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1. Introduction. The concept of digital nets provides at the moment
the most efficient method to generate point sets with small star discrep-
ancy D∗N . The star discrepancy of a set of points x0, . . . ,xN−1 in [0, 1)d is
defined by

D∗N = sup
B

∣∣∣∣
AN (B)
N

− λ(B)
∣∣∣∣,

where the supremum is taken over all subintervals B of [0, 1)d of the form
B =

∏d
i=1[0, bi), 0 < bi ≤ 1, AN (B) denotes the number of i with xi ∈ B

and λ is the Lebesgue measure.
A digital (0, s, 3)-net in base 2 is a set of N = 2s points x0, . . . ,xN−1 in

[0, 1)3 which is generated as follows: Choose three s×s-matrices C1, C2 and
C3 over Z2 with the following property: For all integers d1, d2, d3 ≥ 0 with
d1 +d2 +d3 = s, the system of the first d1 rows of C1 together with the first
d2 rows of C2 and the first d3 rows of C3 is linearly independent over Z2.
Then to construct xn := (x(1)

n , x
(2)
n , x

(3)
n ) for 0 ≤ n ≤ 2s − 1, represent n in

base 2:
n = n0 + n12 + . . .+ ns−12s−1

with nj ∈ {0, 1}. Now multiply Ci with the vector of digits:

Ci(n0, . . . , ns−1)T =: (y(i)
1 , . . . , y(i)

s )T ∈ Zs2
and set

x(i)
n :=

s∑

j=1

y
(i)
j

2j
.

Further let us recall the definition of digital (0, 2)-sequences in base 2:
A digital (0, 2)-sequence in base 2 is a sequence x0,x1, . . . in [0, 1)2 which is
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generated as follows: Choose two N × N-matrices C1 and C2 over Z2 such
that for every integer s ≥ 1 the upper left s × s-matrices C1(s) and C2(s)
generate a digital (0, s, 2)-net in base 2 (a digital (0, s, 2)-net in base 2 is
defined analogously as a digital (0, s, 3)-net in base 2—see Section 3). Then
to construct xn := (x(1)

n , x
(2)
n ) for n ≥ 0, represent n in base 2:

n = n0 + n12 + n222 + . . .

with nj ∈ {0, 1}. Now multiply Ci with the vector of digits:

Ci(n0, n1, n2, . . .)T =: (y(i)
1 , y

(i)
2 , . . .)T

and set

x(i)
n :=

∞∑

j=1

y
(i)
j

2j
.

It was shown by H. Niederreiter in [6] that for the star discrepancy of
any digital (0, s, 3)-net in base 2 we have

ND∗N ≤
s2

4
+
s

2
+

9
4

and hence

lim sup
N→∞

max
ND∗N

(logN)2 ≤
1

4(log 2)2 = 0.5203 . . . ,

where the maximum is taken over all digital (0, s, 3)-nets in base 2 with
N = 2s elements.

Again in [6] Niederreiter proved that for the star discrepancy of the first
N elements of a digital (0, 2)-sequence in base 2 we have

ND∗N ≤
1

8(log 2)2 (logN)2 +
11

8 log 2
logN +

9
4

and hence

lim sup
N→∞

max
ND∗N

(logN)2 ≤
1

8(log 2)2 = 0.26017 . . . ,

where the maximum is taken over all digital (0, 2)-sequences in base 2. From
this result he concluded for every integer s ≥ 1 the existence of a digital
(0, s, 3)-net in base 2 such that

ND∗N ≤ s2/8 +O(s),

where N = 2s.
In [1] H. Faure constructed a digital (0, 2)-sequence in base 2 such that

lim sup
N→∞

ND∗N
(logN)2 ≥

1
24(log 2)2 = 0.0867 . . .

In this paper we study the star discrepancy of digital (0, s, 3)-nets in
base 2 and of digital (0, 2)-sequences in base 2. With the help of Walsh
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series analysis we improve the general bound for the star discrepancy of
digital (0, s, 3)-nets in base 2 given by Niederreiter (Theorem 1). Further
we give an improved upper bound for the star discrepancy of digital (0, 2)-
sequences in base 2 (Theorem 3) from which we conclude—in the same way
as Niederreiter did in [6]—the existence of digital (0, s, 3)-nets in base 2 with
an essentially smaller bound for the star discrepancy than the general bound
given in Theorem 1 (Theorem 2).

2. The results. We have the following general upper bound for the
star discrepancy of digital (0, s, 3)-nets in base 2. This bound improves the
discrepancy bound given in [6].

Theorem 1. For all digital (0, s, 3)-nets in base 2 we have

ND∗N ≤ s2/6 +O(s),

where N = 2s.

The proof will be given in Section 4. From Theorem 1 we immediately
get the following corollary:

Corollary 1. We have

lim sup
N→∞

max
ND∗N

(logN)2 ≤
1

6(log 2)2 = 0.34689 . . . ,

where the maximum is taken over all digital (0, s, 3)-nets in base 2.

Actually we can prove the existence of digital (0, s, 3)-nets in base 2 with
an essentially smaller constant at the leading term in the discrepancy bound
as given in Theorem 1. We have

Theorem 2. For every s ≥ 1 there exists a digital (0, s, 3)-net in base 2
such that

ND∗N ≤ s2/12 +O(s),

where N = 2s.

The proof of this theorem will be given in Section 5. The digital (0, s, 3)-
nets in base 2 for which the discrepancy bound in Theorem 2 holds are
obtained by setting xn = (n/2s,yn), n = 0, . . . , 2s − 1, where yn is the nth
element of a digital (0, 2)-sequence in base 2. We shall see that the above
Theorem 2 is a consequence of the following theorem:

Theorem 3. For the star discrepancy D∗N of the first N elements of a
digital (0, 2)-sequence in base 2 we have

ND∗N ≤
1

12(log 2)2 (logN)2 +
89

36 log 2
logN +

33
6
.

The proof of this theorem will be given in Section 5. Combining the result
from Theorem 3 with the result of Faure [1] mentioned in Section 1 we obtain
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Corollary 2. We have
1

24(log 2)2 ≤ lim sup
N→∞

max
ND∗N

(logN)2 ≤
1

12(log 2)2 ,

where the maximum is taken over all digital (0, 2)-sequences in base 2.

3. Notation and auxiliary results. For 0 ≤ α, β, γ ≤ 1 we consider
the discrepancy function

∆(α, β, γ) := AN ([0, α)× [0, β)× [0, γ))−Nαβγ
for digital (0, s, 3)-nets x0, . . . ,x2s−1 in base 2 (i.e. N = 2s).

Since the generating matrices C1, C2 and C3 of a (0, s, 3)-net must be
regular, and since multiplying C1, C2 and C3 by a regular matrix A does
not change the point set (only its order) we may always assume that

C1 =




1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 1


 , C2 =




c21,1 c21,2 . . . c21,s
c22,1 c22,2 . . . c22,s
. . . . . . . . . . . . . . . . . . .
c2s,1 c2s,2 . . . c2s,s


 =:




~c 2
1

~c 2
2
...
...
~c 2
s



,

C3 =



c31,1 c31,2 . . . c31,s
c32,1 c32,2 . . . c32,s
. . . . . . . . . . . . . . . . . . .
c3s,1 c3s,2 . . . c3s,s


 =:




~c 3
1

~c 3
2
...
...
~c 3
s



.

Assume that α, β and γ are “s-bit”, i.e.

α =
α1

2
+ . . .+

αs
2s
, β =

β1

2
+ . . .+

βs
2s
, γ =

γ1

2
+ . . .+

γs
2s
,

and let α′, β′ and γ′ be arbitrary with

α ≤ α′ < α+
1
2s
, β ≤ β′ < β +

1
2s
, γ ≤ γ′ < γ +

1
2s
.

Then (since all coordinates of the points of a digital net are s-bit) we have

∆(α′, β′, γ′) = ∆(α, β, γ)− 2s(α′β′γ′ − αβγ),

and hence for the star-discrepancy D∗N of the net we have

(1)
∣∣∣∣D∗N −

1
N

max
α,β,γ
s-bit

|∆(α, β, γ)|
∣∣∣∣ <

3
N
− 3
N2 +

1
N3

(note that N = 2s).
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We will call
1
N

max
α,β,γ
s-bit

|∆(α, β, γ)| =: Dd
N

the discrete discrepancy of the net. Dd
N differs from D∗N at most by the

almost negligible quantity 3/N and seems for nets to be the more natural
measure for the irregularities of distribution.

We need some further notation: For any s-bit number δ = δ1/2 + . . .+
δs/2s we write

~δ :=




δ1

δ2
...
δs


 ,

and for a non-negative integer k = ks−12s−1 + . . .+ k12 + k0 we write

~k :=




k0

k1
...

ks−1


 .

For the proof of Theorem 1 we need two auxiliary results.

Lemma 1. Let z be of the form z = p/2s, p ∈ {0, . . . , 2s − 1} (i.e. z is
s-bit). Then for the characteristic function χ[0,z) of the interval [0, z) we
have

χ[0,z)(x) =
2s−1∑

k=0

ck(z)walk(x),

where walk denotes the kth Walsh function in base 2 (see Remark 1),

ck(z) =

{
z if k = 0,

walk(z)
1

2υ(k)
ψ(2υ(k)z) if k 6= 0,

where ψ(x) is periodic with period 1 and

ψ(x) =
{
x if 0 ≤ x < 1/2,

x− 1 if 1/2 ≤ x < 1,

and υ(k) = r if 2r ≤ k < 2r+1 (for k = 0 define υ(0) := −1).

Remark 1. Recall that Walsh functions in base 2 can be defined as
follows: For a non-negative integer k with base 2 representation k = km2m+
. . . + k12 + k0 and a real x with (canonical) base 2 representation x =
x1/2 + x2/22 + . . . we have

walk(x) = (−1)x1k0+x2k1+...+xm+1km = (−1)(~k|~x).
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Proof of Lemma 1. This is a simple calculation, to be found for example
in [3, Lemma 2].

Lemma 2. Let ψ be as in Lemma 1. Then

ψ(2l+1β)−
l∑

i=0

ψ(2iβ) = {β} − βl+2,

where {β} = β − [β].

Proof. See [4, Lemma 2].

For the proof of Theorem 3 we need some further notation and auxiliary
results:

The concept of shifted digital (0, s, 2)-nets in base 2 is a slight general-
ization of the well known concept of digital (0, s, 2)-nets in base 2. A shifted
digital (0, s, 2)-net in base 2 is a set of N = 2s points x0, . . . ,xN−1 in [0, 1)2

which is generated as follows: Choose two s×s-matrices C1, C2 over Z2 with
the following property: For every integer k, 0 ≤ k ≤ s, the system of the
first k rows of C1 together with the first s−k rows of C2 is linearly indepen-
dent over Z2. Further choose two fixed vectors ~ki = (k(i)

1 , . . . , k
(i)
s )T ∈ Zs2,

i = 1, 2. Then to construct xn := (x(1)
n , x

(2)
n ) for 0 ≤ n ≤ 2s − 1, represent n

in base 2:
n = n0 + n12 + . . .+ ns−12s−1

with nj ∈ {0, 1}. Now multiply Ci with the vector of digits and add the
vector ~ki, i.e.:

Ci(n0, . . . , ns−1)T + ~ki =: (y(i)
1 , . . . , y(i)

s )T ∈ Zs2
and set

x(i)
n :=

s∑

j=1

y
(i)
j

2j
.

Remark 2. In the definition of usual digital (0, s, 2)-nets in base 2 the
vectors ~ki, i = 1, 2, are omitted.

For the star discrepancy of shifted digital (0, s, 2)-nets in base 2 we have
the following result:

Lemma 3. For the star discrepancy D∗N of a shifted digital (0, s, 2)-net
in base 2 we have

ND∗N ≤
s

3
+

19
9
,

where N = 2s.
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Proof. In [4, Theorem 5] this lemma was proved for digital (0, s, 2)-nets
in base 2. It easily follows from the proof that the assertion is also true for
shifted digital nets.

Finally we need the following general result which is well known in the
theory of uniform distribution modulo one:

Lemma 4. Let x0, . . . ,xN−1 be a point set in [0, 1)d with star discrep-
ancy D∗N . Let xn := (x(1)

n , . . . , x
(d)
n ), 0 ≤ n ≤ N − 1, and let ε(i)

n , 0 ≤
n ≤ N − 1, 1 ≤ i ≤ d, be non-negative reals with ε

(i)
n < 1/a, such that

x
(i)
n + ε

(i)
n < 1, for all 0 ≤ n ≤ N − 1, 1 ≤ i ≤ d. Then for the star dis-

crepancy D̃∗N of the point set x̃0, . . . , x̃N−1, with x̃
(i)
n := x

(i)
n + ε

(i)
n for all

0 ≤ n ≤ N − 1, 1 ≤ i ≤ d, we have

|D∗N − D̃∗N | ≤ d/a.

4. Proof of Theorem 1. Due to formula (1) it suffices to show that

NDd
N ≤ s2/6 +O(s)

for all digital (0, s, 3)-nets in base 2.
Let I := [0, α) × [0, β) × [0, γ) with α, β and γ s-bit. Then for y =

(y(1), y(2), y(3)) ∈ [0, 1)3 by Lemma 1 we have

χI(y)− λ(I) =
2s−1∑

k,l,m=0
(k,l,m)6=(0,0,0)

ck(α)cl(β)cm(γ)walk(y(1))wall(y(2))walm(y(3))

= α
2s−1∑

l,m=0
(l,m)6=(0,0)

cl(β)cm(γ)wall(y(2))walm(y(3))

+ β

2s−1∑

k,m=0
(k,m)6=(0,0)

ck(α)cm(γ)walk(y(1))walm(y(3))

+ γ
2s−1∑

k,l=0
(k,l)6=(0,0)

ck(α)cl(β)walk(y(1))wall(y(2))

+
2s−1∑

k,l,m=1

walk(α)wall(β)walm(γ)
ψ(2υ(k)α)ψ(2υ(l)β)ψ(2υ(m)γ)

2υ(k)2υ(l)2υ(m)

× walk(y(1))wall(y(2))walm(y(3)).

Let now xi, i = 0, . . . , 2s−1, with xi := (x(1)
i , x

(2)
i , x

(3)
i ) be a digital (0, s, 3)-
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net in base 2. Then we have

∆(α, β, γ) = α
2s−1∑

l,m=0
(l,m)6=(0,0)

cl(β)cm(γ)
2s−1∑

i=0

wall(x
(2)
i )walm(x(3)

i )

+ β
2s−1∑

k,m=0
(k,m)6=(0,0)

ck(α)cm(γ)
2s−1∑

i=0

walk(x(1)
i )walm(x(3)

i )

+ γ
2s−1∑

k,l=0
(k,l)6=(0,0)

ck(α)cl(β)
2s−1∑

i=0

walk(x(1)
i )wall(x

(2)
i )

+
2s−1∑

k,l,m=1

walk(α)wall(β)walm(γ)
ψ(2υ(k)α)ψ(2υ(l)β)ψ(2υ(m)γ)

2υ(k)2υ(l)2υ(m)

×
2s−1∑

i=0

walk(x(1)
i )wall(x

(2)
i )walm(x(3)

i )

=: αΣ1 + βΣ2 + γΣ3 + Σ4.

From [4, Theorem 5] together with the proof of [4, Theorem 1] it follows
that

|Σi| ≤
s

3
+

19
9

for i = 1, 2, 3, and hence it suffices to show that

|Σ4| ≤ s2/6 +O(s)

for all digital (0, s, 3)-nets in base 2.
We now consider

∑2s−1
i=0 walk(x(1)

i )wall(x
(2)
i )walm(x(3)

i ) with x
(1)
i :=

x
(1)
i,1 /2 + . . . + x

(1)
i,s /2

s, x(2)
i := x

(2)
i,1 /2 + . . . + x

(2)
i,s /2

s and x
(3)
i := x

(3)
i,1 /2 +

. . .+ x
(3)
i,s /2

s. We identify (x(1)
i , x

(2)
i , x

(3)
i ) with

(x(1)
i,1 , . . . , x

(1)
i,s , x

(2)
i,1 , . . . , x

(2)
i,s , x

(3)
i,1 , . . . , x

(3)
i,s )T ∈ (Z2)3s

and we define

(x(1)
i , x

(2)
i , x

(3)
i )⊕ (x̃(1)

i , x̃
(2)
i , x̃

(3)
i ) := (x(1)

i,1 + x̃
(1)
i,1 , . . . , x

(3)
i,s + x̃

(3)
i,s ).

Further walk,l,m(x(1)
i , x

(2)
i , x

(3)
i ) := walk(x(1)

i )wall(x
(2)
i )walm(x(3)

i ), hence

walk,l,m((x(1)
i , x

(2)
i , x

(3)
i )⊕ (x̃(1)

i , x̃
(2)
i , x̃

(3)
i ))

= walk,l,m(x(1)
i , x

(2)
i , x

(3)
i )walk,l,m(x̃(1)

i , x̃
(2)
i , x̃

(3)
i ),

i.e. walk,l,m is a character on ((Z2)3s,⊕).
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The digital net x0, . . . ,x2s−1 is a subgroup of ((Z2)3s,⊕), hence

2s−1∑

i=0

walk(x(1)
i )wall(x

(2)
i )walm(x(3)

i ) =





2s if walk,l,m(x(1)
i , x

(2)
i , x

(3)
i ) = 1

for all i = 0, . . . , 2s − 1,

0 otherwise.

(For more details see [2] or [5].)

Now we have walk,l,m(x(1)
i , x

(2)
i , x

(3)
i ) = (−1)(~k |~x(1)

i )+(~l |~x(2)
i )+(~m |~x(3)

i ) = 1
for all i = 0, . . . , 2s − 1 iff

(~k |~x(1)
i ) = (~l |~x(2)

i ) + (~m |~x(3)
i ) for all i = 0, . . . , 2s − 1

(by the definition of the net); this means

(~k |~i ) = (~l |C2~i ) + (~m |C3~i ) for all i = 0, . . . , 2s − 1,

and this is satisfied if and only if

~k = CT
2
~l + CT

3 ~m =: ~k(l,m).

Further

walk(l,m),l,m(α, β, γ) = wall(δ)walm(ε)

with ~δ := C2~α + ~β and ~ε := C3~α + ~γ (note that δi = (~c 2
i |~α) + βi and

εi = (~c 3
i |~α) + γi).

Therefore we have

Σ4 = 2s
2s−1∑

l,m=1
k(l,m)6=0

wall(δ)walm(ε)
ψ(2υ(k(l,m))α)ψ(2υ(l)β)ψ(2υ(m)γ)

2υ(k(l,m))+υ(l)+υ(m)

= 2s
s−1∑

u,v=0

ψ(2uβ)ψ(2vγ)
2u+v

×
2u+1−1∑

l=2u

2v+1−1∑

m=2v︸ ︷︷ ︸
k(l,m)6=0

wall(δ)walm(ε)
ψ(2υ(k(l,m))α)

2υ(k(l,m))
.

For 2u ≤ l ≤ 2u+1 − 1, 2v ≤ m ≤ 2v+1 − 1 we have

wall(δ)walm(ε) = (−1)l0δ1+...+lu−1δu+δu+1(−1)m0ε1+...+mv−1εv+εv+1

= (−1)l0δ1+...+lu−1δu+m0ε1+...+mv−1εv

× (−1)(~c 2
u+1|~α)+(~c 3

v+1|~α)+βu+1+γv+1 ,
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by the definition of δ and ε. Hence

Σ4 =
s−1∑

u,v=0

‖2uβ‖ · ‖2vγ‖
2u+v−s (−1)(~c 2

u+1+~c 3
v+1|~α)

×
2u+1−1∑

l=2u

2v+1−1∑

m=2v︸ ︷︷ ︸
k(l,m)6=0

(−1)l0δ1+...+lu−1δu+m0ε1+...+mv−1εv
ψ(2υ(k(l,m))α)

2υ(k(l,m))
.

Here l := l0 + l12 + . . .+ lu2u, m = m0 +m12 + . . .+mv2v and ‖ · ‖ is the
distance to the nearest integer function, i.e. ‖x‖ := min(x− [x], 1−(x− [x])).
Note that ψ(2uβ)(−1)βu+1 = ‖2uβ‖ and ψ(2vγ)(−1)γv+1 = ‖2vγ‖.

For 0 ≤ u, v ≤ s− 1 we have

Σ5(u, v) :=
2u+1−1∑

l=2u

2v+1−1∑

m=2v︸ ︷︷ ︸
k(l,m)6=0

(−1)l0δ1+...+lu−1δu+m0ε1+...+mv−1εv
ψ(2υ(k(l,m))α)

2υ(k(l,m))

=
s−1∑

w=0

ψ(2wα)
2w

2u+1−1∑

l=2u

2v+1−1∑

m=2v︸ ︷︷ ︸
υ(k(l,m))=w

(−1)l0δ1+...+lu−1δu+m0ε1+...+mv−1εv .

For 0 ≤ u, v, w ≤ s− 1 define

Σ6(u, v, w) :=
2u+1−1∑

l=2u

2v+1−1∑

m=2v︸ ︷︷ ︸
υ(k(l,m))=w

(−1)l0δ1+...+lu−1δu+m0ε1+...+mv−1εv

=
2u−1∑

l=0

2v−1∑

m=0︸ ︷︷ ︸
υ(k(l+2u,m+2v))=w

wall(δ)walm(ε).

For 0 ≤ l ≤ 2u−1 and 0 ≤ m ≤ 2v−1, the condition υ(k(l+2u,m+2v))
= w means that there are k0, . . . , kw−1 ∈ Z2 such that

~c 2
1 l0 + . . .+ ~c 2

u lu−1 + ~c 2
u+1 + ~c 3

1m0 + . . .+ ~c 3
vmv−1 + ~c 3

v+1

+ ~e1k0 + . . .+ ~ewkw−1 + ~ew+1 = ~0,

where ~ei is the ith canonical vector in Zs2 and ~0 is the zero vector in Zs2.
Since ~c 2

1 , . . . ,~c
2
u+1,~c

3
1 , . . . ,~c

3
v+1, ~e1, . . . , ~ew+1 by the (0, s, 3)-net property

are linearly independent as long as (u+ 1) + (v + 1) + (w+ 1) ≤ s we must
have u+ v + w ≥ s− 2.
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For 0 ≤ l ≤ 2u − 1 and 0 ≤ m ≤ 2v − 1, let

~n := (l0, . . . , lu−1,m0, . . . ,mv−1)T ∈ Zu+v
2

and define
~ζ := (δ1, . . . , δu, ε1, . . . , εv)T ∈ Zu+v

2 .

Further let C(u,v) be the s× (u+ v)-matrix over Z2 given by

C(u,v) := (~c 2
1 , . . . ,~c

2
u ,~c

3
1 , . . . ,~c

3
v ),

and define
~d = ~d(u, v) := ~c 2

u+1 + ~c 3
v+1 ∈ Zs2.

Now (with this notation) υ(k(l + 2u,m+ 2v)) = w means

(2) C(u,v)~n =




k0
...

kw−1

1
0
...
0




+ ~d

for some ki∈Z2 (therefore in the following we sometimes write υ(k(n))=w).
Now we have to consider three cases:

1. u+ v +w = s− 2. Then the matrix (C(u,v), ~e1, . . . , ~ew) has rank s− 2
and therefore the system (2) has one or no solution.

2. u+ v +w = s− 1. Then the matrix (C(u,v), ~e1, . . . , ~ew) has rank s− 1
and therefore the system (2) has one or no solution.

3. u + v + w ≥ s. Then the matrix (C(u,v), ~e1, . . . , ~ew) has rank s and
therefore the system (2) has exactly 2u+v+w−s solutions.

In the following we give the solutions of the system (2) in the above three
cases and calculate the values of Σ6(u, v, w).

1. u + v + w = s − 2. Since ~e1, . . . , ~ew+1,~c
2
1 , . . . ,~c

2
u+1,~c

3
1 , . . . ,~c

3
v+1 are

linearly dependent we can find some λ1
1, . . . , λ

1
w+1, λ

2
1, . . . , λ

2
u+1, λ

3
1, . . . , λ

3
v+1

∈ Z2 not all zero such that
w+1∑

i=1

λ1
i~ei +

u+1∑

i=1

λ2
i~c

2
i +

v+1∑

i=1

λ3
i~c

3
i = ~0.

Assume that λ1
w+1 = 0. Then ~e1, . . . , ~ew,~c

2
1 , . . . ,~c

2
u+1,~c

3
1 , . . . ,~c

3
v+1 are lin-

early dependent. But this is a contradiction to the (0, s, 3)-net property and
hence λ1

w+1 = 1. In the same way one can show that λ2
u+1 = 1 and λ3

v+1 = 1
and hence the system (2) has exactly one solution.
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Now let D = D(u, v) be the following (u+ v)× (u+ v)-matrix over Z2:

D :=



c21,s−(u+v)+1 . . . c2u,s−(u+v)+1 c31,s−(u+v)+1 . . . c3v,s−(u+v)+1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c21,s . . . c2u,s c31,s . . . c3v,s



−1

(note that D = D(u, v) exists due to the (0, s, 3)-net property). We have

Σ6(u, v, w) =
2u+v−1∑

n=0
υ(k(n))=w

(−1)(~n|~ζ) =
2u+v−1∑

Dn=0
υ(k(Dn))=w

(−1)(D~n|~ζ).

Now υ(k(Dn)) = w means that

C(u,v)D~n =




k0
...

kw−1

1
0
...
0




+ ~d

for some ki ∈ Z2. This is equivalent to



E

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 1




· ~n =




k0
...

kw−1

1
0
...
0




+




d1
...
...
...
...
ds




with

E =




c21,1 . . . c3v,1
. . . . . . . . . . . . . . . . . . . . . . . . . .
c21,s−(u+v) . . . c3v,s−(u+v)


 ·D,

i.e. an (s − (u + v)) × (u + v)-matrix. Therefore the unique solution ~n is
given by

~n = (ds−(u+v)+1, . . . , ds)
T ∈ Zu+v

2

and hence for u+ v + w = s− 2 we have

Σ6(u, v, w) = (−1)((ds−(u+v)+1,...,ds)
T|DT~ζ).

2. u + v + w = s − 1. Let the (u + v) × (u + v)-matrix D = D(u, v) be
as in case 1. We consider two subcases:
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(a) u+ v ≤ s− 2. Assume that D~n is a solution of the system (2). Then
we find as in case 1 that

~n = (ds−(u+v)+1, . . . , ds)
T ∈ Zu+v

2 .

Let ~r ∈ Zu+v
2 be the last row of the (s− (u+ v))× (u+ v)-matrix

E =




c21,1 . . . c3v,1
. . . . . . . . . . . . . . . . . . . . . . . . . .

c21,s−(u+v) . . . c3v,s−(u+v)


 ·D.

Then (~r |~n) = 1 + ds−(u+v); but that contradicts case 1 from which we have
(~r |~n) = ds−(u+v). Hence system (2) has no solution in this case.

(b) u + v = s − 1 (hence w = 0). From (u + 1) + (v + 1) = s + 1 we
deduce that ~c 2

1 , . . . ,~c
2
u+1,~c

3
1 , . . . ,~c

3
v+1 are linearly dependent. Hence we can

find some λ1, . . . , λu+1, µ1, . . . , µv+1 ∈ Z2 not all zero such that
u+1∑

i=1

λi~c
2
i +

v+1∑

i=1

µi~c
3
i = ~0.

Assume λu+1 = 0. Then ~c 2
1 , . . . ,~c

2
u ,~c

3
1 , . . . ,~c

3
v+1 are linearly dependent,

which contradicts the (0, s, 3)-net property. So λu+1 = 1 and analogously
µv+1 = 1. Hence there exists a vector ~n0 ∈ Zu+v

2 such that

(3) C(u,v)~n0 = ~d.

Now consider the following linear equation system:


c21,2 . . . c2u,2 c31,2 . . . c3v,2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c21,s . . . c2u,s c31,s . . . c3v,s


 · ~n =



d2
...
ds


 .

This system has a unique solution and this solution is ~n0. From this together
with (3) it follows that the system

C(u,v)~n = ~e1 + ~d

cannot have a solution.

Altogether for u+ v + w = s− 1 we have

Σ6(u, v, w) = 0.

3. u+v+w ≥ s. We know that system (2) has exactly 2u+v+w−s solutions.
Again we consider two subcases.

(a) u + v ≤ s. Let the (u + v) × (u + v)-matrix D = D(u, v) be like in
case 1. Proceeding as in case 1 we find that the solutions of system (2) are
given by D~n where

(4) ~n = (n0, . . . , nu+v+w−(s+1), dw+1 + 1, dw+2, . . . , ds)T ∈ Zs2,
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with arbitrary n0, . . . , nu+v+w−(s+1) ∈ Z2. From this we get

Σ6(u, v, w) =
2u+v−1∑

Dn=0
υ(k(Dn))=w

(−1)(D~n|~ζ) =
∑

n0,...,nu+v+w−(s+1)∈Z2

~n as in (4)

(−1)(~n |DT~ζ)

= (−1)((0,...,0,dw+1+1,dw+2,...,ds)T |DT~ζ)
2u+v+w−s−1∑

n=0

waln(DTζ)

= 2u+v+w−s(−1)((0,...,0,dw+1+1,dw+2,...,ds)T|DT~ζ)

×





1 if (DT~ζ |~ei) = 0

for all i = 1, . . . , u+ v + w − s,
0 otherwise.

Let (DT~ζ |~ei) = 0 for all i = 1, . . . , u+ v + w − s. Then

(DT~ζ |(0, . . . , 0, dw+1 + 1, dw+2, . . . , ds)T)

= (DT~ζ |(ds−(u+v)+1, . . . , ds)
T) + (DT~ζ |~eu+v+w−s+1).

Hence for u+ v + w ≥ s, u+ v ≤ s we have

Σ6(u, v, w) = 2u+v+w−s(−1)(DT~ζ |(ds−(u+v)+1,...,ds)
T)

× (−1)(DT~ζ |~eu+v+w−s+1)κ1(u, v, w, s)

where

κ1(u, v, w, s) =
{

1 if (DT~ζ |~ei) = 0 for all i = 1, . . . , u+ v + w − s,
0 otherwise.

(b) u+ v > s. Let F = F (u, v) be the following s× s-matrix over Z2:

F = (~c 2
1 , . . . ,~c

2
u ,~c

3
1 , . . . ,~c

3
s−u)−1

(note that F exists due to the (0, s, 3)-net property) and let G = G(u, v) be
the following (u+ v)× (u+ v)-matrix over Z2:

G =




0 . . . 0

F
...

...
0 . . . 0

0 . . . 0 1 0
...

...
. . .

0 . . . 0 0 1




.
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We have

(5) Σ6(u, v, w) =
2u+v−1∑

n=0
υ(k(n))=w

(−1)(~n|~ζ) =
2u+v−1∑

Gn=0
υ(k(Gn))=w

(−1)(G~n|~ζ).

Now υ(k(Gn)) = w means that

C(u,v)G~n =




k0
...

kw−1

1
0
...
0




+ ~d

for some ki ∈ Z2. Since

C(u,v)G = (I,~c 3
s−u+1, . . . ,~c

3
v )

where I is the s × s unit matrix, we get the following solutions for our
equation system:

~n =




~d

0
...
...
0




+




k0
...

kw−1

1
0
...
0




+
u+v−s∑

i=1

ri ·




~c 3
s−u+i

~ei




for arbitrary ki ∈ Z2 and arbitrary ri ∈ Z2 and where ~ei is the ith unit
vector in Zu+v−s

2 .
Let H = H(u, v) be the (u+ v)× (u+ v)-matrix over Z2 given by

H =




c3s−u+1,1 . . . c3v,1 0 . . . 0
...

...
...

...
c3s−u+1,s . . . c3v,s 0 . . . 0

1 0 0 . . . 0
. . .

...
...

0 1 0 . . . 0




.
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Then we can write ~n as

~n = ~ew+1 +




~d

0
...
0




+




k0
...

kw−1

0
...
0




+H ·




r1
...

ru+v−s
0
...
0




where ~ew+1 is the (w + 1)th unit vector in Zu+v
2 . Inserting in (5) yields

Σ6(u, v, w) = (−1)((d1,...,ds,0,...,0)T|GT~ζ)(−1)(~ew+1|GT~ζ)

×
( ∑

k0,...,kw−1∈Z2

(−1)((k0,...,kw−1,0,...,0)T|GT~ζ)
)

×
( ∑

r1,...,ru+v−s∈Z2

(−1)(H·(r1,...,ru+v−s,0,...,0)T|GT~ζ)
)

= (−1)((d1,...,ds,0,...,0)T|GT~ζ)(−1)(~ew+1|GT~ζ)

×
( 2w−1∑

k=0

walk(GTζ)
)( 2u+v−s−1∑

r=0

walr(HTGTζ)
)

= (−1)((d1,...,ds,0,...,0)T|GT~ζ)(−1)(~ew+1|GT~ζ)

× 2u+v+w−sκ2(u, v, w, s)κ3(u, v, s),

where

κ2(u, v, w, s) =

{
1 if (~ei|GT~ζ) = 0 for all i = 1, . . . , w,

0 else,

κ3(u, v, s) =

{
1 if (~ei|HTGT~ζ) = 0 for all i = 1, . . . , u+ v − s,
0 else.

Now we can evaluate Σ5(u, v): We consider three cases.

1. u+ v > s. Then

Σ5(u, v) = 2u+v−s(−1)((d1,...,ds,0,...,0)T|GT~ζ)κ3(u, v, s)

×
s−1∑

w=0

ψ(2wα)(−1)(~ew+1|GT~ζ)κ2(u, v, w, s).

For 0 ≤ u, v ≤ s− 1 let

m = m(u, v) := max{1 ≤ j ≤ u+ v : (~ei|GT~ζ) = 0, i = 1, . . . , j}
(if u+ v = 0 or if (~e1|GT~ζ) = 1 set m = m(u, v) := 0). By the definition of
m = m(u, v) we have (~e1|GT~ζ) = . . . = (~em|GT~ζ) = 0 and (~em+1|GT~ζ) = 1.
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Hence κ2(u, v, w, s) = 1 iff w ≤ m(u, v). So we have

Σ5(u, v) = 2u+v−s(−1)((d1,...,ds,0,...,0)T|GT~ζ)κ3(u, v, s)

×
(m−1∑

w=0

ψ(2wα)− ψ(2mα)
)

= 2u+v−s(−1)((d1,...,ds,0,...,0)T|GT~ζ)κ3(u, v, s)(αm+1 − α),

where we used Lemma 2. Hence

|Σ5(u, v)| ≤ 2u+v−s.

2. u+ v ≤ s− 2. We have

Σ5(u, v) =
s−1∑

w=s−2−(u+v)

ψ(2wα)
2w

Σ6(u, v, w)

=
ψ(2s−2−(u+v)α)

2s−2−(u+v)
Σ6(u, v, s− 2− (u+ v))

+
s−1∑

w=s−(u+v)

ψ(2wα)
2w

Σ6(u, v, w)

= 2u+v−s(−1)((ds−(u+v)+1,...,ds)
T|DT~ζ)

×
[
4ψ(2s−2−(u+v)α) +

s−1∑

w=s−(u+v)

ψ(2wα)

× (−1)(~eu+v+w−s+1|DT~ζ)κ1(u, v, w, s)
]
.

For 0 ≤ u, v ≤ s− 1 let

p = p(u, v) := max{1 ≤ j ≤ u+ v : (~ei|DT~ζ) = 0, i = 1, . . . , j}

(if u + v = 0 or if (~e1|DT~ζ) = 1 set p = p(u, v) := 0). By the definition of
p = p(u, v) we have

(~e1|GT~ζ) = . . . = (~ep|GT~ζ) = 0 and (~ep+1|GT~ζ) = 1.

Hence κ1(u, v, w, s) = 1 iff u+ v + w − s ≤ p(u, v). So we have

Σ5(u, v) = 2u+v−s(−1)((ds−(u+v)+1,...,ds)
T|DT~ζ)

×
[
4ψ(2s−2−(u+v)α)− ψ(2s−(u+v)+pα) +

s−(u+v)+p−1∑

w=s−(u+v)

ψ(2wα)
]
.
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Now with Lemma 2 we get

s−(u+v)+p−1∑

w=s−(u+v)

ψ(2wα)− ψ(2s−(u+v)+pα)

=
s−(u+v)+p−1∑

w=0

ψ(2wα)− ψ(2s−(u+v)+pα)−
s−(u+v)−1∑

w=0

ψ(2wα)

= αs−(u+v)+p+1 − αs−(u+v)+1 − ψ(2s−(u+v)α).

Moreover we have

4ψ(2s−(u+v)−2α) = 4
(
αs−(u+v)

22 + . . .+
αs

2u+v+2 −
αs−(u+v)−1

2

)

= αs−(u+v) + {2s−(u+v)α} − 2αs−(u+v)−1.

Hence

4ψ(2s−2−(u+v))− ψ(2s−(u+v)+pα) +
s−(u+v)+p−1∑

w=s−(u+v)

ψ(2wα)

= αs−(u+v) + {2s−(u+v)α} − 2αs−(u+v)−1

+ αs−(u+v)+p+1 − αs−(u+v)+1 − ψ(2s−(u+v)α)

= αs−(u+v)+p+1 + αs−(u+v) − 2αs−(u+v)−1.

Therefore we have

Σ5(u, v) = 2u+v−s(−1)((ds−(u+v)+1,...,ds)
T|DT~ζ)

× [αs−(u+v)+p+1 + αs−(u+v) − 2αs−(u+v)−1].

Hence
|Σ5(u, v)| ≤ 2 · 2u+v−s.

3. s− 1 ≤ u+ v ≤ s. Then we get, as in case 2,

Σ5(u, v) = 2u+v−s(−1)((ds−(u+v)+1,...,ds)
T|DT~ζ)

× [αs−(u+v)+p+1 − αs−(u+v)+1 − ψ(2s−(u+v)α)].

From

ψ(2s−(u+v)α) =
αs−(u+v)+2

22 + . . .+
αs

2u+v −
αs−(u+v)+1

2

=
1
2

({2s−(u+v)+1α} − αs−(u+v)+1)

we get
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|αs−(u+v)+p+1 − αs−(u+v)+1 − ψ(2s−(u+v)α)|

=
∣∣∣∣αs−(u+v)+p+1 −

1
2

(αs−(u+v)+1 + {2s−(u+v)+1α})
∣∣∣∣ ≤ 1

and hence

|Σ5(u, v)| ≤ 2u+v−s.

Summing up we have

|Σ5(u, v)| ≤
{

2 · 2u+v−s for u+ v ≤ s− 2,

2u+v−s for u+ v ≥ s− 1.

Therefore

|Σ4| ≤
s−1∑

u,v=0

‖2uβ‖ · ‖2vγ‖
2u+v−s

∣∣∣Σ5(u, v)
∣∣∣

≤
s−1∑

u,v=0

‖2uβ‖ · ‖2vγ‖+
s−1∑

u,v=0
u+v≤s−2

‖2uβ‖ · ‖2vγ‖.

From [4, Theorem 3] we get

s−1∑

u,v=0

‖2uβ‖ · ‖2vγ‖ ≤
(
s

3
+

1
9
− (−1)s

1
9 · 2s

)2

.

Further, by [4, Theorem 2], we have

s−1∑

u,v=0
u+v≤s−2

‖2uβ‖ · ‖2vγ‖ =
s−1∑

u=0

‖2uβ‖
s−u−2∑

v=0

‖2vγ‖

≤
s−1∑

u=0

‖2uβ‖
(
s− u− 1

3
+

1
9
− (−1)s−u−1

9 · 2s−u−1

)

and

s−1∑

u=0

‖2uβ‖ s− u− 1
3

≤ 1
6

+
1
3

s−2∑

k=1

s−k−1∑

u=0

‖2uβ‖

≤ 1
6

+
1
3

s−2∑

k=1

(
s− k

3
+

1
9
− (−1)s−k

9 · 2s−k
)

=
s2

18
− s

54
− 4

162
+

(−1)s

162 · 2s−2 .
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Together we have

|Σ4| ≤
(
s

3
+

1
9
− (−1)s

1
9 · 2s

)2

+
s2

18
− s

54
− 4

162
+

(−1)s

162 · 2s−2

+
2
9

(
s

3
+

1
9
− (−1)s

1
9 · 2s

)

=
s2

6
+ s ·

(
7
54
− 2(−1)s

27 · 2s
)

+
1
81
− 2(−1)s

81 · 2s +
1

81 · 22s

and the result follows.

5. Proof of Theorems 2 and 3

Proof of Theorem 3. We use the technique of Niederreiter introduced in
[6, Proof of Lemma 4.1] (or see [7, Proof of Lemma 4.11]) and an idea of
G. Larcher.

Let N = b0 + b12 + . . .+ br2r, with br = 1 and bk ∈ {0, 1}, 0 ≤ k < r, be
the base 2 representation of N and let the integer p be maximal such that
2p is a divisor of N .

Let the digital (0, 2)-sequence in base 2 be generated by the N × N-
matrices C1 and C2. Divide the sequence x0, . . . ,xN−1 into subsequences
ωm,b for b = 0, . . . , bm − 1 and m = 0, . . . , r, where ωm,b is the subsequence
xn with

∑r
k=m+1 bk2k + b2m ≤ n <∑r

k=m+1 bk2k + (b+ 1)2m. For fixed m
divide the matrices Ci, i = 1, 2, into the following parts:

Ci =




Ci(m) Di(m)

Ei(m)



,

where Ci(m) is the upper left m×m-submatrix of Ci. If

n =
r∑

k=m+1

bk2k + b2m +
m−1∑

k=0

ak2k,

then

~n = (a0, a1, . . . , am−1, b, bm+1, . . . , br, 0, 0, . . .)T

and
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Ci~n =




Ci(m) ·




a0

a1
...
...

am−2

am−1




0
0
...




+




Di(m) ·




b
bm+1

...
br
0
...




0
0
...




+




0
0
...
...
...
0

Ei(m)~n




.

Hence ωm,b is a modulo Z2 shifted digital (0,m, 2)-net in base 2 generated
by C1(m) and C2(m), which finally is translated by a vector with positive
coordinates less than 2−m. Let ω̃m,b be the shifted digital net without the
final translation. Let D∗m,b (resp. D̃∗m,b) be the star discrepancy of ωm,b (resp.
ω̃m,b). Then by Lemma 4 we have

|D∗m,b − D̃∗m,b| ≤
2

2m
.

Therefore we get, by Lemma 3,

ND∗N ≤
r∑

m=0

bm−1∑

b=0

2mD∗m,b ≤
r∑

m=0

bm−1∑

b=0

2m
(

2
2m

+ D̃∗m,b

)

≤ 2
r∑

m=0

bm +
r∑

m=0

bm

(
m

3
+

19
9

)

= 2
r∑

m=p

bm +
r∑

m=p

bm

(
m

3
+

19
9

)
,

where p is the maximal integer such that 2p is a divisor of N .
Now apply the same method to the set consisting of the xn with N ≤

n ≤ 2r+1 − 1. This set consists of 2r+1 −N points. Let

2r+1 −N =
r∑

m=0

cm2m,

with cm ∈ {0, 1}. Again we can split up this set into a union of subsequences.
Let ωm,c for c = 0, . . . , cm− 1 and m = 0, . . . , r be the subsequence xn with
2r+1−∑r

k=m+1 ck2k−c2m ≤ n < 2r+1−∑r
k=m+1 ck2k−c2m+2m. As above

one can see that ωm,c is a modulo Z2 shifted digital (0,m, 2)-net in base 2
generated by C1(m) and C2(m), which finally is translated by a vector with
positive coordinates less than 2−m. As above, for the star discrepancy of our
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set we get

(2r+1 −N)D∗2r+1−N ≤ 2
r∑

m=0

cm +
r∑

m=0

cm

(
m

3
+

19
9

)
.

The first 2r+1 points of the (0, 2)-sequence build a digital (0, r+1, 2)-net.
Our initial set is the difference between this (0, r + 1, 2)-net and the set of
xn with N ≤ n ≤ 2r+1 − 1. Hence

ND∗N ≤ 2
r∑

m=0

cm +
r∑

m=0

cm

(
m

3
+

19
9

)
+
(
r + 1

3
+

19
9

)
.

Now

2r+1 = 2r+1 −N +N =
r∑

m=0

(cm + bm)2m.

Hence we have c0 = . . . = cp−1 = 0, bp + cp = 2 and bm + cm = 1 for
m = p+ 1, . . . , r. Therefore

ND∗N ≤ 2
(

2− bp +
r∑

m=p+1

(1− bm)
)

+ (2− bp)
(
p

3
+

19
9

)

+
r∑

m=p+1

(1− bm)
(
m

3
+

19
9

)
+
(
r + 1

3
+

19
9

)
.

Hence

ND∗N ≤ min
{

2
r∑

m=p

bm +
r∑

m=p

bm

(
m

3
+

19
9

)
,

2
(

1 +
r∑

m=p

(1− bm)
)

+
(
p

3
+

19
9

)

+
r∑

m=p

(1− bm)
(
m

3
+

19
9

)
+
(
r + 1

3
+

19
9

)}
.

Now, since min(A,B) ≤ (A+B)/2, the result follows.

Finally we give the proof of Theorem 2, which is an easy consequence of
Theorem 3.

Proof of Theorem 2. Let x0,x1, . . . be a digital (0, 2)-sequence in base 2
(such a sequence exists by [6, Corollary 6.19]) and let s ≥ 1 be an integer.
Then the set of

yn :=
(
n

2s
,xn

)
, n = 0, . . . , 2s − 1,
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is a digital (0, s, 3)-net in base 2. For the star discrepancy of this net, by [6,
Lemma 8.9] and by Theorem 3 we have

ND∗N ≤
1

12(log 2)2 (logN)2 +O(logN),

where N = 2s, and the result follows.
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