 2.2. Let $n \geq 2$ and $2 \leq k \leq[n / 4]+2$, and let $A=\left(a_{1}, \ldots, a_{2 n-k}\right)$ be a sequence of length $2 n-k$ in \mathbb{Z}_{n}. If $0 \notin \sum_{n}(A)$, then

$$
A \sim\left(0^{u}, 1^{v}, c_{1}, \ldots, c_{2 n-k-u-v}\right)
$$

where $u \geq n-2 k+3, v \geq n-2 k+3, u+v \geq 2 n-2 k+2$.
Proof of Theorem 1.3. Since $k=2 m+1 \geq 3$, we have $m \geq 1$. Consider the sequence

$$
E=(0^{n-m(m+3) / 2-1}, 1^{n-m(m+1) / 2}, \underbrace{2,3, \ldots, m}_{m-1}, \underbrace{n-m, n-m+1, \ldots, n-1}_{m})
$$

which contains exactly $k=2 m+1$ distinct elements of \mathbb{Z}_{n} and has

$$
n-m(m+3) / 2-1+n-m(m+1) / 2+m-1+m=2 n-m^{2}-2
$$

terms. Every n-term subsequence of E has non-zero sum, so

$$
f(n, k) \geq 2 n-m^{2}-1
$$

Suppose $E=\left(a_{1}, \ldots, a_{2 n-m^{2}-1}\right)$ is a sequence containing exactly k distinct elements of \mathbb{Z}_{n}. Since $n \geq 4 m^{2}-4=4\left(m^{2}+1\right)-8$, from Lemma 2.2, we know that

$$
E \sim\left(0^{u}, 1^{v}, c_{1}, \ldots, c_{q}\right)
$$

where $u \geq n-2 m^{2}+1, v \geq n-2 m^{2}+1, u+v \geq 2 n-2 m^{2}$, all $c_{i} \neq 0,1$. As E contains k distinct elements of \mathbb{Z}_{n}, we have $q \geq 2 m-1, u+v \leq$ $2 n-m^{2}-1-(2 m-1)=2 n-m(m+2)$.

Let $F=\left(0^{u}, 1^{v}, c_{1}, \ldots, c_{q}\right)$. Suppose $0 \notin \sum_{n}(E)$. Then $0 \notin \sum_{n}(F)$.
It is easy to verify that $u+v \geq n$, so $n-v \leq u<u+1$. For each $1 \leq i \leq q$, if $n-v \leq c_{i} \leq u+1$, then $\left(0^{c_{i}-1}, 1^{n-c_{i}}, c_{i}\right)$ is an n-term subsequence of F which has zero sum, which is impossible, so $c_{i}>u+1$ or $c_{i}<n-v$. Without loss of generality, we can assume that c_{1}, \ldots, c_{s} are all greater than $u+1$, and c_{s+1}, \ldots, c_{q} are all less than $n-v$.

It is easy to see that $c_{i}+c_{j} \geq n+2,1 \leq i \neq j \leq s$. Since

$$
\begin{aligned}
2 n-c_{i}-c_{j} & \leq 2 n-2(u+2)=v+2 n-u-(u+v)-4 \\
& \leq v+2 n-\left(n-2 m^{2}+1\right)-\left(2 n-2 m^{2}\right)-4 \\
& =v-\left(n-4 m^{2}+4\right)-1<v
\end{aligned}
$$

it follows that if $c_{i}+c_{j} \leq n+u+2$, then $\left(0^{c_{i}+c_{j}-n-2}, 1^{2 n-c_{i}-c_{j}}, c_{i}, c_{j}\right)$ is an n-term subsequence of F which has zero sum, so

$$
\begin{equation*}
c_{i}+c_{j}>n+u+2, \quad 1 \leq i \neq j \leq s \tag{2}
\end{equation*}
$$

Suppose that for some $t>1$ we have proved

$$
\begin{equation*}
c_{i_{1}}+\ldots+c_{i_{t-1}}>(t-2) n+u+(t-1), \quad 1 \leq i_{1}, \ldots, i_{t-1} \leq s \tag{3}
\end{equation*}
$$

i_{1}, \ldots, i_{t-1} pairwise distinct.
Then for every i_{t} such that $1 \leq i_{t} \leq s$ and $i_{t} \neq i_{j}, 1 \leq j \leq t-1$,

$$
\begin{align*}
c_{i_{1}}+\ldots+c_{i_{t-1}}+c_{i_{t}} & \geq(t-2) n+u+(t-1)+1+(u+2) \tag{4}\\
& =(t-2) n+2 u+t+2 \\
& \geq(t-2) n+2\left(n-2 m^{2}+1\right)+t+2 \\
& =(t-1) n+\left(n-4 m^{2}+4\right)+t \\
& \geq(t-1) n+t
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{tn}-c_{i_{1}}-\ldots-c_{i_{t-1}}-c_{i_{t}} \tag{5}\\
& \leq t n-[(t-2) n+u+(t-1)+1]-(u+2) \\
&=2 n-2 u-t-2 \\
&=v+2 n-u-(u+v)-t-2 \\
& \leq v+2 n-\left(n-2 m^{2}+1\right)-\left(2 n-2 m^{2}\right)-t-2 \\
&=v-\left(n-4 m^{2}+4\right)-(t-1)<v
\end{align*}
$$

If $c_{i_{1}}+\ldots+c_{i_{t-1}}+c_{i_{t}} \leq(t-1) n+u+t$, then (4) and (5) show that

$$
\left(0^{c_{i_{1}}+\ldots+c_{i_{t}}-(t-1) n-t}, 1^{t n-c_{i_{1}}-\ldots-c_{i_{t}}}, c_{i_{1}}, \ldots, c_{i_{t}}\right)
$$

is an n-term subsequence of F which has zero sum, so

$$
\begin{equation*}
c_{i_{1}}+\ldots+c_{i_{t}}>(t-1) n+u+t, \quad 1 \leq i_{1}, \ldots, i_{t} \leq s \tag{6}
\end{equation*}
$$ i_{1}, \ldots, i_{t} pairwise distinct.

So we have proved that (6) holds for each $1 \leq t \leq s$ by induction. In particular, letting $t=s$, we have

$$
\begin{equation*}
c_{1}+\ldots+c_{s}>(s-1) n+u+s \tag{7}
\end{equation*}
$$

On the other hand, it is easy to see that $c_{s+i}+c_{s+j} \leq n, 1 \leq i \neq j \leq q-s$. Since

$$
\begin{aligned}
c_{i}+c_{j}-2 & \leq 2(n-v-1)-2 \\
& =u+2 n-v-(u+v)-4 \\
& \leq u+2 n-\left(n-2 m^{2}+1\right)-\left(2 n-2 m^{2}\right)-4 \\
& =u-\left(n-4 m^{2}+4\right)-1<u,
\end{aligned}
$$

it follows that if $c_{s+i}+c_{s+j} \geq n-v$, then $\left(0^{c_{s+i}+c_{s+j}-2}, 1^{n-c_{s+i}-c_{s+j}}, c_{s+i}\right.$, c_{s+j}) is an n-term subsequence of F which has zero sum, so

$$
c_{s+i}+c_{s+j}<n-v, \quad 1 \leq i \neq j \leq q-s
$$

Suppose that for some $t>1$ we have proved

$$
\begin{align*}
c_{s+i_{1}}+\ldots+c_{s+i_{t-1}}<n-v, \quad 1 \leq & i_{1}, \ldots, i_{t-1} \leq q-s \tag{8}\\
& i_{1}, \ldots, i_{t-1} \text { pairwise distinct. }
\end{align*}
$$

Then for every i_{t} such that $1 \leq i_{t} \leq q-s$ and $i_{t} \neq i_{j}, 1 \leq j \leq t-1$,

$$
\begin{align*}
c_{s+i_{1}}+\ldots+c_{s+i_{t-1}} & +c_{s+i_{t}}-t \tag{9}\\
& \leq(n-v-1)+(n-v-1)-t \\
& =2 n-2 v-t-2 \\
& =u+2 n-v-(u+v)-t-2 \\
& \leq u+2 n-\left(n-2 m^{2}+1\right)-\left(2 n-2 m^{2}\right)-t-2 \\
& =u-\left(n-4 m^{2}+4\right)-(t-1)<u
\end{align*}
$$

If $c_{s+i_{1}}+\ldots+c_{s+i_{t-1}}+c_{s+i_{t}} \geq n-v$, then (8) and (9) show that

$$
\left(0^{c_{s+i_{1}}+\ldots+c_{s+i_{t}}-t}, 1^{n-c_{s+i_{1}}-\ldots-c_{s+i_{t}}}, c_{s+i_{1}}, \ldots, c_{s+i_{t}}\right)
$$

is an n-term subsequence of F which has zero sum, so

$$
\begin{equation*}
c_{s+i_{1}}+\ldots+c_{s+i_{t}}<n-v, \quad 1 \leq i_{1}, \ldots, i_{t} \leq q-s \tag{10}
\end{equation*}
$$

i_{1}, \ldots, i_{t} pairwise distinct.
So we have proved (10) for each $1 \leq t \leq q-s$ by induction. In particular, letting $t=q-s$, we have

$$
c_{s+1}+\ldots+c_{q}<n-v
$$

The inequality (7) is equivalent to

$$
\left(n-c_{1}\right)+\left(n-c_{2}\right)+\ldots+\left(n-c_{s}\right)<n-u-s
$$

For $1 \leq i \leq s$, let $e_{i}=n-c_{i}$. Then $0<e_{i}<n-u-1$ and

$$
\begin{equation*}
e_{1}+\ldots+e_{s} \leq n-u-s-1 \tag{11}
\end{equation*}
$$

For $1 \leq i \leq q-s$, let $d_{i}=c_{s+i}$. Then $1<d_{i}<n-v$ and

$$
\begin{equation*}
d_{1}+\ldots+d_{q-s} \leq n-v-1 \tag{12}
\end{equation*}
$$

Suppose that $\left\{e_{1}, \ldots, e_{s}\right\}$ has w distinct elements. Then $\left\{d_{1}, \ldots, d_{q-s}\right\}$ has $2 m-1-w$ distinct elements. From (11) and (12), we know that

$$
e_{1}+\ldots+e_{s}+d_{1}+\ldots+d_{q-s} \leq 2 n-u-v-s-2
$$

But in fact,

$$
\begin{aligned}
& \left(e_{1}+e_{2}+\ldots+e_{s}+d_{1}+d_{2}+\ldots+d_{q-s}\right)-(2 n-u-v-s-2) \\
& \quad \geq 1+2+3+\ldots+w+1 \cdot(s-w)+2+3+\ldots+(2 m-w) \\
& \quad+2 \cdot\left(2 n-m^{2}-1-u-v-s-(2 m-1-w)\right)-(2 n-u-v-s-2) \\
& \quad \geq w(w+1) / 2+s-w+(2 m-w-1)(2 m-w+2) / 2+2 n-2 m^{2} \\
& \quad-4 m-u-v-s+2 w+2 \\
& \quad=2 n-u-v+w^{2}-2 m w+w-3 m+1 \\
& \geq m(m+2)+w^{2}-2 m w+w-3 m+1 \\
& =(m-w-1 / 2)^{2}+3 / 4>0
\end{aligned}
$$

Contradiction! So $0 \in \sum_{n}(E)$, which means $f(n, k) \leq 2 n-m^{2}-1$, and the proof is finished.

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.3. We leave it to the interested reader.

Letting $k=2,3,4,5,6$, we get the following corollary.
Corollary 2.3.

$$
\begin{array}{ll}
f(n, 2)=2 n-1, & n \geq 2 \\
f(n, 3)=2 n-2, & n \geq 4 \\
f(n, 4)=2 n-3, & n \geq 4 \\
f(n, 5)=2 n-5, & n \geq 12 \\
f(n, 6)=2 n-7, & n \geq 20
\end{array}
$$

Acknowledgements. This work was done under the auspices of the Ministry of Education of China, the Ministry of Science and Technology, and the National Science Foundation of China.

I would like to thank Professor Gao Weidong and the referee for their helpful suggestions and comments.

References

[1] A. Bialostocki and P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110 (1992), 1-8.
[2] A. Bialostocki and M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv theorem, I, in: Sets, Graphs and Numbers (Budapest, 1991), Colloq. Math. Soc. János Bolyai 60, North-Holland, 1992, 97-117.
[3] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel Sect. F Math. Phys. 10 (1961/1962), 41-43.
[4] L. Gallardo, G. Grekos and J. Pihko, On a variant of the Erdős-Ginzburg-Ziv problem, Acta Arith. 89 (1999), 331-336.
[5] W. D. Gao, An addition theorem for finite cyclic groups, Discrete Math. 163 (1997), 257-265.

Center for Combinatorics
Nankai University
Tianjin 300071, P.R. China
E-mail: wch2001@eyou.com

Received on 20.5.2002
and in revised form on 22.10.2002

[^0]: 2000 Mathematics Subject Classification: Primary 11B50.

